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ABSTRACT: In the present article, we devoted to characterize the necessary and sufficient condition to

characterize the projective relation between two subclasses of (a,8)-metrics F = a + 8 +ZZ;Z—% and
Kropina metric on ann-dimensional manifold with dim n > 3, where ¢ and @ are two Riemannianmetrics, S
and Sare two non-zero 1-forms.
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l. INTRODUCTION

Projective differential geometry provides the most basic application of what has come tobe known as
the Bernstein-Gelfand machinery. As such, it is completely parallel to conformaldifferential geometry. On the
other hand, there are direct applications within Riemannian differential geometry.

In Finsler geometry, a change of F — F of a Finsler metric on a same under lying manifold M is called
projective change if any geodesic in (M, F) remains to be a geodesic in (M, F) and vice versa. We say that a
Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point sets. An
interesting result concerned with the theory of projective change was given by Rapscak’s paper [12]. He proved
the necessary and sufficient condition for projective change between Finsler spaces with (a, 8)-metric.

2
By considering the (a, 8)-metric F = %is calledKropina metric. Kropina metric was first introduced

by L.Berwald in connection with two dimensional Finsler space with rectilinear extremal and was investigated
by V.K. Kropina [7]. They together with Randers metric are C-reducible [10]. However, Randers metric are
regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the
simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic
field, dissipative mechanics and irreversible thermodynamics [5], [13]. Also, there are interesting applications in
relativistic field theory, evolution and developmental biology. According to [13], if two (a, 8)-metricsF =
ap(s)and F = a¢p(5)are the same anisotropy directions (or, they have the same axis rotation to their
indicatrices),then their 1-form £ and g are collinear, there is a function u € C*(M) such that S(x,y) =
uB(x,y).The theory of projective change between two Finsler space have been treated by many authors ([1],
[31, [4], [6], [11], [14], [15], [16]).

By [4], the projective equivalence between a general (a, 8)-metric and a Kropina metric, we have the
following lemma:
Lemma 1.1: Let F = a¢(s) be an (a, B)-metric on n-dimensional manifold M (n > 3)satisfying that g is not

2

parallel with respect to a, db # 0 everywhere (or)b = constant and F is not of Randers type. Let F = % be a

Kropina metric on the manifold M, where @ = A(x)a and 8 = u(x)B. Then F is projectively equivalent to F
if and only if the following equations holds,

[1+ (kg + ky52)% + k352" = (kg + ky52) (¢ — s¢), (1.1)
G. = G + 8" — a(kia® + kyf2)b, (1.2)
by = 1za[(1 +kibMay; + (kpb? + k3)b; b, (1.3)
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where o = o(x) is a scalar function and k,, k,, k5 are constants. In this case, both F = a¢(s)and F = a¢p(3)
are Douglas metrics.

The present article is organized as follows: In the first part, we prove that both the Finsler metrics are
Douglasmetrics. Further in the next part, we study the projective relation between special (a, 8)-metric metrics

2 4
F=a+p+ % - 3% and Kropina metric. The main result of the paper is as follows:

2 4 _ =2
Theorem 1.1. LetF =a+f +%—3% and F =% be a Kropina metric on a n-dimensional manifold
M(n = 3) where « and @ are two Riemannian metrics, 8 and /3 are two nonzero collinear 1-forms. Then F is
projectively equivalent to F if and only if they are Douglas metrics and the geodesic co-efficient of a and @
have the following relations,

G. +ta’bt = G +ﬁ(a 5+ pebt) + 0y, (1.5)

where b' = a¥b;, b' = aYb;, b* = ||ﬁ||a and = 7(x) is scaler function and 6 = 0y" is al-form on M.

