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Many wireless communication systems such as IS-54, EDGE, WiMAX, and LTE have adopted turbo 

codes and tail-biting convolutional codes as the forward error correcting codes (FEC) scheme for data and 

overhead channels. However, some releases propose LDPC codes for error-corrections due to the relative 

complexity of turbo codes decoder implementations as well as the success of LDPC codes in achieving the same 

performance as turbo codes and in some cases surpassing it with low decoding complexity. As a matter of fact, 

these new standard releases will work side by side in actual devices with older ones which are based on turbo and 

convolutional codes. Indeed, these two families of codes are both very good in performance. Consequently, it is 

mandatory to relate them so as to enhance technology transfer and hybridization between the two methodologies. 

 Moreover, in wireless systems, power consumption as well as die area must be minimized, because of 

battery life for wireless mobile devices, maximum allowable heat dissipation and available packaging space due to 

small-size hand-helds. Thus, efficient design of flexible convolutional, turbo and LDPC codes decoder with 

respect to power, area, and throughput is critical for future wireless system implementations. In the literature, 

many efficient turbo decoder architectures based on the MAP algorithm have been extensively investigated by 

many researchers. However, designing a flexible decoder to support LDPC, convolutional and turbo codes based 

on a unified MAP algorithm is very challenging. Henceforth,, in this paper we aim to provide an alternative 

solution proposing a combined decoder supporting the three types of codes with a small additional overhead based 

on a unified MAP algorithm. 

 

 

I. INTRODUCTION 
As a matter of fact, a few researchers have tried to treat LDPC codes as turbo codes and apply a turbo-like 

message-passing algorithm to LDPC codes. For example, in  [1], Mansour and Shanbhag introduced an efficient 

turbo message passing algorithm for architecture-aware LDPC codes. One year later in [2], Hocevar was able to 

propose a layered decoding algorithm which treats the parity-check matrix as horizontal layers and passes the soft 

information between layers to improve the performance. Subsequently, Chakrabarti and Zhu demonstrated the 

super-code-based LDPC construction and decoding  [3]. Furthermore, Zhang and Fossorier in  [4] evoked an 

attention to the shuffled BP algorithm to achieve faster decoding convergence. As well, Lu and Moura in  [5] 

sectionalized the Tanner graph into several trees, then they were able to apply the turbo-like decoding algorithm in 

each tree for faster convergence rate. What is more, Dai et al. introduced a turbo-sum-product hybrid decoding 

algorithm for quasi-cyclic (QC) LDPC codes by splitting the parity-check matrix into two submatrices where the 

information is exchanged  [6]. 

Eventually, in  [7], they have extended a super-code-based decoding algorithm for LDPC codes and 

presented a more generic message passing algorithm for LDPC and turbo decoding. Therein, a code is divided into 

multiple super-codes and then the decoding operation is performed by iteratively exchanging the soft information 

between super codes. Moreover, they exploit commonalities between LDPC and turbo decoders. 

Herein, we propose two approaches to decode the two families of codes by means of the MAP algorithm. 

Given that architecturally the MAP algorithm is a trellis-based algorithm, we first propose the regular trellis 

diagram representation for the H matrix of LDPC codes, thus exhibiting the complexity problem and proposing a 

solution. Second, we consider a super-code based decoding algorithm for LDPC codes as an alternative solution, 

showing the applicability of this approach to introduce a new turbo decoder. Finally, we propose a general 
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architecture for a combined decoder of the three mentioned codes based on the approach previously introduced for 

turbo and convolutional codes in UMTS. 

 

1. Trellis Representation of LDPC Codes 

In 1974, Bahl, Coke and Raviv described a technique for constructing trellises for block codes, 

uncovering an important relation between block codes and convolutional codes  [8]. In fact, this work did not 

present an algorithm, but merely showed that a trellis can be constructed. In 1978, Wolf developed a similar trellis  

[9], which provides a basis for the maximum likelihood (ML) soft-decision decoding of block codes using the 

MAP algorithm  [8]. Wolf’s method yields a trellis which represents a superset of codewords which must be 

modified by deletion of branches and states in order to obtain the trellis for the code. 

A trellis definition and method for constructing a trellis for any LDPC code, which is conceptually the same as 

linear block codes, from its parity-check matrix will be presented in the following subsections. Once the trellis has 

been constructed, the well-known MAP algorithm can be applied. The trellis complexity of the decoding 

algorithm will then be evaluated. 

