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ABSTRACT: In this paper, we proposed a new identification algorithm based on Kolmogorov–Zurbenko 
Periodogram (KZP) to separate motions in spatial motion image data. The concept of directional periodogram 
is utilized to sample the wave field and collect information of motion scales and directions. KZ Periodogram 
enables us detecting precise dominate frequency information of spatial waves covered by highly background 
noises. The computation of directional periodogram filters out most of the noise effects, and the procedure is 
robust for missing and fraud spikes caused by noise and measurement errors. This design is critical for the 
closure-based clustering method to find cluster structures of potential parameter solutions in the parameter 
space. An example based on simulation data is given to demonstrate the four steps in the procedure of this 
method. Related functions are implemented in our recent published R package {kzfs}. 

Keywords: KZ Periodogram, directional periodogram, parameter identification, spatial wave separations, 
closure-based clustering, parameter clusters, inverse problem. 
 

I.  INTRODUCTION 
Motion image identification in different types of data is very important subject in many applications. 

Those images may depend on time and contain different scales. The simplest example is waves in the ocean 
coming from two different directions. One wave can be strong long scale, and another is shorter scale wave 
propagating in different direction. When both are covered by strong noise, data realization could be very noisy 
3D structure. Similar examples can be found in engineering, acoustics, astronomy, design of audio halls, climate 
control, oceans waves alarm systems, Tsunami-waves prediction, and many other fields. 

This paper aims to the separation of motion scales in 2D motion images on different directions. To this 
end, we utilize Kolmogorov–Zurbenko Periodogram (KZP) [1-3] as the tool to detect precise spectral signals 
from noise-covered spatial/temporary data. The concept of directional periodogram is introduced based on KZP 
and used for recording the direction and frequency information of spatial waves. In the third section, we will 
discuss a novel motion scale parameter identification algorithm based on directional periodogram, the closure-
based clustering method. A simulation example is exhibited to show the procedure of this method. The summary 
section discusses the advantage and limit of this approach. 
 

II.  KOLMOGOROV–ZURBENKO PERIODOGRAM 
Kolmogorov–Zurbenko Periodogram (KZP) is designed to detect periodic signals or seasonality 

covered by heavy noise. It has a sharp frequency resolution for capturing frequency of interest, and provides 
practically no spectral leakage from side lobes. In fact, KZP had the nearest to the optimal mean square error in 
the estimation of power spectrum [1, 2]. It can stable the variance of the periodogram, and permits the 
separation of two signals on the edge of a theoretically smallest distance.  
 
Definition 1: For a sample of series {X(t)}, t = 0,1, ... , N - 1, the KZ Periodogram is:  

         KZP (t, m, k, v0) =  ∑
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KZP can be viewed as the iteration of average for the regular periodogram in time over S periods ρ0 

based on (2Sρ0 + 1) observations around moment (or position) t. Here S is roughly half of the pre-selected 
window size in periods for KZP; therefore the averaging window includes more points in the low frequency 
region. Please note that KZP (t, m, k, v0) is for power periodogram value on a specific frequency ν0. The power 
distribution for an frequency range, i.e. KZP (t, m, k), is the aggregation of a series of KZP (t, m, k, vi) for vi in 
the frequency series {v1, …, vn} covered this range. 

KZP is based on small window Fourier analyses. Theoretically, their major advantage is its suitability 
for scenarios of non-stationary process, or data with long series. However, recent applications [4-6] found that it 
can also be applied with relative short series under highly noise and missing values. For short data series, the 
accuracy of periodogram is limited by the length of the available data. One “work-around” method is to sample 
n times in the spectral analysis, but it may lead to oscillations in the regular periodogram. KZP suppresses the 
oscillation and stabilize the periodogram in a large extent.  

We can further improve the accuracy of detected dominant frequencies {νd} (or their modes) by 
searching for the local maximum KZP values. Based on the definition of KZP, the large magnitude values of 
periodogram usually are around the dominant frequencies {νd} of the input data series. The dominant 
frequencies not necessarily are sharply cut single spikes; they could be energy distributed in a narrow frequency 
range. But usually there is a local maximum (or mode) for such energy clusters. In practice, we can first 
compute the KZP for a series of frequency {νs} with relative large interval; then search around the dominate 
frequencies for higher resolution result. Generally speaking, this is a one-dimensional optimization process. The 
initial values can be set as the dominate frequencies detected by multiple-sampling KZP. After optimization, in 
many cases, the accuracy of KZP is less related to available data length but rather the measurement errors in the 
data series.  
 