. PRELIMINARIES
The Finsler space F* = (M, F) is said to have an («, 8)-metric if F is positively homogeneous function
of degree one in two variblesa® = a;; (x)y'y’ and B = b;(x)y’. In Riemannian geometry, two Riemannian
metrics aand & are projectively related if and only if their spray coefficients have the relation [3],

GL = GL + A xy"y', (2.1)
where 1 = A(x) is a scalar function on the manifold and (x¢,y’) denotes the local coordinates in the tangent
bundle TM. For a given Finsler metric F = F(x, y), the geodesics of F satisfy the following ODE’s:

dZ
o dt2+261(xd—)—0
where G' = G'(x,y) is called the geodesic coefficient, which is given by

G =1 g IF?]myiy™ = [F21,0).

Two Finsler metrics F and F on a manifold M are said to be (point wise) projectively related if they have the
same geodesics as point sets. The equivalent condition has been characterized by using spray coefficients [3],

G'=G + Py, (2.2)
where P(y) is a scalar function on T M,,, homogeneous of degree one in y and G and G are the spray coefficients
of F andF.

The concept of (a, B)-metric L(a,8) was introduced in 1972 by M. Matsumoto. By definition, an
(a, B)- metric is a Finsler metric expressed in the following form, F = a¢(s),s = g, where a = /aij ) yiyl

is a Riemannian metric andp is one form with ||8, || < by . The function ¢(s) is a C* positive function on an
open interval (—by, by) satisfying:

B (s) = sp(s) + (b* = s*)p'(s) > 0, (Isl < b < by). (2.3)
In this case, the fundamental form of the metric tensor induced by F is positive definite.

Let 7; = (blu +bi)s = (blu — b;;), where,b;;means the coefficients of the covariant
derivative of pwith respect toa. Clearly ﬁ is closed if and only if s;; = 0. An (a, §)-metric is said to be trivial
if ry = s; = 0. Furthermore, we denote

= b's;, 1t = a'n;,s =a's;, so= s;y',s6= syandry, = r;y'y/.

The relation between the geodesic coefficients G* of F and geodesic coefficients G of « is given by
G' =Gl + aQsh + {—2Qsy + roo}{z,bbl + Qa_ly 1 (2.4)
bd'=s(¢¢"+0'¢) _ _ ¢
Where 6 = 2¢{(p—s¢)+(b%~s%)9"}’ Q= V= {(¢ s¢)+(b2-s2)ep"y
In [8], the authors characterized the (e, ﬁ) metrlcs of Douglas type.

Lemma 2.2. Let F = a¢ (g) be a regular (a, 8)- metric on an n-dimensional manifold M(n = 3). Assume

that Bis not parallel with respect toa and db # 0 everywhere or b = constant, and F is not of Randers type.
Then F is a Douglas metric if and only if the function ¢ = ¢(s) with ¢(0) = 1 satisfies the following ODE,
[1+ (ky + k25%)% + kss®1¢" = (ky + ky5?) (P — 59, (2.5)
And g satisfies
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bi|j = 20[(1 + klbz)ai}‘ + (kzbz + k3)bjbj], (26)
Where b? = ||B]|2 and o = o(x) is scalar function and k,, k,andk; are constants with (k,, k3) # (0,0).
For Kropina metric we have the following,
2
Lemma 2.3. [9]: Let F = % be a Kropina metric on an n-dimensional manifold M. Then

(i) (n = 3), Kropina metric F with b? = 0 is Douglas metric if and only if
1
Sik = b_z(bisk - bjSi)- 2.7)
(if) (n = 2) Kropina metric F is a Douglas metric.