 

II. TRELLIS CONSTRUCTION 

There are several ways a generic ),( kn  linear block code C  can be represented by a trellis structure 

(whereas a binary LDPC code is a linear block code specified by a very sparse binary parity check matrix). 

However, the original construction introduced by Bahl et al.  [8] yields a trellis which uniquely minimizes both 

the edge count and the vertex count at each depth. Because of this dual minimal characteristic, the so-called BCJR 

trellis offers significant advantages over other trellises for the use of the Viterbi or MAP algorithms  [10]. 

 

We introduce the construction of the BCJR trellis through a simplified example as follows: 

 

 
Figure  1: The trellis of a (7, 3) binary linear block code. 
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Example 1: We demonstrate the trellis idea with a (7, 3) binary linear block code. Let 
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be the parity-check matrix of the code. Accordingly, a column vector x  is a codeword if and only if 

0Hxs == ; that is, the syndrome s  must satisfy  
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We define the partial syndrome by  

,==
1=

1 rrrtt

r

t

r xx hshs   (3) 

 with 0=1s . As a consequence ss =1n .   

A trellis representation of a code is obtained by using rs  as the state, with an edge between a state rs  

and 1rs  if rr ss =1  (corresponding to 0=rx ) or if rrlr hss  =  (corresponding to 1=rx ). 

Furthermore, the trellis is terminated at state 0s =1n , corresponding to the fact that a valid codeword has a 

syndrome of zero. The trellis has at most 
kn2  states in it. Figure  1 shows the trellis for the above parity-check 

matrix. Horizontal transitions correspond to 0=tx  and diagonal transitions correspond to 1=tx . Only those 

paths which end up at 0s =8  are retained  [8]. 

 

2.2  Trellis Complexity 

The complexity of a trellis-based decoder for a general block code C  follows almost immediately from 

the complexity of the trellis representation upon which it is based. In [9], the trellis complexity grows 

exponentially with min ),( knk  . In general, trellis complexity can be quantified using a number of different 

metrics, the dimension profile of the vertex space and the number of edges in the trellis being particularly popular 

in the literature [10]. Termed edge complexity, the latter has been defined as: 

 

t
b

t

qCE =)(     (4) 

where tb  is the dimension of the branch space at time t , and q  is the size of the code alphabet. 

McEliece in  [10] has shown that the total number of edges in the trellis is a better reflection of the number of 

operations required to execute a software-based implementation of the Viterbi and MAP algorithms than any other 

known measure of trellis complexity. 
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2. Problem and Proposed Solution 

Unfortunately, the implementation of the MAP algorithm requires large computation and storage. 

Furthermore, its forward and backward recursions result in long decoding delays. Practically, this decoding 

algorithm must be simplified and its decoding complexity and delay must be reduced. As a consequence, for a 

general LDPC code, the trellis structure is sufficiently complicated that it may be very difficult to represent it 

efficiently in hardware as its very large generator matrix requires large computation and storage. There has been 

recent work on the MAP algorithm and its variations, such as Log-MAP and Max-Log-MAP algorithms based on 

sectionalized trellises for linear block codes [11]. Using the structural properties of properly sectionalized 

trellises, the decoding complexity and delay of the MAP algorithm can be reduced. Therefore, first we propose to 

apply the MAP algorithm based on bit-level trellises (minimal trellis) [12], also called the recursive MAP 

algorithm. In addition, several works have discussed the MAP algorithm based on sectionalized trellises which 

may also reduce the implementation complexity. As a consequence, in the following sections we show the two 

directions in details to find an optimal trade-off between performance and complexity. 

 

III. BIT-LEVEL TRELLIS 

As mentioned before, we will use a binary ),( kn  linear block code C  to be our simplified model as 

our way to generalize this work to LDPC codes. This linear block code can be represented by an n -section trellis 

diagram (bit-level trellis), denoted T , over the time span  n,0,1,2,=   which displays the dynamic 

behavior of its encoder. 

The trellis T  is a directed graph consisting of 1n  levels of nodes (called states) and edges (called branches) 

such that:   

• State space at time t , denoted )(C
t , is the set of states of the trellis T  at time t  (i.e., at the end 

of the t -th level). For nt 0 , the nodes at the t -th level represent the states in the state-space )(C
t . At 

time 0 (or 0-th level), there is only one node, denoted 0 , called the initial node (or state). At time n  (or ( 1n

)-th level), there is only one node, denoted f , called the final node (or state). 

