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Abstract 
In this paper, the Multicompartment epidemiological model assumes that, given a contagious illness, a 

population can be partitioned into individuals that are susceptible to the illness, infected by the illness, and 

recovered from the illness. S(t) Number of individuals at time t susceptible to the illness; I(t);i = 1,2,3,4 Number 

of individuals at time t infected with the illness.RS(t) Total number of survivors of the illness at time t , RD(t) 

Total number of deaths due to the illness at time t. 

The stability of a disease-free status equilibrium and the existence of endemic equilibrium can be determine by 

the ratio called the basic reproductive number. Laplace-Adomian decomposition method is used to compute an 

analytical solution of the model study. This paper study the equilibrium, local, global stability under certain 

conditions. 
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I. INTRODUCTION 
This paper considers the following epidemic model: 

  (1) 

 
This epidemiological model assumes that, given a contagious illness, a population partitioned into 
individuals that are susceptible to the illness, infected by the illness, and recovered from the illness. 
 S(t)Number of individuals at time t susceptible to the illness; 
 I(t);i = 1,2,3,4 Number of individuals at time t infected with the illness. 
 RS(t) Total number of survivors of the illness at time t , RD(t) Total number of deaths due to the illness 

at time t. 
 The positive constant βi;i=1,2,3,4, represent the rate at which individuals of the illness cause 

neighboring susceptible. γi,i=1,2,3,4, represent the rate at which individuals in infection . 
 The positive constant δi,i=1, 2, 3, 4, represent the rate of death due to the illness. The positive 

constant ν is the parameter of emigration. The positive constant ρ is the parameter of Immigration. 
 The positive constant µ represent rate of incidence. 
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The initial condition of (1) is given as 
 S (η) = Φ1 (η), I1 (η) = Φ2 (η), I2 (η) = Φ3 (η) , I3 (η) = Φ4 (η) 

 I4 (η) = Φ5 (η), RS (η) = Φ6 (η), RD (η) = Φ7 (η);  
−τ ≤ η≤ 0, 

(2) 

Where Φ = (Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7)T   ∈ C such that; 
 

S (η) = Φ1 (η) ≥ 0, I1 (η) = Φ2 (η) ≥ 0, I2 (η) = Φ3 (η) ≥ 0, I3 (η) = Φ4 (η) ≥ 0 I4 (η) = Φ5 (η) ≥ 0,  
RS (η) = Φ6 (η) ≥ 0,RD (η) = Φ7 (η) ≥ 0. 

Let C denote the Banach space C ([−τ, 0], R7) of continuous functions mapping the interval [−τ, 0] into R7. 
With a biological meaning, we further assume that Φi (η) = Φi (0) ≥ 0 for i = 1,2,3,4,5,6,7. 
Hence, system (1) is rewritten as 
 

  (3) 
With the initial conditions in (2). 
We study the following reduced system: 

  (4)  

  
Where ; 
 

  

 Φi (0) ≥ 0, −τ ≤ η < 0; for”i = [1, 7]”.                            (5)  
 

II. EQUILIBRIUM AND STABILITY 
An equilibrium point of system (4), with condition (5) satisfies,  
 

 

 

                                                (6) 

 

 

 
We calculate the points of equilibrium in the absence and presence of infection. 
In the absence of infection Ii = 0, i=1, 2, 3, 4; the system (4) has a disease-free equilibrium E0. 

 .                              (7) 
 
Theorem 2.1. The disease-free equilibrium E0 of the system (4) is locally asymptotically stable if R0 < 1. 
Proof. The eigenvalues can be determined by solving the characteristic equation of the linearization of (4) 
near E0. 

 
 

E0 of the system (4) is locally asymptotically stable if and only if the trace of the jacobian matrix near E0.is 
strictly negative and its determinant is strictly positive. 
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  (9) 
Then we define the basic reproduction number of the infection R0 as follows: 

 . (10) 
If R0 < 1, Then E0 of the system (4) is locally asymptotically stable.2 

 
In the presence of infection Ii 6= 0, substituting in the system contains a unique positive, endemic 

equilibrium where 
 

(11) 
 
 
 
 
 
 
 
 
 
 
 
 
 

So is the unique positive endemic equilibrium point which exists if R0 > 1. 
Theorem 2.2. With R0 > 1, system (4) has, a unique non-trivial equilibrium E∗ is locally asymptotically 
stable. 
 

III. THE FRACTIONAL EPIDEMIC 
The new system is describe by the system of fractional differential equations as follows: 

 
(12) 

 
 
 

 

Where . j=3 , 4, 5. 
With the initial conditions 
 S (0) = N1,I1 (0) = N2,Ii (0) = Nk,i = 2,3,4,k = 3,4,5. (13) 
For this model, the initial conditions are not independents, since they must satisfy the condition 

  (14) 
 
Where N is the total number of the individuals in the population. 
 
3.1. The Laplace-Adomian Decomposition Method 
We have the fractional-order epidemic model (13) with (14). 
Applying the Laplace transform on (13), we obtain 
 

 
Applying the properties of the Laplace transform to (15) ; we obtain 
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, 
Then 

,  
Using (14) and (15) we obtain 

. 
The method has a solution as follows: 
 

( ) ( )1 1
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The non-linearity 
4

1
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i
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=

å  is defined as follows 

 4
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(20) 

 

 

With Cm; is called Adomian polynomials witch is defined as 

 
 
Substituting from (20), (22) into (19); then we obtain 

  . (22) 
We have 

 
. 

(24) 
 

 
 
And 
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. 
 

IV. GLOBAL ASYMPTOTIC STABILITY 
Theorem 4.1. The disease-free equilibrium E0 of the system (4) is globally asymptotically stable if R0 < 1. 
Proof. Choose the Lyapunov functional 

. 
 

The derivative  1 2 3 4 5, , , ,V x x x x x is 

 

  
. . . . . .

1 2 3 4 5 1 2 1 3 2 4 3 5 4, , , , .V x x x x x x S x I x I x I x I      (27) 

Where 1 2 3 4 5, , , ,x x x x x are positive constants 

 

. 
Let choose x1 = x2 = x3 = x4 = x5 = 1. 
We obtain 

  . (29) 

 
.

1 2 3 4 5, 0, , ,V x x x x x  , E0 is globally asymptotically stable if R0 < 1.  

 
V. CONCLUSION 

This paper addresses a the equilibrium and stability of the multicompartment epidemic model , in the 

absence of infection, the system has a disease-free equilibrium, in the presence of infection the system, has a 

unique positive, endemic equilibrium. Both trivial and endemic equilibrium are founded. The disease-free 

equilibrium is locally asymptotically stable if R0 < 1. In the paper, we have the epidemic nonlinear model, 

describing the spread of an epidemic in a population. We to use the Laplace-Adomian Decomposition method 

for obtaining the solution analytic of the multicompartment epidemic model. Finally, we study global stability 

under some conditions. 
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