Definition 2.1: The tensor D = Dj, 0i ® dx/ @ dx* @ dx', where

i a3 i 1 ac™

L —_ L L

L aylaykay! (G n+ldym™ )' (28)
is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

The Douglas tensor D is a non-Riemannian projective invariant, namely, if two FinslermetricsF and F
are projectively equivalent, that is G' = G* + Pyi, where P = P(x,y) is positively y-homogeneous of degree
1, then the Douglas tensor of F is the same as that of F. Finsler metrics with vanishing Douglas tensor are called
Douglas metrics. In [3], the Douglas tensor of a general (a, ) —metric is determine by

P 0 i _Loarm

TEL " gyiaykoy! (T n+iaym Y ) (2.9)
WhereT' = aQs} + Y{—2Qas, + ryo}b". (2.10)
AndT)n = Q'sy +'a™' (b* — s¥)[ry — 2Qasy] + 2¢p[ry — Q'(b* — 5*)sp — Qs5p]. (2.11)

In the sequel, we use quantities with a bar to denote the corresponding quantities of the metricF.
Now, letF and F be the two (a, 8)-metrics which have the same Douglas tensor, i.e.,DjL',d = Efk, From (2.8)
and (2.9) we have,

9’ i _ i 1 mo_Fm i) —
W(T -T _E(Tym —Tym)y ) =0. (212)
Then there exists a class of scalar function jik = Hjik (x) such that
. . 1 — . :
T — T — E(T;ﬁl — Ty )y" = Hjo. (2.13)

WhereHy, = Hjj y/y*, T' and T are given by (2.10) and (2.11) respectively. In this paper we assume that
1

n+1’

1. CHARACTERIZATION OF PROJECTIVE RELATION BETWEEN SPECIAL
(a, B)- METRIC AND KROPINA METRIC
In this section, we devoted to characterize the necessary and sufficient condition for (a, 8)-metricF =

2 4
a+p+ % - fa—3 and Kropina metric is of Douglas metrics on a same underlying manifold M of
dimensionn > 3.
2 4
For (a, B)-metric,F = a +  + % - 3%, by (2.3) F is regular Finsler metric if and only if 1-form
satisfies the condition ||, |l, < 1 for any xeM. The geodesic coefficients are given by (2.4) with
9545212053 +455%+1445° 2457 _ (3+125—4s%) _ 2252 31
Q= (3-6s52+3s%)’ V= {(1+4b2)—(6+4b2)s2 +5s4} (.1)

- 6(3+35+652—sH){(1+4b2)—(6+4b2)s2+55*}’

For Kropina-metric F = 0_%—2, one can see that F is not a regular (a, 8)-metric, butthe relation ¢(s) —

s¢'(s) + (b? —s?)¢" > 0 is still true for |s| > 0. In view of equation (2.4), geodesic coefficients of the Finsler
metric F = %zare given by

G\ = GL + @Qsh + {—2 Qas, + foo {pb' + Oa~1y'} (3.2

L= 1 A s - 1
WIthQ=—Z, 9=—b—2,1/)=2b7. (33)
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Now let us prove the following theorem.
2 4 _ ~2
Theorem 3.1. Let F=a+f +%—fa—3 be an (a,$)-metric and F = ‘% be an Kropina metric on an n-

dimensional manifold M(n > 3) where « and @ are two Riemannian metrics, 8 and f are two non-zero 1-
forms. Then F and F have the same Douglas tensors if and only if they are all Douglas metrics.

Proof: First we prove the sufficient condition.
Let F and F be Douglas metrics and corresponding Douglas tensors be D]-i,d and Ejkl .Then by the

definition of Douglas metric, we have ]-"kl = 0and Dj,; = 0, thatis both Fand F have same Douglas tensor.
To prove the necessary condition,
If Fand F have the same Douglas tensors, then (2.13) holds. Plugging (3.1) and (3.3) into (2.13), we have

Hi _ A17O(17+A160(16+A15(X15+A140(14+A130(13+A12(X12+A11(111+A100(10+A90(9+A30(8+A70(7+A60(6+A50(5+A40(4+A20(2+A1 +
00 B1a16+B2a14+B3a12+B4a10+B50(8+B6oc6+B7oc4+B80(2+Bg