 

• For nt 0 , a branch in the t -th section of the trellis T  connects a state )(
11 C

tt     to a 

state )(C
tt   and has a label 1ty  that represents the encoder output code bit in the interval from time 

1)( t  to time t . A branch represents a state transition. 

 

• Except for the initial and final states, every state has at least one, but no more than two, incoming 

branches and at least one, but no more than two, outgoing branches. The initial state has two outgoing branches 

but no incoming branches. The final state has two incoming branches but no outgoing branches. Two branches 

diverging from the same state have different labels. 

 

• There is a directed path from the initial state 0  to the final state f  with a label sequence 

),,,( 120 nyyy   if and only if ),,,( 120 nyyy   is a codeword in C .  

 

A trellis diagram for C  is said to be minimal if the number of states at each time stage of the trellis (or 

at the end of each section) is minimum [13]. 

 

Example 2: We demonstrate the idea here by considering the (8, 4) binary linear block code. The 8-section trellis 

diagram is shown in Figure 2.   
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Figure  2: 8-section minimal trellis diagram for the (8, 4) binary linear block code. 

   

For nt 0 , let t
 denote the cardinality of the state-space t

. Then, the sequence, 

   NN
,,,,

110
 , is called the state-space profile which is a measure of state complexity of the n

-section code trellis T . Define 

 

 ,)(log=
2

C
t

t   (5) 

 which is called the state-space dimension at time t . The sequence  n ,,, 10   is called the state-space 

dimension profile. 

We see that the state-space and state-space dimension profiles are ,8,4,2,1)(1,2,4,8,4  and 

,3,2,1,0)(0,1,2,3,2 , respectively. To facilitate the code trellis construction, we arrange the parity-check matrix 

H  in a special form. Let  120 ,,,= nhhh h  be a nonzero binary n -tuple. The first nonzero component of 

h  is called the leading ’1’ of h  and the last nonzero component of h  is called the trailing ’1’ of h . For 

example, the leading and trailing ones of the 8-tuple ,1,0,1,0)(0,1,0,1,0  are 1h  and 6h  respectively. A 

parity-check matrix H  for C  is said to be in trellis oriented form (TOF) if the following two conditions hold:   

    1.  The leading “1” of each row of H  appears in a column before the leading “1”of any row below it.  

    2.  No two rows have their trailing "ones" in the same column.  

 

Any parity-check matrix for C  can be put in TOF by two steps of Gaussian elimination (or elementary row 

operations). It should be noted that a parity-check matrix in TOF is not necessarily in systematic form and that fact 

will prove useful when we use different LDPC codes. 

 

Example 3: Considering the same (8, 4) binary linear block code with the following parity check matrix,   
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 To obtain the H matrix in TOF, we interchange the second and fourth rows as follows: 

 

.
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Add the fourth row of the above matrix to the first, second and third rows. These additions result in the following 

matrix in TOF: 
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Let  110 ,,,= nhhhh   be a row in the trellis-oriented parity-check matrix (TOHM) TOHMH  for code C . 

Let  ftth ,1,,=)(   denote the smallest index interval which contains all the nonzero components of 

h . This says that 1=th  and 1=fh  and they are leading and trailing “ones” of h , respectively. This interval 

  ],[,1,,=)( ftftt  h , called the bit span of )(hh , occupies the time span from time t  to time 

1)( f , i.e.,  11,...,,  ftt . In terms of time, we define the time span of h , denoted )(h , as the 

following time interval,  

 1].,[1,1,,=)(  ftftt h  (9) 

 Then, we define the active time span of h , denoted )(h , as the time interval  

 



 

.=for ),setempty (

,for  ],1,[
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tfft
h


  (10) 

 Let ),,,( 120 khhh   be the k  rows of a TOHM TOHMH  for an ),( kn  linear code C  with  

  ,,,,= 1,,1,0 nllll hhhh   (11) 

 for kl 0 . Let ),...,,(= 110 kxxxx  be the message of k  information bits, encoded to the codeword 

),...,,(= 110 nyyyy . Whereas xhy = , then we can rewrite y  as ,...).,.(= 1100 hh yxy . Based on the 

dimensions of H, there will be k  parity-check constraints for the length- n  codeword. 