III.  DIRECTIONAL PERIODOGRAM 
Suppose we are interested in checking the spectral behavior for data series along a given direction θ in 

a wave field. In the general situation, a data series { di} on a line along angle θ is a sample of the wave field. 
Then the periodogram of arbitrary {di} can be represented by a function KZPθ (t, v), where v is the frequency, 
and T = {t} is a finite indexed set for the sampling space of the wave field. Usually T can be taken as a series of 
points on the x- or y-axis. Respectively, for any fixed t0 and v0, KZPθ (t0, v0) is the estimation of spectral density 
on frequency v0 for data series passing through the point (t0, 0) or (0, t0).  
 
Definition 2: For spatial wave w(x, y) on a wave field D = {(x, y)}, | x | ≤ dx, | y | ≤ dy, its directional 
periodogram for a given direction angle θ is the ensemble average of KZPθ (t, v0) on frequency v0 for all data 
series {di} t on the parallel lines along direction θ and projected on x- or y-axis, where t∈T, || T || < ∞, ||{di} t|| < ∞. 
That is, 

  KZPθ (v0) = E [KZPθ (t, v0)] ≈ ∑ ∈Tt
vtKZP

T
),(

||||
1

0θ          (1) 

Here T is the index set for parallel lines of the sampling space. In practice, the length of sample series on the 
line indexed by t, i.e. ||{di} t ||, should be larger than a minimum value mln. Usually, mln is given as a percentage 
of the largest series length for a specific direction.  
 
Proposition 1: For signal w(x, y) propagated along direction β with frequency f, νd is the dominated frequency 
on directional periodogram of direction θ, then we have 

E (νd) = f · | cos (θ - β) / cos (θ) |, for data series projected on x-axis   (2a)  

E (νd) = f · | cos (θ - β) / sin (θ) |, for data series projected on y-axis   (2b)  
 
The proof is given in the Appendix. In practice, to avoid infinite values of νd, the following protocol is adopted 
as default: for θ ≤ p/4 or θ ≥ 3π/4, project data series {di} t on x-axis; otherwise, project {di} t on y-axis. For wave 
signals with homoscedastic Gaussian noises, since the noises spectrum are uniformly distributed on the whole 
frequency range, it is easy to see that Proposition 1 is still true if the noise is less than a certain level. 
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Please note that KZPθ (v0) is applicable for continuous and discrete data (regular- or irregular-sampled). 
In the following, we will focus on the situation in which data are collected (or aggregated) on a pre-defined grid 
on the wave field. Don’t lost generality, we denote the grid as G = {(x, y)}, where x = 0, 1, ..., dx-1, y = 0, 1, ..., 
dy-1, dx and dy are integers. We can also set T ⊂ {0, 1, …, dx-1} or T ⊂ {0, 1, …, dy-1}, depending on 
sampled data series {di} t are projected on x- or y-axis. This actually requires that each sample line passes 
through (at least) one grid point on x- or y-axis. Here T is a subset of all possible parallel lines for a given 
sampling direction; it is selected to reflect the spectral feature of wave signals.  
 

IV.  IDENTIFY WAVE PARAMETERS WITH DIRECTIONAL PERIODOGR AM 
Suppose a group of wave {X1, …, Xn} propagated along unknown direction {β1, …, βn} with unknown 

frequency {f1, …, fn} in the wave field, i =1, …, n. The dominated frequency on directional periodograms of 
direction angle θ are observed as v1, …, vn. Then we have a group of n equations in the form of eq. 2a or 2b. 
This n equation system contains 2n unknown parameters in pairs of (fi, βi). We may want to introduce more 
directional periodograms and make it “overdetermined”, then find the solution with optimization. However, 
since the projection of mapping spectral spikes onto different directions doesn’t keep the frequency order, we 
lost the information to match the observed spikes with frequency parameters. Additional sampling will add n 
equations and n new unknown variables. The traditional approach for inverse problems is not feasible.  

As a basic fact, we have n2 possible combination of (vi, fi ), i = 1, 2, ..., n, for directional periodogram 
observations from each pair of sampling directions, and it leads to 2n2 possible solutions of (fi, βi); moreover, it 
probability needs to include some potential parameters caused by aliasing. However, for k pairs of sampling 
directions, the “real” wave parameters should appear in almost all k potential solution groups. The only 
exception is for the case with sampling direction orthogonal to the wave’s direction of propagation, in which 
dominate frequency vd = 0 and therefore couldn’t be detected. In the following, we will develop this intuitive 
idea into a new procedure to identify spatial wave parameters.  

On the wave parameter plane, if two points (fi, βi) and (fj, β j) are close enough, i.e., suppose | fi – fj | < tf 
and | βi – βj | < tβ, then they are called to be in the same cluster. Points in cluster m (m = 1, ..., n) are viewed as 
different measurements of the same parameters (f m, β m), i.e., they are practically equivalent in the tolerance 
range. Assuming Gaussian measurement errors, we introduced two random variables for each cluster. 

 fi 
m = f m  + ef ,  ef  ~ N (0, σf 

2)       (3a) 

 βi
m

 = β m
  + eβ,  eβ  ~ N (0, σβ

2)       (3b) 

Corresponding to n spatial waves, there are n parameter clusters, for which each have about k points 
inside. Outside of the clusters, more than 2kn2 – kn points are separately distributed on the frequency-direction 
plane. Our task is to identify these n clusters based on this model. 

