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I. INTRODUCTION
The notion of difference sequence spaces was introduced by Kizmaz [1], who studied the difference
sequence spaces 1,(A), c(A) and cy(A). This notion was further generalized by Et [2] who defined the sequence
spaces 1,(A?), c(A?) and cy(A?). Later, Et and Colak [3] defined the sequence spaces
1,(A™), c(A™) and cy(A™). Etand Esi [4], then defined the following spaces:
EOO(A\I)H) = {X = (Xk) € w: (A\r}qu) € {)‘oo}
c(A) = {x = (xi) € w: (A7'xy) € ¢}
co(AT) = {x = (xx) € w: (AV'x1) € ¢},
where
AYx = (ATx) = (AT % — AP T'xeqq, and ADxy = xy
for all k € N, which is equivalent to binomial representation

a7 = > 0 (7) %
i=0

iz
It was proved that the generalized sequence space Z(AY'), where Z = £, c or cg, iS a Banach space with
norm defined by
Ix[[am = XiZ41%;] + sup|AT x|
Taking v = 1, we get the spaces which were studied by Et and Colak [3].
Taking m = v = 1, we get the spaces which were introduced and studied by Kizmaz [1].

A complex sequence whose k™ term is denoted by x, is said to be analytic if Slll(plka/k < 0. The vector

space of all analytic sequences will be denoted by A. A sequence x = (x;) is said to be entire ifklfnoolxkll/k =

0. The space of all entire sequences is denoted by T

Orlicz function is defined as the function M : [0, ) — [0, ), which is continuous, non-decreasing and
convex such that M (0) =0, M (x) > 0 for x > 0 and M (X) — o0 as x — . Lindenstrauss and Tzafriri [4] used
the concept of Orlicz functions to define the space

Ly = {x Ew: Y M (lxp—kl) < oo}. (1.2)
called Orlicz sequence space, and proved that every Orlicz sequence space contains a subspace isomorphic to
€, (1 < p < o). Subsequently, different classes of sequence spaces were defined by Parashar and Choudhary
[5], Mursaleen et al [6], Bektas and Altin [7], Tripathy et al [8], Rao and Subramaniam [9] and many others.

It is to be noted that if the convexity in an Orlicz function is replaced by the condition M(x + y) < M(x) +
M(y), then this function is called Modulus function, defined and discussed by Ruckle [10] and Maddox [11].An
Orlicz function is said to satisfy the A, — condition for all values of u if there exists a constant k > 0 such that
M(2u) < kM(u), u = 0. In other words M(nu) < knM(u), for all values of uand n > 1.

The sequence space £y defined in (i) is a Banach space with the norm
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Ixll = inf{p > 0: 57, M (%) <1} (1.2)

I1. BASIC DEFINITIONS
1/k
Definition 2.1: The space consisting of all sequences x € w such that M (%) — 0 as k —» o for some

1/k
arbitrary fixed p > 0, is denoted by I'y;, with M being a modulus function. In other words {M (%)} is a null
space. The space I'y is a metric space with metric

su —yi|1/k
dx,y) = kpM (%) forall x = (x), ¥ = (V).
The space I'y is called entire sequence space defined by Orlicz functions.

Definition 2.2: A sequence space S is said to be solid or normal if whenever {x, } € S, the sequence {oy x,} €
S, where {0 } is a sequence of scalars with |o | < 1.

Definition 2.3 (see [12] ): Let M = (M,) be a sequence of Orlicz functions, then M is called Musielak-Orlicz
function.
We shall use the following inequality throughout this work. Let {p\} be a sequence of positive real numbers
with 0 < p < sup py = P. Let C=2"% Then
lay, + b [* < C{lag [Pk + [by [Pk} (2.1)
where ay and by are complex numbers.
In this paper we shall define a new class of sequence, which is the generalization of the sequence space

given in Raj et al [13], as follows:
1% sl )|
'V X k . .
e (AT, p,q,S) =Xk € F(X):HZ k™ [M, qu — 0 asn — oo, uniformly inn > 0,
k=1

s = 0 for some p > 0.

IHl. MAIN RESULTS
We shall prove the following theorems in this paper.