We see that the l -th information bit lx  affects the output codeword y  of the encoder over the bit-span )(h  

of the l -th row 1h  of the TOHM TOHMH , where ],[=)( fth . Then, the information lx  affects the output 

code bits ),...,,( 1 ftt yyy   from time t  to time 1)( f . At time t , the input information bit lx  is regarded 

as the current input. At time 1)( t , lx  is shifted into the encoder memory and remains in the memory for 

tf   units of time. At time 1)( f , it will have no effect on future output code bits of the encoder, and it is 

shifted out of the encoder memory. At time t , nt 0 , we divide the rows of TOHMH  into three disjoint 

subsets:   

    1.  
p

tH  consists of those rows of TOHMH  whose bit spans are contained in the interval 1][0, t .  

2.  
f

tH  consists of those rows of TOHMH  whose bit spans are contained in the interval 1],[ nt .  

    3.  
s

tH  consists of those rows of TOHMH  whose active time spans contain time t .  
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 Let 
p

tX , 
f

tX , and 
s

tX  denote the subsets of information bits that correspond to the rows of 
f

tH , 
s

tH , and 

p

tH , respectively. The information bits in 
p

tX  do not affect the encoder outputs after time t , and hence they 

become the past with respect to time t . The information bits in 
f

tX  only affect the encoder outputs after time t

. Since the active time spans of the rows in 
s

tH  contain the time instant t , the information bits in 
s

tH  affect not 

only the past encoder outputs up to time t , but also the future encoder outputs beyond time t . Therefore, the bits 

in 
s

tH  are the information bits stored in the encoder memory that affect the current output code bit ty  and the 

future output code bits beyond time t . These information bits in 
s

tH  hence define a state of the encoder for the 

code C  at time t . Considering 
s

t

s

tt HX == , then there are t


2  distinct states that the encoder can 

reside in at time t . Each state is defined by a specific combination of the t  information bits in 
s

tX . These 

states form the state-space )(C
t  of the encoder (or simply of the code C ). 

Hence, the parameter t  is the dimension of the state-space )(C
t . In the trellis representation of C , the 

states in )(C
t  are represented by t


2  nodes at the t -th level of the trellis. The set 

s

tX  is called the 

state-defining information set at time t . From the above analysis, we see that at time t  for nt 0 , the 

dimension t  of the state-space )(C
t  is simply equal to the number of rows in the TOHM TOHMH  of C  

whose active time spans contains time t . These rows will henceforth be designated as active at time t . 

Therefore, from the TOHM TOHMH , we can easily determine the state-space dimension profile 

),,,( 10 n   by simply counting the number of rows in TOHMH  which are active at time t  for 

nt 0 . For nt 0 , suppose the encoder is in state )(C
tt  . From time t  to time 1t , the 

encoder generates a code bit ty  and moves from state t  to a state )(1 C
tt  . Let  

 ,,,,= 21

t

t

tts

t hhh H  (12) 

 and  

 ,,,,= 21

t

t

tts

t xxx X  (13) 

 where 
s

t

s

tt HX == . The current state t  of the encoder is defined by a specific combination of the 

information bits in 
s

tX . Let 
*h  denote the row in 

f

tH  whose leading “1” is a bit position t . The uniqueness of 

this row 
*

h  (if it exists) is guaranteed by the first condition in the definition of a generator matrix in TOF. Let 
*

ih  denote the i -th component of 
*

h . Then 1=*

ih . Let 
*x  denote the information bit that corresponds to 

row 
*

h . Given that ,...).,.(= 1100 hyhxy , the bit interval between time t  and time 1t  is given by  

 ,.= )(

,

)(

1=

* t

tl

t

l

t

l

t hxx 


y  (14) 

 where 
)(

,

t

tlh  is the t -th component of 
)(t

lh  in 
s

tH . It should be noted that the information bit 
*x  begins to 

affect the output of the encoder at time t . For this reason, bit 
*x  is regarded as the current input information bit. 

