
Quest Journals

Journal of Electronics and Communication Engineering Research

ISSN:2321-5941 Volume1 ~ Issue 4 (2013) pp: 01-14

www.questjournals.org

*Corresponding Author: Ahmed Refaey Hussein 1 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Research Paper

Flexible Decoder Based on MAP-Algorithm for Two Different

Families of Codes

Ahmed Refaey Hussein and Weikun Hou

 Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Received 16 September, 2013; Accepted 30 December, 2013© The author(s) 2013. Published with

open access at www.questjournal.org

Many wireless communication systems such as IS-54, EDGE, WiMAX, and LTE have adopted turbo

codes and tail-biting convolutional codes as the forward error correcting codes (FEC) scheme for data and

overhead channels. However, some releases propose LDPC codes for error-corrections due to the relative

complexity of turbo codes decoder implementations as well as the success of LDPC codes in achieving the same

performance as turbo codes and in some cases surpassing it with low decoding complexity. As a matter of fact,

these new standard releases will work side by side in actual devices with older ones which are based on turbo and

convolutional codes. Indeed, these two families of codes are both very good in performance. Consequently, it is

mandatory to relate them so as to enhance technology transfer and hybridization between the two methodologies.

 Moreover, in wireless systems, power consumption as well as die area must be minimized, because of

battery life for wireless mobile devices, maximum allowable heat dissipation and available packaging space due to

small-size hand-helds. Thus, efficient design of flexible convolutional, turbo and LDPC codes decoder with

respect to power, area, and throughput is critical for future wireless system implementations. In the literature,

many efficient turbo decoder architectures based on the MAP algorithm have been extensively investigated by

many researchers. However, designing a flexible decoder to support LDPC, convolutional and turbo codes based

on a unified MAP algorithm is very challenging. Henceforth,, in this paper we aim to provide an alternative

solution proposing a combined decoder supporting the three types of codes with a small additional overhead based

on a unified MAP algorithm.

I. INTRODUCTION
As a matter of fact, a few researchers have tried to treat LDPC codes as turbo codes and apply a turbo-like

message-passing algorithm to LDPC codes. For example, in [1], Mansour and Shanbhag introduced an efficient

turbo message passing algorithm for architecture-aware LDPC codes. One year later in [2], Hocevar was able to

propose a layered decoding algorithm which treats the parity-check matrix as horizontal layers and passes the soft

information between layers to improve the performance. Subsequently, Chakrabarti and Zhu demonstrated the

super-code-based LDPC construction and decoding [3]. Furthermore, Zhang and Fossorier in [4] evoked an

attention to the shuffled BP algorithm to achieve faster decoding convergence. As well, Lu and Moura in [5]

sectionalized the Tanner graph into several trees, then they were able to apply the turbo-like decoding algorithm in

each tree for faster convergence rate. What is more, Dai et al. introduced a turbo-sum-product hybrid decoding

algorithm for quasi-cyclic (QC) LDPC codes by splitting the parity-check matrix into two submatrices where the

information is exchanged [6].

Eventually, in [7], they have extended a super-code-based decoding algorithm for LDPC codes and

presented a more generic message passing algorithm for LDPC and turbo decoding. Therein, a code is divided into

multiple super-codes and then the decoding operation is performed by iteratively exchanging the soft information

between super codes. Moreover, they exploit commonalities between LDPC and turbo decoders.

Herein, we propose two approaches to decode the two families of codes by means of the MAP algorithm.

Given that architecturally the MAP algorithm is a trellis-based algorithm, we first propose the regular trellis

diagram representation for the H matrix of LDPC codes, thus exhibiting the complexity problem and proposing a

solution. Second, we consider a super-code based decoding algorithm for LDPC codes as an alternative solution,

showing the applicability of this approach to introduce a new turbo decoder. Finally, we propose a general

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 2 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

architecture for a combined decoder of the three mentioned codes based on the approach previously introduced for

turbo and convolutional codes in UMTS.

1. Trellis Representation of LDPC Codes

In 1974, Bahl, Coke and Raviv described a technique for constructing trellises for block codes,

uncovering an important relation between block codes and convolutional codes [8]. In fact, this work did not

present an algorithm, but merely showed that a trellis can be constructed. In 1978, Wolf developed a similar trellis

[9], which provides a basis for the maximum likelihood (ML) soft-decision decoding of block codes using the

MAP algorithm [8]. Wolf’s method yields a trellis which represents a superset of codewords which must be

modified by deletion of branches and states in order to obtain the trellis for the code.