Ala?4B!
2b2p

(3.4)

where

A; = 9(1 + 4b?){(1 + 4b?)s] — 4s,b'},

A = (1 + 4b»)[36B{(1 + 4b?)s) — 4syb'} + 18rgob! — 36(ry + sp)Ay'],

Ags = —18B?(1 + 4b?)(7 + 8b?)si + 36B2(9 + 16b?)syb' — (28 + 32b%)BsyAy’,

Ay, = —12B3(1 + 4b?) (43 + 52b%)s), + 144B3(57 + 208b?)syb' — 18B2(10 + 20b?)royb’ + 9b?(28 +
32b2Br00Ayi+36B211+24b2r0Ayi+18p223—16b2—23b4s0Ayi,

Ag3 = 9B*{35 + 208b? + 96b*}si — 36B*(26 + 24b?)syb' + 1883 (28 + 56b% + 64b*)s Ay,

Ay, = 12p1°{227 + 600b? + 352b*}s} + 48B°{—87 — 88b?}s,b' + 18B*(41 + 44b?)ry,b' + 9B3(8b% —

28r00Ayi+36B4—45-60b2r0Ayi+B4828+364b4—2736b2s0Ayi,

A = —18p°(82 + 136b% + 32b*)s) + 368°(14 + 32b%)syb’ + 18B°(32 — 72b? — 32b*)soAy’,

Ao = 12B7(572 + 1076b? + 432b*)s}) + 48p7 (134 + 72b%)syb' + 18B°(—97 — 80b?)ryob! +
188°(36 + 2b? + 32b*)ryeAy’ + 18B°(190 + 160b?)roAy' + 123°[(224 + 824b% — 292b*) +
192b21+ 4b2As0yi,

A = 9B%(191 + 168b? + 16b*)si + 36p°%(—21 — 4b?)syb’ + 1887 (=54 — 400b? — 288b*)syAy’,

Ag = 12B%(737 + 816b% + 112b*)s)) + 48B°(—62 — 24b?)s,b’ + 1888(115 + 60b?)ry,b' + 18B7(6 +

8b2—64b4r00Ayi+36B8115+60b2r0Ayi+p8—12224-5456b2+2176b4s0Ayi,

A; = B°(90 + 360b?)s) + B10180s,b' + (522 + 72b?)syAy’,

Ag = 12B11 (=521 — 288b% — 164b*)s) + B11 (1728 + 192b?)syb! + 18B°(—81 — 24b?)ry,b' +
B°(—116b? + 288b* — 1872)rgohy’ + 3681°(61 + 8b?)rohy’ + B°(10072 + 192b% — 704b*)As,y',

As = 225B1%s) — 36081 As,y',

A,y = B'3(2220 + 480b%)s) — 90B"3syb' + 18B12(31 + 4b?)rgeb' + 9B (292 + 48b?)royAy’ +

363 (14 — 4b¥)rghy' + p12(—1964 + 1536b?),

A; =0,

A, = —90BMryebt + B3 (1080 — 180b2)rooAy’ + 180 rohy’ — 400p s Ay,

A; = 180B" ooy’

And

B, = 9(1 + 4b?)?,

B, = 18(1 + 4b?)(—8 — 12b?)p?,

B; = 9(324 + 136b? + 240b*)p*,

B, = 18(—165 — 380b? — 160b*)°,

Bs = 9(830 + 920b? + 208b*)p8,

B = 8(—328 — 324b% — 48b*)B10,

B, = 9(361 + 248b? + 16b*)B*,

Bg = 18(—80 — 20b?)p™,

By = 2258,
And,
A = b%5) — b's,,

B' = B[2Ay' (Fp + S9) — b'Fyo].