Theorem 3.1: Let M = (M,) be a Musielak-Orlicz function and p = (pi) be a sequence of strictly positive real
numbers. Then the space I';,(AY', p,q,s) is a linear space over the field C of complex numbers.
Proof. Let x = (Xi), ¥ = (Vi) € I3 (A}, p,q,s) and a, B € C. Then there exist positive numbers p,, p, such that

1\ 1Pk
m. 1k
lZﬂzl k™S | My (‘ﬂA“p—kl) —»0asn - (3.1)
n 1
and
1\ 1Pk
mo 1k
%ZE:l k™ | My (qlA\;Ji)q{I)l —>0asn - © (3.2)
2
In order to prove the result, we need to find p; such that
1\ 7Pk
%211;;1 ks [Mk <q|Av (axpk+ﬁJ’k)|k>:| S0asn — o (33)
3

Let p; = max (|a|1/kp1, |/3|1/k pz). Since M = (M,) is non decreasing, convex and g is a semi norm, so by
using inequality (2.1), we have
1\ 1Pk
%27{1:1 k—S [Mk (qmgl(axk"'ﬁ}”c)l;)]

P3
Pk

1 1/k 1 1/k
S P O | ) M )
= Lk=1 k| 9q P s

<lyt ks [Mk (q {('”Z'I”w +(|A;"Zf|>1/k})]p"

< 3oy 1 [ (o220 e e (o2
-0 as n—- o

Thus ax + By € I, (47", p, q, s), showing that it is a linear space.
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Theorem 3.2: Suppose M = (M,) is Musielak-Orlicz function and p = (py) be a sequence of strictly positive real
numbers. Then the space I;,(47, p, q, s) is a paranormed space with the paranorm defined by
_ . Losup gl e\ P - -
h(x) = inf {p” k> 1 k—s [Mk (T)] < 1 uniformlyinn>0, p >0,
where H = max (1, Szppk).
Proof. Clearly h(x) = 0,h(x) = h(—x) and h(0) = 0,where 0 is the zero sequence of X. Let x;,y; €
L, (A%, p, q, s). Let p;, p, > 0 be such that
pr/H

ey k7 (BT <

ksz;pl - [Mk (W)]WH <1

Let p = p; + p,, then by using Minkowski’s inequality, we have
m 1/k\1Pk/H
SUP - -s [Mk (qlAv (e ty i) )]

and,

k>1 p
Pk Pk
sup qIAkaI% " P2 sup qlAm}lkl% "
P1 —s v -5 v
= (P1+Pz)k =>1 k [Mk< p1 )] + (P1+Pz)k =1 k [Mk< p1 >]
<1.

Hence

. sup | _ A 1/kyPk/H
h(x+) < mf{(pl + o/ PO e [y (PN < 1,00, >0, mEN

p1tp2

m /H
; pm/H . SUP s q1a3 ety )l /4\ 1P
=< mf{(P1) T k>1 k [Mk (7;;1 )] <1,p, >0 meN; +
m /H
; pm/H . SUP —s AT (xp 4y )1\ 1P K
+inf {(Pz) “k>1 k [Mk (—pz )] <1,p,>0, meN

Thus we have h(x + y) < h(x) + h(y). Hence h satisfies the triangle inequality. Now,

AAT ()| /RN P
h(ix) = inf {(p)pm/H : ksipl k—s [Mk <%) <1,p>0meN
AT (x 1/k\ 1Pk/H
= inf{(rMD”m/H : kSlZ‘pl ks [Mk (M)] <1,r>0meN

where r = %. Hence I, (47, p, q, s) isa paranormed space.

Theorem 3.3: Let M = (M,,) and M" = (M) be two Musielak-Orlicz functions.Then
L (43, p, a4, $) N D (43, p, q, ) € Do 4V 2, G, 5).
Proof. Let x € I, (4%, p, q, s) N L (AT, p, q, s). Then there exists p;and p, such that

1\ 1Pk
%22:1 ks [Mk <—q|A1;7 x"|k>] > 0asn—- o (3.4)
1
and
r . % Pk
%22:1 k= | M, <M;—X"|)] —»0asn- o (3.5)
2

Let p = mini?@i, L). Then we have
P1 P2

1\ 1Pk
1 I N S e
ZZZ=1 k=* [(Mk + M,) <q - )

" % Pk o NP
S K%Z;{l:1 k—S |:M]'( <Q|A1;)fk| )] + K%Z?]’(l:1k—s |:M}; <q|Av xkl )]

P2
- 0,asn - »
by (3.4) and (3.5). Then

14 1Pk
71_122=1 k—* [(Mk + M) <—q|Avpxk|k)] —»0asn - o.

Therefore x € Iy, (AT, D, q, 5).
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Theorem 3.4 Let m > 1. Then we have
L (4771 p,q,8) € L (A7, p,q, 5)
Proof. Let x € I, (4771, p, g, s). Then we have

1 Pk
m-—1 3
%Z}E:l k—* [Mk (M)l - 0asn — oo forsome p > 0.

Since M’ = (M,,) is non decreasing, convex function and q is seminorm, then we have

1\ 1Pk | et |k Pk
1 - qlayt x|k 1 - a|a7 Lo —AT ag
~ D=1k S[Mk (71/,3 S — D=1 kK77 | My | 5

N INE
< K ik [Mk (M) +Th ok [Mk (M)] }

- 0asn — oo.
1\ 1Pk
1 _ Al x|k
;ZZ=1 ks [(Mk <q|kal>] - 0asn— o

Therefore,
Hence xe I, (47", p, q, s). This completes the proof.