A trellis definition and method for constructing a trellis for any LDPC code, which is conceptually the same as

linear block codes, from its parity-check matrix will be presented in the following subsections. Once the trellis has

been constructed, the well-known MAP algorithm can be applied. The trellis complexity of the decoding

algorithm will then be evaluated.

II. TRELLIS CONSTRUCTION

There are several ways a generic),(kn linear block code C can be represented by a trellis structure

(whereas a binary LDPC code is a linear block code specified by a very sparse binary parity check matrix).

However, the original construction introduced by Bahl et al. [8] yields a trellis which uniquely minimizes both

the edge count and the vertex count at each depth. Because of this dual minimal characteristic, the so-called BCJR

trellis offers significant advantages over other trellises for the use of the Viterbi or MAP algorithms [10].

We introduce the construction of the BCJR trellis through a simplified example as follows:

Figure 1: The trellis of a (7, 3) binary linear block code.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 3 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Example 1: We demonstrate the trellis idea with a (7, 3) binary linear block code. Let

















1001101

0101011

0010111

=H

 ,= 7654321 hhhhhhh

 (1)

be the parity-check matrix of the code. Accordingly, a column vector x is a codeword if and only if

0Hxs == ; that is, the syndrome s must satisfy

 





























7

6

5

4

3

2

1

7654321=

x

x

x

x

x

x

x

hhhhhhhs

.==
7

1=

0h it

t

x (2)

We define the partial syndrome by

,==
1=

1 rrrtt

r

t

r xx hshs  (3)

 with 0=1s . As a consequence ss =1n .

A trellis representation of a code is obtained by using rs as the state, with an edge between a state rs

and 1rs if rr ss =1 (corresponding to 0=rx) or if rrlr hss  = (corresponding to 1=rx).

Furthermore, the trellis is terminated at state 0s =1n , corresponding to the fact that a valid codeword has a

syndrome of zero. The trellis has at most
kn2 states in it. Figure 1 shows the trellis for the above parity-check

matrix. Horizontal transitions correspond to 0=tx and diagonal transitions correspond to 1=tx . Only those

paths which end up at 0s =8 are retained [8].

2.2 Trellis Complexity

The complexity of a trellis-based decoder for a general block code C follows almost immediately from

the complexity of the trellis representation upon which it is based. In [9], the trellis complexity grows

exponentially with min),(knk  . In general, trellis complexity can be quantified using a number of different

metrics, the dimension profile of the vertex space and the number of edges in the trellis being particularly popular

in the literature [10]. Termed edge complexity, the latter has been defined as:

t
b

t

qCE =)((4)

where tb is the dimension of the branch space at time t , and q is the size of the code alphabet.

McEliece in [10] has shown that the total number of edges in the trellis is a better reflection of the number of

operations required to execute a software-based implementation of the Viterbi and MAP algorithms than any other

known measure of trellis complexity.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 4 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

2. Problem and Proposed Solution

Unfortunately, the implementation of the MAP algorithm requires large computation and storage.

Furthermore, its forward and backward recursions result in long decoding delays. Practically, this decoding

algorithm must be simplified and its decoding complexity and delay must be reduced. As a consequence, for a

general LDPC code, the trellis structure is sufficiently complicated that it may be very difficult to represent it

efficiently in hardware as its very large generator matrix requires large computation and storage. There has been

recent work on the MAP algorithm and its variations, such as Log-MAP and Max-Log-MAP algorithms based on

sectionalized trellises for linear block codes [11]. Using the structural properties of properly sectionalized

trellises, the decoding complexity and delay of the MAP algorithm can be reduced. Therefore, first we propose to

apply the MAP algorithm based on bit-level trellises (minimal trellis) [12], also called the recursive MAP

algorithm. In addition, several works have discussed the MAP algorithm based on sectionalized trellises which

may also reduce the implementation complexity. As a consequence, in the following sections we show the two

directions in details to find an optimal trade-off between performance and complexity.