*Corresponding Author: Ramesha M 4 | Page
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The terms of (3.4) can be written as,
(2 b?B)(Bya’® + Bya'* + Bya'? + B,a'® + Bsa® + Bga® + B;a* + Bga? + Bo)Hio = (2 b2B) (A0 +
A16216+A15a15+A14a14+A13a13+A12a12+A11011+A10a10+A929+A8a8+A7a7+A626+A55+
Adad+A202+A1+(Aia2+FB0)(Blalb6+B2a14+F3a12+FR4al0+B5028+B6a6+F7ad+B8a2+59),

(3.5)
Replacing (y%) and (—y*) in (3.5), which yields,
(=2 b%B)(B,a'® + Bya'* + Bsa'? + B,a'® + Bsa® + Bsa® + B;a* + Bga® + By)HYy =
(=2 Db%B)(—Aa'” + Ajgal® — Ajsa®® + Ajat® — Ajza®® + Appat? — Aot + Aygal® — Aga® + Aga® —
A7a7+A606—A5a5+A4ad+A202+A1—(Aia2+Fi)(B1al6+B2al4+F3a12+R14al0+B5a8+F6a6+F7a
4+B8a2+F59), (3.6)

Add (3.5) and (3.6), which yields,
(Apya? + Asa®® + Aza®® + A A + Aga® + A;a” + Asa®) =0 (3.7)

From (3.4) and (3.7), we have
Hi _ A16a16+A14a14+A12a14+A10a10+A3a8+A6a6+A4a4+A2a2+A1 Alg?+Bt
00 B1a'6+Bya14+B3a2+B4a 10 +Bsa8+Bgab+Bya*+Bga?+Bg 2528

(3.8)

Again (3.8) can be written as
(2 b?B)(Bya’® + Bya'* + Bya'? + B,a'® + Bsa® + Bga® + B;a* + Bga? + Bo)Hiy = (2 b2B)(Asa® +
Al14a14+A12a12+A10a10+A8a8+A6ab6+Adad+A2a2+A1+(Aia2+Bi
)(B;a'® + Bya'* + Bya'? + B,a'® + Bsa® + Bga® + Bya* + Bga? + By).
(3.9)

From the above equation (3.9), we say A'a@?(B;a'® + Bya'* + B;a'? + B,a'® + Bsa® + Bga® +
Bya* 4+ Bga? + By)can be divided by f. Since 8 = u f3, then A‘@?B,a'®can be divided by f. Because f is
prime with respect to a and @. Therefore, A' = b5} — b'5, can be divided by S. Hence there is a scalar
function ! (x) such that

b%s5 — b's, = By . . . (3.10)
Transvecting (3.10) by ¥; = a;y’, we get *(x) = —5'. Thus we have

Sy = Eiz(Eigj - Ejgi)- (3.11)

Thus by lemma 2.3, F = EE—Z is a Douglas metrics. i.e., Both F=a + f + zi—z - % and F = 0%—2 are Douglas
metrics.

Ifn=2 F= ‘;—2 is a Douglas metric by lemma 2.3. Thus F and F have the same Douglas tensors means that

they are Douglas metrics.
This completes the proof of Theorem 3.1.

IV. PROOF OF THEOREM
In this section, we characterize the projective relation between a special («, 8)-metric and Kropina metric.
Proof: First we prove the necessary condition.
Since Douglas tensor is an invariant under projective changes between two Finsler metrics. If F is projectively
related to F, then they have the same Douglas tensor. From Theorem 3.1, we obtain that both F and Fare
Douglas metrics.

_ —2
By [4], It is well knowing that Kropina metric F = %With b? # 0 is a Douglas metric if and only if

2 4
Sik = biz(bisk — by s;) and According to [2], the (a, B)-metric, F = a + S + % - 3‘1—3 is a Douglas metric if
and only if
by = g[(l + 4b%)a;; — 5b;b;], (4.1)

Where 7 = t(x) is a scalar function on M. Here in this case, g is closed.
Plugging (4.1) and (3.1) into (2.4), we have
Gl =G+ ({(1+4bz)az—Sﬁz}{9a7—54a5B2—120a4B3+45a3ﬁ4+144a2ﬁ5—24ﬁ7}
@ 12{3a*+3a3B+6a2B2—B*Ha*(1+4b2)—(6+4b2)a2B2+584}