Pk

1
m T 1
Theorem 3.5: Suppose % L [(Mk <qmvp%"|k) < |xg |k, then T’ c I,,(4™,p,q,s).

Proof. Let x € I". Then we have
1
|[x, |« = 0ask — o
Pk 1
<|xx|* by our assumption, it implies that

1
But ~ ¥k~ [(M (““Vp"""‘)

1\ 1Pk
%ZLl k= | (M, <—q|AVpxk|k)] —>0asn - o
by (3.6).
Then, x € ,,(47, p,q,s) and hence I' c I3, (47", p, q, S).

Theorem 3.6: I, (47, p, q, s) is solid
Proof. Let |x; | < |yx| and y = (y) € (4T, p,q, S).
Since M = (M,,) is non decreasing, it implies that

Pk 1\ 1Pk
Yk [(M (““p"’f"‘)] < =YP_ kS [(M (‘”“VP”"‘H

Since y € I, (47, p, q, s). Therefore,
1\ 1Pk
%Z k™ 5[(M <q|Aprk|k>] »0asn— o

and
. ]l Dk
%qu ks [(Mk <q|AVp7xklc)] —-0asn—-ow
Therefore x = (x;,) € L, (47, p, q,s). Hence the result.
Theorem 3.7: (i) Let 0 < infp, < pr < 1.Then (47, p,q,s) < (4T, q,s)

(i) Let1 < p, < supp; < oo Then I, (47',q,5) < (47, q,5)
Proof. (i) Let x € I (47", p,q,s). Then

1\ 1Pk
%ZLl k= [(Mk <_qIAvpxk|k>] —>0asn—>©
Since 0 < infp, <p, < 1L

3 o ) <

From (3.7) and (3.8) it follows that, x € I;,(47, q,s)
Thus I, (47, p,q,5) © (4}, q,5)

. % Pk
k=1k7° [(M (%)] - 0asn - o

(3.6)

3.7)

(3.8)
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(ii) Let p;, = 1 for each k and supp, < o« and let x € I},(47, q, s) then

1
:—lZ}{lzl [(Mk <qmvp—x"|k)] —>0asn—> © (3.9

Since 1 < p;, < supp;, < o, we have
: it \[ 1 a7,

1 A x|k 1 A, |k
_Zk_s (Mk qlay X < _Zk_s (Mk qlay Xy
nk:l P nk:l P

n 1 Pk

1 qlay x|«
=>—z:k_S M| —— —-0asn-®
n P

k=1

This implies that x € I, (47, p, q, s).Therefore, I, (47, q,s) < 0,47, p,q,Ss).

Theorem 3.8 Let 0 < p, <1, and let (;—i) be bounded then I3, (47, 7,q,s) < L (4, p q,s).
Proof. Let x € I, (47,7, q,s). Then

1\ 17k
Yk [(Mk <‘”“p7k"‘)] ~0asn—w (3.10)

1\ 17k
Let t, = %Zzzl k=S [(Mk <‘MV+"“€)] and 1, = f—:, since p, <1, We have 0 < 1, < 1. Take 0 < A < 1.

Define
te, ift,=1
. { k U Uk

0, ift, <1

and,
(0, ift>1
Vi _{tk, ift, <1

ty = u, + vy, tklk = uk’lk + 'Uklk. It follows that uk’lk <u, <t Uklk < Ukl. Since, tklk = uklk + Uklk,

then t,* < t, + v, *.Now
1 1\ 17k
1 - |47 x [k 1 _ | AT ), '
~Xi=1k S[(Mk (q pxk ))rk < JXi-k S[(Mk (7‘2 pxk )]
Pk

1 " 1\ 17k

lgn  p-s alalx kN | lem s Ay x|
e fon (2 < 1 )

Pk 1\ 17k
1gn -5 qlA7 x|k
< e fon (225

1 Tk
w1
%2221 k—* [(Mk (—qm"pxklk>] - 0asn - o

Ak

1
1yn —-s AV xpelk Ny
= ~Fiok [(Mk (%))

But

by (3.10). Therefore,

1 Pk
5t o (22 < aen

Hence x € Ty (AY, p,q,s). Thus we get
L3 (AV,1,0,8) © T (AT, p, ,8)

IV. CONCLUSION
We observe that the difference sequence space x € T':(AY', p,q,s) is not only a linear space but also a
paranormed space when the given sequence p = (px) contains strictly positive terms. Further the space is also
solid. Moreover, the intersection of the spaces defined by two Musielak-Orlicz functions is identical with the
space defined by the addition of the two given functions.
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