III. BIT-LEVEL TRELLIS

As mentioned before, we will use a binary),(kn linear block code C to be our simplified model as

our way to generalize this work to LDPC codes. This linear block code can be represented by an n -section trellis

diagram (bit-level trellis), denoted T , over the time span  n,0,1,2,=  which displays the dynamic

behavior of its encoder.

The trellis T is a directed graph consisting of 1n levels of nodes (called states) and edges (called branches)

such that:

• State space at time t , denoted)(C
t , is the set of states of the trellis T at time t (i.e., at the end

of the t -th level). For nt 0 , the nodes at the t -th level represent the states in the state-space)(C
t . At

time 0 (or 0-th level), there is only one node, denoted 0 , called the initial node (or state). At time n (or (1n

)-th level), there is only one node, denoted f , called the final node (or state).

• For nt 0 , a branch in the t -th section of the trellis T connects a state)(
11 C

tt    to a

state)(C
tt  and has a label 1ty that represents the encoder output code bit in the interval from time

1)(t to time t . A branch represents a state transition.

• Except for the initial and final states, every state has at least one, but no more than two, incoming

branches and at least one, but no more than two, outgoing branches. The initial state has two outgoing branches

but no incoming branches. The final state has two incoming branches but no outgoing branches. Two branches

diverging from the same state have different labels.

• There is a directed path from the initial state 0 to the final state f with a label sequence

),,,(120 nyyy  if and only if),,,(120 nyyy  is a codeword in C .

A trellis diagram for C is said to be minimal if the number of states at each time stage of the trellis (or

at the end of each section) is minimum [13].

Example 2: We demonstrate the idea here by considering the (8, 4) binary linear block code. The 8-section trellis

diagram is shown in Figure 2.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 5 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Figure 2: 8-section minimal trellis diagram for the (8, 4) binary linear block code.

For nt 0 , let t
 denote the cardinality of the state-space t

. Then, the sequence,

   NN
,,,,

110
 , is called the state-space profile which is a measure of state complexity of the n

-section code trellis T . Define

 ,)(log=
2

C
t

t  (5)

 which is called the state-space dimension at time t . The sequence  n ,,, 10  is called the state-space

dimension profile.

We see that the state-space and state-space dimension profiles are ,8,4,2,1)(1,2,4,8,4 and

,3,2,1,0)(0,1,2,3,2 , respectively. To facilitate the code trellis construction, we arrange the parity-check matrix

H in a special form. Let  120 ,,,= nhhh h be a nonzero binary n -tuple. The first nonzero component of

h is called the leading ’1’ of h and the last nonzero component of h is called the trailing ’1’ of h . For

example, the leading and trailing ones of the 8-tuple ,1,0,1,0)(0,1,0,1,0 are 1h and 6h respectively. A

parity-check matrix H for C is said to be in trellis oriented form (TOF) if the following two conditions hold:

 1. The leading “1” of each row of H appears in a column before the leading “1”of any row below it.

 2. No two rows have their trailing "ones" in the same column.

Any parity-check matrix for C can be put in TOF by two steps of Gaussian elimination (or elementary row

operations). It should be noted that a parity-check matrix in TOF is not necessarily in systematic form and that fact

will prove useful when we use different LDPC codes.

Example 3: Considering the same (8, 4) binary linear block code with the following parity check matrix,

.

10101010

11001100

11110000

11111111

=



















H (6)

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 6 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

 To obtain the H matrix in TOF, we interchange the second and fourth rows as follows:

.

11110000

11001100

10101010

11111111

=



















H (7)

Add the fourth row of the above matrix to the first, second and third rows. These additions result in the following

matrix in TOF:

,

11110000

00111100

01001010

00001111

=



















TOHMH (8)

Let  110 ,,,= nhhhh  be a row in the trellis-oriented parity-check matrix (TOHM) TOHMH for code C .

Let  ftth ,1,,=)( denote the smallest index interval which contains all the nonzero components of

h . This says that 1=th and 1=fh and they are leading and trailing “ones” of h , respectively. This interval

 ],[,1,,=)(ftftt  h , called the bit span of)(hh , occupies the time span from time t to time

1)(f , i.e.,  11,...,,  ftt . In terms of time, we define the time span of h , denoted)(h , as the

following time interval,

 1].,[1,1,,=)( ftftt h (9)

 Then, we define the active time span of h , denoted)(h , as the time interval



 

.=for),setempty (

,for],1,[
=)(

tf

tfft
h


 (10)

 Let),,,(120 khhh  be the k rows of a TOHM TOHMH for an),(kn linear code C with

  ,,,,= 1,,1,0 nllll hhhh  (11)

 for kl 0 . Let),...,,(= 110 kxxxx be the message of k information bits, encoded to the codeword

),...,,(= 110 nyyyy . Whereas xhy = , then we can rewrite y as ,...).,.(= 1100 hh yxy . Based on the

dimensions of H, there will be k parity-check constraints for the length- n codeword.