)Tyi +ta’bhl. (4.2
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It has been proved in [9] that, F = % is a Douglas metric if and only if

_ 1 5+ = T

Sy = E_z(bisj —b;s5). (4.3)
Again plugging (4.3) and (3.3) into (3.2), we have

G=GL— —[—azsl + (2 50y" —rpeb?) + 2 (ro‘;iy )] (4.9

Since F is Projectively equivalent to F, then their exit a scalar function P = P(x, y) on TM, such that

G' = G' + Py', (4.5)

By (4.2), (4.4) and (4.5), we have

_ {(1+4b2)a?-582}H{9a” -54a5B%-120a*B3 +45a3B*+144a%p5 2487} 1 (. 7B i _ i A 230
[P ( 12(3a*+3a3p+6a2p2—p4}{a*(1+4b2)—(6+4b2)a?f2+554} )T b? (SO + a? )]y =G = Gg +a’th
— (@25 + 7o b"). (4.6)
Note that RHS of above equation (4.6) is in quadratic form.
Then there must be a one form 8 = 6;y* on M, such that

_ {(1+4b%)a?-582}9a” ~54a° B2 ~120a* B3 +45a3 B4 +144 a2 p5 2487} 1o ToBY _
P ( 12{3a*+3a3p+6a2p2—p*}at—(6+4b2)a2p2+554) )T b2 (50 + ) =0
Thus (4.6) becomes

Gi + a’th' = GL +m(azs‘+r00b)+9y 4.7
From (4.1), (4.3) and (4.8) completes the proof of necessity.
Conversely, Substituting (4.1) and (3.1) into (2.4) which vyields (4.2). Again Substituting (4.3) and (3.3) into
(2.4) which yields (4.4). Thus from (4.2), (4.4) and (4.7), we have,

D A {(1+4b?)a?-582}{9a”—54a%p%-120a*B3+45a3p*+144a2 52487} 1 (- . 7P ;
G'=G"+ [9 + ( 12{3a*+3a3B+6a2B2—B*}Ha*—(6+4b2)aZB2+5384} )T + E_Z(SO + ?)] v (4'8)
Thus F is projectively equivalentto F.
Hence the proof.
From the above theorems (3.1) and (l 1), |mmed|ately we get the following corollary:

2
Corollary 4.1: LetF=a + B + 7 - —be a special (a, 8)-metric and F = = be a Kropina metric be two

a?

(a, B)-metrics on a n-dimensional manifold M with dimension n > 3, where « and & are two Riemannian
metrics, § and S are two non-zero collinear 1-forms. Then F is projectively related to F if and only if they are
Douglas metrics and the spray coefficients of @« and & have the following relations,

G' + a’tht = G +—(0( st +r00b)+9y,

= 0
5 = bz = (b5 — b;5),
where bl| ; denotes the coefficients of the covariant derivative of g with respect to a.

V. CONCLUSION

Projective differential geometry was initiated in the 1920s, especially by ElieCartan and Tracey
Thomas. Projective differential geometry also provides the simplest setting in which over determined systems of
partial differential equations naturally arise. In projective differential geometry, we have a remarkable theorem
called Rapcsak Theorem, which plays an important role in Projective geometry of Finsler spaces. This theroem
gives the necessary and sufficient conditions that a Finsler space is projective to another Finsler space. The
problem of projectively related Finsler metrics id formulated in Hilbert’s Fourth Problem i.e., to determine the
metrics on an open subset in R™ whose geodesics are straight lines. Projective flat Finsler metrics on a convex
domain in Rn are regular solutions to Hilbert’s Fourth problem.

So it is an important problem in Finsler geometry to study and characterize the Projective related
Finsler metrics. In this articles we are trying to characterize the projective relation betweena special (a, 8)-
metric and Kropina metric..
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