The second term in (14) is the contribution from the state t  defined by the information bits in 

 t

t

tts

t xxx ,,,= 21 X , which are stored in memory. From (14), we see that the current output ty  is uniquely 

determined by the current state t  of the encoder and the current input information bit 
*x . The output code bit 

ty  can have two possible values depending on the current input information bit 
*x . Each value takes the 
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encoder to a different state at time 1t . That is, there are two possible transitions from the current state t  to 

two states in )(
1

C
t 

 at time 1t . In the code trellis T  for C , there are two branches diverging from the 

node t  labeled with “0” and “1”, respectively. Suppose there is no such row 
*h  in 

s

tH . Then, the output code 

bit ty  at time t  is given by:  

 ..= )(

,

)(

1=

t

tl

t

l

t

l

t hx


y  (15) 

 In this case, we may regard the current input information 
*x  as being set to “0”, i.e. 0=*x  (this is called a 

dummy information bit). The output code bit ty  can take only one value given by (15) and there is only one 

possible transition from the current state t  to a state in )(
1

C
t 

. In the trellis T , there is only one branch 

diverging from the node t . Thus for, we have formulated the state-space and determined the output function of 

a linear block code encoder. Next, we need to determine the state transition of the encoder from one time instant to 

another. Let 
0

h  denote the row in 
s

tH  whose trailing “1” is at bit position t , i.e. the t -th component 
0

th  of 

0
h  is the last nonzero component of 

0
h . Note that this row 

0
h  may not exist. The uniqueness of the row 

0
h  

(if it exists) is guaranteed by the second condition of a parity-check matrix in TOF. Let 
*x  be the information bit 

in 
s

tH  that corresponds to row 
0

h . Then at time 1t ,  

     ,= *0

1 hhs

t

s

t HH   (16) 

 and  

     .= *0

1 axs

t

s

t XX   (17) 

 The information bits in 
s

t 1X  define the state-space )(
1

C
t 

 at time 1t . The change from 
s

tX  to 
s

t 1X  

defines the state transition of the encoder from the current state t  defined by 
s

tX  to the next state 1t  

defined by 
s

t 1X . We consider the information bit 
0x  as the oldest information bit stored in the encoder memory 

at time t . As the encoder moves from time t  to time 1t , 
0x  is shifted out of the memory and 

*x  (if it 

exists) is shifted into the memory. The state defining sets 
s

tX , 
s

t 1X  and the output functions given by (14) and 

(15) provide us all the information needed to construct the n -section bit-level trellis diagram T  for the ),( kn  

code C . 

The construction of the n -section trellis T  is carried out serially, section by section. Suppose the trellis has 

been constructed up to section t  (i.e. from time 0 to time t ). Now, we want to construct the 1)( t -th section 

from time t  to time 1)( t . The state-space )(
1

C
t 

 is known. The 1)( t -th section is constructed by 

taking the following steps:   

    1. Determine 
s

t 1H  and 
s

t 1X  from (16) and (17), from the state-space )(
1

C
t 

 at time 1)( t .  

    2. For each state )(C
tt  , determine its state transition(s) based on the change from 

s

tX  to 
s

t 1X . 

Connect t  to its adjacent state(s) in )(
1

C
t 

 by branches.  

    3. For each state transition, determine the output code bit ty  from the output function of (14) or (15), and 

label the corresponding branch in the trellis with ty .  

 

The bit-level trellis T  for C  constructed based on TOHM, TOHMH  is a minimal trellis [14]. 
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3.2  Sectionalized Trellises 

For any positive integer v  such that nv 1 , the bit-level trellis T  can be sectionalized into v  

sections with section boundary locations in  vuuuU ,...,,= 10  where nuuu v =<<<=0 10  . The 

sectionalization can be done by:   

    1.  Deleting every state in )(C
t  for  Unt /,0,1,  and every branch to or from a deleted state.  

2. For nv 1 , connecting a state )(
1

' C
f

u


  to a state )(C
f

u  by a branch with label 

),( ' l  IFF there is a path with label ),( ' l  from 
'  to   in T .  

 

This sectionalization results in a v -section trellis )(UT . At boundary location fu , the state-space (the set of 

states) is denoted )(C
f

u . The b -th section of )(UT , denoted fT , consists of the state-space )(
1

C
f

u


 

at time 1fu , the state )(C
f

u  at time bu  and the branches that connect the states in )(
1

C
f

u


 and the 

states in )(C
f

u . A branch in this section represents 1=  fff uum  code bits. The length of the b -th 

section is bm . If the lengths of all the sections of an v -section code trellis )(UT  are the same, )(UT  is said 

to be uniformly sectionalized. Two adjacent states 
'  and   with )(

1

' C
f

u


  and )(C
f

u  

may be connected by multiple branches, called parallel branches. For convenience, we say that these parallel 