We see that the l -th information bit lx affects the output codeword y of the encoder over the bit-span)(h

of the l -th row 1h of the TOHM TOHMH , where],[=)(fth . Then, the information lx affects the output

code bits),...,,(1 ftt yyy  from time t to time 1)(f . At time t , the input information bit lx is regarded

as the current input. At time 1)(t , lx is shifted into the encoder memory and remains in the memory for

tf  units of time. At time 1)(f , it will have no effect on future output code bits of the encoder, and it is

shifted out of the encoder memory. At time t , nt 0 , we divide the rows of TOHMH into three disjoint

subsets:

 1.
p

tH consists of those rows of TOHMH whose bit spans are contained in the interval 1][0, t .

2.
f

tH consists of those rows of TOHMH whose bit spans are contained in the interval 1],[nt .

 3.
s

tH consists of those rows of TOHMH whose active time spans contain time t .

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 7 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

 Let
p

tX ,
f

tX , and
s

tX denote the subsets of information bits that correspond to the rows of
f

tH ,
s

tH , and

p

tH , respectively. The information bits in
p

tX do not affect the encoder outputs after time t , and hence they

become the past with respect to time t . The information bits in
f

tX only affect the encoder outputs after time t

. Since the active time spans of the rows in
s

tH contain the time instant t , the information bits in
s

tH affect not

only the past encoder outputs up to time t , but also the future encoder outputs beyond time t . Therefore, the bits

in
s

tH are the information bits stored in the encoder memory that affect the current output code bit ty and the

future output code bits beyond time t . These information bits in
s

tH hence define a state of the encoder for the

code C at time t . Considering
s

t

s

tt HX == , then there are t


2 distinct states that the encoder can

reside in at time t . Each state is defined by a specific combination of the t information bits in
s

tX . These

states form the state-space)(C
t of the encoder (or simply of the code C).

Hence, the parameter t is the dimension of the state-space)(C
t . In the trellis representation of C , the

states in)(C
t are represented by t


2 nodes at the t -th level of the trellis. The set

s

tX is called the

state-defining information set at time t . From the above analysis, we see that at time t for nt 0 , the

dimension t of the state-space)(C
t is simply equal to the number of rows in the TOHM TOHMH of C

whose active time spans contains time t . These rows will henceforth be designated as active at time t .

Therefore, from the TOHM TOHMH , we can easily determine the state-space dimension profile

),,,(10 n  by simply counting the number of rows in TOHMH which are active at time t for

nt 0 . For nt 0 , suppose the encoder is in state)(C
tt  . From time t to time 1t , the

encoder generates a code bit ty and moves from state t to a state)(1 C
tt  . Let

 ,,,,= 21

t

t

tts

t hhh H (12)

 and

 ,,,,= 21

t

t

tts

t xxx X (13)

 where
s

t

s

tt HX == . The current state t of the encoder is defined by a specific combination of the

information bits in
s

tX . Let
*h denote the row in

f

tH whose leading “1” is a bit position t . The uniqueness of

this row
*

h (if it exists) is guaranteed by the first condition in the definition of a generator matrix in TOF. Let
*

ih denote the i -th component of
*

h . Then 1=*

ih . Let
*x denote the information bit that corresponds to

row
*

h . Given that ,...).,.(= 1100 hyhxy , the bit interval between time t and time 1t is given by

 ,.=)(

,

)(

1=

* t

tl

t

l

t

l

t hxx 


y (14)

 where
)(

,

t

tlh is the t -th component of
)(t

lh in
s

tH . It should be noted that the information bit
*x begins to

affect the output of the encoder at time t . For this reason, bit
*x is regarded as the current input information bit.

The second term in (14) is the contribution from the state t defined by the information bits in

 t

t

tts

t xxx ,,,= 21 X , which are stored in memory. From (14), we see that the current output ty is uniquely

determined by the current state t of the encoder and the current input information bit
*x . The output code bit

ty can have two possible values depending on the current input information bit
*x . Each value takes the

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 8 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

encoder to a different state at time 1t . That is, there are two possible transitions from the current state t to

two states in)(
1

C
t 

 at time 1t . In the code trellis T for C , there are two branches diverging from the

node t labeled with “0” and “1”, respectively. Suppose there is no such row
*h in

s

tH . Then, the output code

bit ty at time t is given by:

 ..=)(

,

)(

1=

t

tl

t

l

t

l

t hx


y (15)

 In this case, we may regard the current input information
*x as being set to “0”, i.e. 0=*x (this is called a

dummy information bit). The output code bit ty can take only one value given by (15) and there is only one

possible transition from the current state t to a state in)(
1

C
t 

. In the trellis T , there is only one branch

diverging from the node t . Thus for, we have formulated the state-space and determined the output function of

a linear block code encoder. Next, we need to determine the state transition of the encoder from one time instant to

another. Let
0

h denote the row in
s

tH whose trailing “1” is at bit position t , i.e. the t -th component
0

th of

0
h is the last nonzero component of

0
h . Note that this row

0
h may not exist. The uniqueness of the row

0
h

(if it exists) is guaranteed by the second condition of a parity-check matrix in TOF. Let
*x be the information bit

in
s

tH that corresponds to row
0

h . Then at time 1t ,

     ,= *0

1 hhs

t

s

t HH  (16)

 and

     .= *0

1 axs

t

s

t XX  (17)

 The information bits in
s

t 1X define the state-space)(
1

C
t 

 at time 1t . The change from
s

tX to
s

t 1X

defines the state transition of the encoder from the current state t defined by
s

tX to the next state 1t

defined by
s

t 1X . We consider the information bit
0x as the oldest information bit stored in the encoder memory

at time t . As the encoder moves from time t to time 1t ,
0x is shifted out of the memory and

*x (if it

exists) is shifted into the memory. The state defining sets
s

tX ,
s

t 1X and the output functions given by (14) and

(15) provide us all the information needed to construct the n -section bit-level trellis diagram T for the),(kn

code C .

The construction of the n -section trellis T is carried out serially, section by section. Suppose the trellis has

been constructed up to section t (i.e. from time 0 to time t). Now, we want to construct the 1)(t -th section

from time t to time 1)(t . The state-space)(
1

C
t 

 is known. The 1)(t -th section is constructed by

taking the following steps:

 1. Determine
s

t 1H and
s

t 1X from (16) and (17), from the state-space)(
1

C
t 

 at time 1)(t .

 2. For each state)(C
tt  , determine its state transition(s) based on the change from

s

tX to
s

t 1X .

Connect t to its adjacent state(s) in)(
1

C
t 

 by branches.

 3. For each state transition, determine the output code bit ty from the output function of (14) or (15), and

label the corresponding branch in the trellis with ty .

The bit-level trellis T for C constructed based on TOHM, TOHMH is a minimal trellis [14].

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 9 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

3.2 Sectionalized Trellises

For any positive integer v such that nv 1 , the bit-level trellis T can be sectionalized into v

sections with section boundary locations in  vuuuU ,...,,= 10 where nuuu v =<<<=0 10  . The

sectionalization can be done by:

 1. Deleting every state in)(C
t for  Unt /,0,1, and every branch to or from a deleted state.

2. For nv 1 , connecting a state)(
1

' C
f

u


 to a state)(C
f

u by a branch with label

),(' l IFF there is a path with label),(' l from
' to  in T .

This sectionalization results in a v -section trellis)(UT . At boundary location fu , the state-space (the set of

states) is denoted)(C
f

u . The b -th section of)(UT , denoted fT , consists of the state-space)(
1

C
f

u


at time 1fu , the state)(C
f

u at time bu and the branches that connect the states in)(
1

C
f

u


 and the

states in)(C
f

u . A branch in this section represents 1=  fff uum code bits. The length of the b -th

section is bm . If the lengths of all the sections of an v -section code trellis)(UT are the same,)(UT is said

to be uniformly sectionalized. Two adjacent states
' and  with)(

1

' C
f

u


 and)(C
f

u

may be connected by multiple branches, called parallel branches. For convenience, we say that these parallel