branches form a composite branch, denoted ),( ' L . Each branch ),(),( ''  LF   is labeled by an 

fm -tuple, ),,,(=),( 2
1

1
1

'

f
u

f
u

f
u vvvl 





  , where 1=

1



t

f
uv  for BPSK signaling with unit 

energy. Let 
f

uu log=
2

  be the dimension of the state-space 
f

u
 at time fu . Then, 

 n
v

uuu  ,;,,,
121

0


 , is the state-space dimension profile of the v -section code trellis )(UT  with 

section boundary set  nuuuU v ,,...,,0,= 121  . If we choose the section boundaries,  vuuuuU ,...,,,= 210  

at the places where  n
v

uuu  ,;,,,
121

0


  are small, then the resultant v -section code trellis )(UT  

has a small state-space dimension profile. The maximum state complexity is  

 
f

u
vf

v C  max=)(
0

max,


 (18) 

In the implementation of a trellis-based decoding algorithm, such as the MAP algorithm, a proper choice 

of the section boundary locations results in a significant reduction in decoding complexity.  

 

Example 4: Considering the same (8, 4) binary linear block code whose 8-section code trellis is shown in Figure 

2, suppose we choose 4=v  and the section boundary set  0,2,4,6,8=U .   

 We obtain a uniform 4-section code trellis as shown in Figure 3. 
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Figure  3: 4-section minimal trellis diagram for the (8, 4) binary linear block code. 

    

 

The state-space dimension profile for this 4-section code trellis is (0,2,2,2,0) and the maximum state-space 

dimension is 2=max4, . It is a 4-section 4-state code trellis.  

 

3.3  MAP Algorithm Based on Mackay’s Approach 

As suggested by Mackay in [15], the check-to-variable message can also be computed by using the 

forward-backward algorithm [8]. The detailed computation approaches using the MAP algorithm were elaborated 

by Zhang and Mansour [16] [1]. To illustrate how the MAP algorithm works, a pseudo-random 1612  LDPC H 

matrix is defined as follows:   

.

1010000001010000

0000001010100001

0001010000001100

0100100100000010

0101000011000000

0000100000110001

1010001000001000

0000010100000110

0011110000000000

1100000000000011

0000000000111100

0000001111000000

=

















































H  

 

This matrix is divided into 3 sub-matrices 1H , 2H , and 3H , in which 2H  and 3H  are 

pseudo-random permutations of 1H . As a consequence, each round of message updating across the whole matrix 

is considered a full decoding iteration, and each round of iteration is divided into 3 sub-iterations corresponding to 
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the message computation of 1H , 2H , and 3H . First, the extrinsic information is computed in the MAP 

component decoder of 1H  and the results are permuted to the MAP component decoder of 2H  through 

interleaver 1M . Similarly, the computed messages in 2H  are fed to the MAP component decoder of 3H  

through interleaver 2M . This implies a complete round of iteration and the next iteration begins with the 

message passing from 3H  to 1H  through interleaver 3M  [17]. The trellis diagram of the above H matrix is 

shown in Figure 4. The MAP component decoders of the H matrix are comprised of several independent simple 

MAP decoders associated with the sub-matrices. The detailed architecture of the MAP decoder is found in [16] 

and [18]. In fact, the architecture in [18] is claimed to achieve low interconnect complexity and low memory 

access in addition to faster convergence [17].  

 

 
Figure  4: Trellis diagram of LDPC decoder based on single parity-check code. 
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Eventually, the parity-check matrix for the turbo code can be expressed by [19]: 

.

00000001000000000100000

00000011000000000000010

00000111000000010100000

00001110000000000000110

00011100000000010010000

00111000000000000000101

01110000000000001010000

11100000000000000001001

00000000000000100000001

00000000000001100000010

00000000000011100000101

00000000000111000001010

00000000001110000010100

00000000011100000101000

00000000111000001010000

00000001110000010100000

=





























































H  

 

This H matrix is similar to the matrix given in Example 4. Furthermore, we can treat the turbo code as a 

concatenation of n  super-codes, just like LDPC codes [1]. Consequently, it is natural to obtain a unified MAP 

algorithm to produce a combined decoder. It should be noted that each super-code has a simpler trellis structure so 

that the MAP algorithm can be efficiently executed. 