branches form a composite branch, denoted),(' L . Each branch),(),(''  LF  is labeled by an

fm -tuple,),,,(=),(2
1

1
1

'

f
u

f
u

f
u vvvl 





 , where 1=

1



t

f
uv for BPSK signaling with unit

energy. Let 
f

uu log=
2

 be the dimension of the state-space 
f

u
 at time fu . Then,

 n
v

uuu  ,;,,,
121

0


 , is the state-space dimension profile of the v -section code trellis)(UT with

section boundary set  nuuuU v ,,...,,0,= 121  . If we choose the section boundaries,  vuuuuU ,...,,,= 210

at the places where  n
v

uuu  ,;,,,
121

0


 are small, then the resultant v -section code trellis)(UT

has a small state-space dimension profile. The maximum state complexity is

f

u
vf

v C  max=)(
0

max,


 (18)

In the implementation of a trellis-based decoding algorithm, such as the MAP algorithm, a proper choice

of the section boundary locations results in a significant reduction in decoding complexity.

Example 4: Considering the same (8, 4) binary linear block code whose 8-section code trellis is shown in Figure

2, suppose we choose 4=v and the section boundary set  0,2,4,6,8=U .

 We obtain a uniform 4-section code trellis as shown in Figure 3.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 10 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Figure 3: 4-section minimal trellis diagram for the (8, 4) binary linear block code.

The state-space dimension profile for this 4-section code trellis is (0,2,2,2,0) and the maximum state-space

dimension is 2=max4, . It is a 4-section 4-state code trellis.

3.3 MAP Algorithm Based on Mackay’s Approach

As suggested by Mackay in [15], the check-to-variable message can also be computed by using the

forward-backward algorithm [8]. The detailed computation approaches using the MAP algorithm were elaborated

by Zhang and Mansour [16] [1]. To illustrate how the MAP algorithm works, a pseudo-random 1612 LDPC H

matrix is defined as follows:

.

1010000001010000

0000001010100001

0001010000001100

0100100100000010

0101000011000000

0000100000110001

1010001000001000

0000010100000110

0011110000000000

1100000000000011

0000000000111100

0000001111000000

=

















































H

This matrix is divided into 3 sub-matrices 1H , 2H , and 3H , in which 2H and 3H are

pseudo-random permutations of 1H . As a consequence, each round of message updating across the whole matrix

is considered a full decoding iteration, and each round of iteration is divided into 3 sub-iterations corresponding to

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 11 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

the message computation of 1H , 2H , and 3H . First, the extrinsic information is computed in the MAP

component decoder of 1H and the results are permuted to the MAP component decoder of 2H through

interleaver 1M . Similarly, the computed messages in 2H are fed to the MAP component decoder of 3H

through interleaver 2M . This implies a complete round of iteration and the next iteration begins with the

message passing from 3H to 1H through interleaver 3M [17]. The trellis diagram of the above H matrix is

shown in Figure 4. The MAP component decoders of the H matrix are comprised of several independent simple

MAP decoders associated with the sub-matrices. The detailed architecture of the MAP decoder is found in [16]

and [18]. In fact, the architecture in [18] is claimed to achieve low interconnect complexity and low memory

access in addition to faster convergence [17].

Figure 4: Trellis diagram of LDPC decoder based on single parity-check code.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 12 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

Eventually, the parity-check matrix for the turbo code can be expressed by [19]:

.

00000001000000000100000

00000011000000000000010

00000111000000010100000

00001110000000000000110

00011100000000010010000

00111000000000000000101

01110000000000001010000

11100000000000000001001

00000000000000100000001

00000000000001100000010

00000000000011100000101

00000000000111000001010

00000000001110000010100

00000000011100000101000

00000000111000001010000

00000001110000010100000

=





























































H

This H matrix is similar to the matrix given in Example 4. Furthermore, we can treat the turbo code as a

concatenation of n super-codes, just like LDPC codes [1]. Consequently, it is natural to obtain a unified MAP

algorithm to produce a combined decoder. It should be noted that each super-code has a simpler trellis structure so

that the MAP algorithm can be efficiently executed.

3. Proposed Combined Decoder Architecture

In this section, we propose a combined convolutional, turbo, and LDPC decoder architecture based on a

MAP component decoder.

IV. COMBINED DECODER ARCHITECTURE BASED ON MAP ALGORITHM
In this subsection, we present an optimized combined compliant decoder for the two families of codes

considered in this paper. As a matter of fact, the turbo decoder and convolutional decoder have similar structures

based on a MAP component decoder [20]. In the previous section, we introduced the MAP algorithm for LDPC

codes. This opens the possibility of a single MAP-based unified decoder for both families of codes by merging the

different MAP decoders mentioned above.

However, these decoders differ substantially in their memory requirements and branch-metric

calculations (due to the different code structures). Since the branch-metric calculation units (BMU) are of less

complexity, and thus area, three separate BMUs can be implemented. For moderate throughput requirements,

forward and backward recursions can be calculated serially on the same hardware unit (SMU). As a consequence,

one SMU can be used for the three decoders with only few modifications. In practice, only a single set of

multiplexers has to be added to the SMU due to the efficient data ordering and the optimized memory

organization. Hence, the critical path is not significant altered. The LLR values are calculated in a dedicated LLR

unit (LLRU) which consists of two pipelined trees which perform additions, comparisons and subtractions. The

LLR calculation is performed in the same loop as the backward recursion (MAP Algorithm, Appendix 3). Thus,

only the  -values have to be stored in memory ( -RAM in Figure 5), whereas the  -values are directly

consumed after calculation. The size of the  -RAM is determined by the block size. Furthermore, the

well-known sliding window approach [21] allows reducing this memory significantly at the cost of some

additional computations (acquisition phase). Precisely, a window size of 64 was found to be a good trade-off

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 13 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

between computational overhead and memory size. Parts of the pipeline tree of the turbo code LLRU can be used

for the convolutional and LDPC codes as well. Only the feedback loop of the convolutional code has to be added

in the case of recursive code classes. Accordingly, most of the computational hardware can be reused for the three

decoders. Nevertheless, the whole architecture is dominated by memory. Therefore, an efficient memory

partitioning is essential for architectural efficiency. Following the architecture given in [20], the turbo decoder is

dominated by the I/O memories due to the large block sizes. The  -RAM is of negligible size. In the case of the

convolutional decoder, it is the opposite: the  -RAM is significantly larger than the I/O memories. Therefore, it

is not possible to use the same I/O RAMs for turbo, convolutional, and LDPC codes. The same is true for the 
-RAMs. In fact, we propose here the architecture in general cases. However, for a specific case, we can merge the

memories which store the same amount of data. As in [20], the turbo code I/O-RAMs and the convolutional code

 -RAM store about the same amount of data and are therefore merged.

Figure 5: Proposed combined decoder scheme.

Considering the UMTS combined architecture example [20], the turbo code I/O memories can be

partitioned in such a way that it is possible to use them as connvolutional  -RAM. The RAM has to be 88 bit

wide because 8 state-metric values, each 11 bit wide, are calculated at every time step. To build this memory, each

of the turbo code I/O RAMs is split into three separate RAMs resulting in a total of 12 RAMs, each of size

61728 . These RAMs are then concatenated together with an additional 161728 RAM, forming the

required bit-width for the storage of 8 state metrics in parallel. This memory sharing enables a window size of 54

for convolutional code decoding.

V. CONCLUSION
The application of the MAP algorithm to decode the regular LDPC code has been investigated. As a

matter of fact, for a general LDPC code, the trellis structure is sufficiently complicated that it may be difficult to

efficiently represent it in hardware as its very large generator matrix requires large computation and storage.

Therefore, a new solution has been proposed which consists in using a sectionalized trellises as in a previous work

on linear block codes. Indeed, using the structural properties of properly sectionalized trellises for linear block

codes reduces the decoding complexity and the latency of the MAP algorithm can be reduced. Consequently, we

showed that it is possible to simplify the complexity of LDPC decoders using the sectionalized trellises. In

parallel, we considered a super-code based decoding algorithm for LDPC codes as an alternative solution, and we

showed the applicability of this approach to introduce a new turbo decoder. Finally, we were able to propose a

combined decoder architecture for the convolutional, turbo, and LDPC codes based on the unified MAP

algorithm.

Flexible Decoder Based on MAP-Algorithm for Two Different Families of Codes

*Corresponding Author: Ahmed Refaey Hussein 14 | Page

Department of Electrical and Computer Engineering University of Western Ontario,

N6A 5B9, London, Canada.