 

3. Proposed Combined Decoder Architecture 

In this section, we propose a combined convolutional, turbo, and LDPC decoder architecture based on a 

MAP component decoder. 

 

IV. COMBINED DECODER ARCHITECTURE BASED ON MAP ALGORITHM 
In this subsection, we present an optimized combined compliant decoder for the two families of codes 

considered in this paper. As a matter of fact, the turbo decoder and convolutional decoder have similar structures 

based on a MAP component decoder [20]. In the previous section, we introduced the MAP algorithm for LDPC 

codes. This opens the possibility of a single MAP-based unified decoder for both families of codes by merging the 

different MAP decoders mentioned above. 

However, these decoders differ substantially in their memory requirements and branch-metric 

calculations (due to the different code structures). Since the branch-metric calculation units (BMU) are of less 

complexity, and thus area, three separate BMUs can be implemented. For moderate throughput requirements, 

forward and backward recursions can be calculated serially on the same hardware unit (SMU). As a consequence, 

one SMU can be used for the three decoders with only few modifications. In practice, only a single set of 

multiplexers has to be added to the SMU due to the efficient data ordering and the optimized memory 

organization. Hence, the critical path is not significant altered. The LLR values are calculated in a dedicated LLR 

unit (LLRU) which consists of two pipelined trees which perform additions, comparisons and subtractions. The 

LLR calculation is performed in the same loop as the backward recursion (MAP Algorithm, Appendix 3). Thus, 

only the  -values have to be stored in memory ( -RAM in Figure 5), whereas the  -values are directly 

consumed after calculation. The size of the  -RAM is determined by the block size. Furthermore, the 

well-known sliding window approach [21] allows reducing this memory significantly at the cost of some 

additional computations (acquisition phase). Precisely, a window size of 64 was found to be a good trade-off 
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between computational overhead and memory size. Parts of the pipeline tree of the turbo code LLRU can be used 

for the convolutional and LDPC codes as well. Only the feedback loop of the convolutional code has to be added 

in the case of recursive code classes. Accordingly, most of the computational hardware can be reused for the three 

decoders. Nevertheless, the whole architecture is dominated by memory. Therefore, an efficient memory 

partitioning is essential for architectural efficiency. Following the architecture given in [20], the turbo decoder is 

dominated by the I/O memories due to the large block sizes. The  -RAM is of negligible size. In the case of the 

convolutional decoder, it is the opposite: the  -RAM is significantly larger than the I/O memories. Therefore, it 

is not possible to use the same I/O RAMs for turbo, convolutional, and LDPC codes. The same is true for the 
-RAMs. In fact, we propose here the architecture in general cases. However, for a specific case, we can merge the 

memories which store the same amount of data. As in [20], the turbo code I/O-RAMs and the convolutional code 

 -RAM store about the same amount of data and are therefore merged. 

 

 
Figure  5: Proposed combined decoder scheme. 

   

Considering the UMTS combined architecture example [20], the turbo code I/O memories can be 

partitioned in such a way that it is possible to use them as connvolutional  -RAM. The RAM has to be 88 bit 

wide because 8 state-metric values, each 11 bit wide, are calculated at every time step. To build this memory, each 

of the turbo code I/O RAMs is split into three separate RAMs resulting in a total of 12 RAMs, each of size 

61728 . These RAMs are then concatenated together with an additional 161728  RAM, forming the 

required bit-width for the storage of 8 state metrics in parallel. This memory sharing enables a window size of 54 

for convolutional code decoding. 

 

V. CONCLUSION 
The application of the MAP algorithm to decode the regular LDPC code has been investigated. As a 

matter of fact, for a general LDPC code, the trellis structure is sufficiently complicated that it may be difficult to 

efficiently represent it in hardware as its very large generator matrix requires large computation and storage. 

Therefore, a new solution has been proposed which consists in using a sectionalized trellises as in a previous work 

on linear block codes. Indeed, using the structural properties of properly sectionalized trellises for linear block 

codes reduces the decoding complexity and the latency of the MAP algorithm can be reduced. Consequently, we 

showed that it is possible to simplify the complexity of LDPC decoders using the sectionalized trellises. In 

parallel, we considered a super-code based decoding algorithm for LDPC codes as an alternative solution, and we 

showed the applicability of this approach to introduce a new turbo decoder. Finally, we were able to propose a 

combined decoder architecture for the convolutional, turbo, and LDPC codes based on the unified MAP 

algorithm. 
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