REFERENCES
[1]. M. M. Mansour and N. R. Shanbhag, “High-Throughput LDPC Decoders,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 11, pp. 976-996, December 2003.

[2]. D. Hocevar, “A Reduced Complexity Decoder Architecture Via Layered Decoding of LDPC Codes,” in IEEE Workshop on Signal
Processing Systems Design and Implementation, pp. 107-112, October 2004.

[3]. Y. Zhu and C. Chakrabarti, “Architecture-Aware LDPC Code Design for Multiprocessor Software Defined Radio Systems,” IEEE

Transactions on Signal Processing, vol. 57, pp. 3679 -3692, September 2009.
[4]. J. Zhang and M. Fossorier, “Shuffled Belief Propagation Decoding,” Asilomar Conference on Signals, Systems and Computers,

November 2002.

[5]. L. Jin and J.M.F. Moura, “Turbo Like Decoding of LDPC Codes,” Digests of INTERMAG 2003. International Magnetics
Conference, pp. DT–11, March 2003,

[6]. Y. Dai, Z. Yan, and N. Chen, “High-Throughput Turbo Sum-Product Decoding of QC LDPC Codes,” 40th Annual Conference on

Information Sciences and Systems, vol. 11, pp. 839- 844. March 2006.
[7]. Y. Sun and J. R. Cavallaro, “Unified Decoder Architecture For LDPC/Turbo Codes,” in IEEE Workshop on Signal Processing

Systems, SiPS, vol. 11, p. 1318, March 2008.

[8]. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,” IEEE
Transactions on Information Theory, vol. 20, pp. 284–287, March 1974.

[9]. J. K. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a Trellis,” IEEE Transactions on Information

Theory, vol. 20, pp. 76–80, June 1978.

[10]. R. J. McEliece, T. Fujiwara, and S. Lin, “On the BCJR Trellis for Linear Block Codes,” IEEE Transactions on Information Theory,

vol. 42, pp. 1072–1092, July 1996.

[11]. A. Lafourcade and A. Vardy, “Optimal Sectionalization of a Trellis,” IEEE Transactions on Information Theory, vol. 42, pp.
689–703, May 1996.

[12]. T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On Branch Labels of Parallel Components of the L-section Minimal Trellis

Diagrams for Binary Linear Block codes,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E77-A, pp. 1058–1068, June 1994.

[13]. D. J. Muder, “Minimal Trellises for Block Codes,” IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1049–1053,

September 1988.
[14]. S. Lin and M. P. C. Fossorier, “Trellises and new trellis-based decoding algorithms for codes,” in Information Theory Workshop,

June 1998, pp. 79–80.

[15]. D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Transactions on Information Theory, vol.
45, pp. 399– 431, June 1999.

[16]. M. M. Mansour and N. R. Shanbhag, “Turbo Decoder Architectures for Low-Density Parity-Check Codes,” IEEE Global

Telecommunications Conference, vol. 2, pp. 1383–1388, November 2002.
[17]. L. Ye, L. Shu, and M.P.C. Fossorier, “MAP Algorithms for Decoding Linear Block Codes Based on Sectionalized Trellis

Diagrams,” IEEE Transactions on Communication, vol. 48, pp. 577–587, April 2000.

[18]. Y. Zhang, Z. Wang, and K. K. Parhi, “Efficient High-Speed Quasi-Cyclic LDPC Decoder Architecture,” in Asilomar Conference
on Signals, Systems and Computers, vol. 1, pp. 540–544, November 2004.

[19]. Ahmed Refaey, Sebastien Roy, and Paul Fortier, “On the application of BP decoding to convolutional and turbo codes,” Asilomar

Conference on Signals, Systems Computers, pp. 996–1001, November 2009.
[20]. F. Berens and G. Kreiselmaier, “Combined Turbo-Code/Convolutional Code Decoder, In Particular for Mobile Radio Systems,”

US Patent 7191377, March 2007.

[21]. M. Marandian, J. Fridman, Z. Zvonar, and M. Salehi1, “Performance Analysis of Sliding Window Turbo Decoding Algorithms for
3GPP FDD Mode,” International Journal of Wireless Information Networks, vol. 9, pp. 39–54, January 2002.