We developed a new procedure for this unusual clustering problem. The idea is that, in the general 
conditions, the k points in the same cluster will form a closure of k-nearest neighbour with a large probability. 
Even if only a part of the n clusters can be identified with k-nearest neighbour closure, the tolerances of these 
identified clusters can be used as reference for other clusters. This is actually the estimation of σf and σβ, and the 
cluster tolerance can be set as tf =  cf · σf and tβ =  cβ·σβ, where cf and cβ are constants. Once the estimation of 
tolerance has been given, identification of clusters is straight forward.  
 

There are 4 steps in our procedure of wave parameter identification. 

1. Sampling on orthogonal direction pairs 
● Calculate directional periodogram on the discrete frequency series  
● Record periodogram spikes for each direction on discrete frequency series 
● Search for local maximum periodogram values on aperiodic spectrum 
● Find the potential solutions for each orthogonal directional periodogram pairs  

2. Identify parameter clusters on the frequency-direction plane 
● Estimate n and k, and find the closure of k-nearest neighbor 
● Estimate the tolerance level of identified clusters 
● Check potential clusters based on estimated tolerance level 

3. Estimate wave parameters  
● Exclude unlikely points from cluster and clusters with low supports 
● Estimate parameters, output plots and suggestion 

4. Validation of results 
● Check consistency for estimations of different tolerance levels 
● Cross-validation by excluding one or more periodogram observations 
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The first step is collection of directional periodogram observations based on discrete frequency series. 
This step is time-consuming, especially when the wave field is large. Here, the condition of orthogonal direction 
is required for the accuracy of detected location of intersection point of two sampling lines. The dominate 
frequencies for periodogram observations based on discrete frequency series will be recorded. You need at least 
3 orthogonal direction pairs to go to further steps. Then we search for the dominate spikes in aperiodic spectrum 
by maximizing the power periodogram. We applied golden section search and successive parabolic interpolation 
in this step [7]. It is critical for the accuracy of the directional periodogram and the wave parameters. 

 

  

  
Figure 1.   Wave shapes of two signals (partial) 

Upper left: wave 1 without noise; upper right: wave 2 w/o noise; Bottom left: wave 1 + 2 w/o noise; bottom 
right: wave 1 + 2 + noise; Signals: sin (2π·0.4·t) along 30°; 1.5sin (2π·0.05·t) along -30°; noise: N (0,100) 

 
The second step is to identify parameter clusters on the frequency-direction plane. The first work of 

this step is to estimate k and n: estimation of n is based on the mode of numbers of frequency spikes on each 
directional periodogram; k is the number of orthogonal pairs of sampling directions. Then the algorithm will list 
all k-nearest neighbors for each point of possible solutions, and search for the closure structures: the set union of 
the k-nearest neighbor for a set of k points contains nothing but themselves. Each k-nearest neighbor closure is a 
cluster; its tolerance will be utilized to search for other parameter clusters.  

The point number in a cluster is called the support of this cluster. These supports must come from 
different orthogonal pairs. The expected support for a cluster should be k in general, or k – 1 if there is sampling 
direction that is orthogonal to the wave direction of this cluster. Clusters with low supports will be excluded, too. 
When k is small, say k < 10, the wave parameter is estimated with median; otherwise average value is used. 

The last step will check on different tolerance levels for validation. The cross-validation procedure will 
exclude one or more pairs of orthogonal directional periodogram and check changes in the results. It’s designed 
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for the occasionally missed spectral spikes caused by background noises. If validation shows inconsistent results, 
go back to step 1 and increase number k. The estimation will become stable with increasing of k. 
 

V. EXAMPLE OF WAVE PARAMETER IDENTIFICATION 
Suppose there are 2 waves propagate along direction 30° and -30° in a 400× 400 wave field. Their 

frequencies are 0.4 and 0.05; amplitudes are 1 and 1.5, respectively. The noise is N (0, 102) (see Figure 1).  
 

Discrete Directional Periodogram Optimized Directional Periodogram Sampling 
Directions (°)   Frequency     Periodogram     Frequency Periodogram 

15 0.0375 224.6917 0.03653 325.7852 
15 0.4000 201.5241 0.40000 201.5241 

-15 0.0500 297.8649 0.05000 336.3946 
-15 0.2925 181.2478 0.29277 193.8835 
75 0.0125 234.7062 0.01347 325.7361 
75 0.2925 165.9792 0.29272 175.0699 

-75 0.0375 242.9188 0.03658 321.1320 
-75 0.1075 171.4818 0.10714 186.5533 
-45 0.0700 181.9683 0.06824 272.3969 
-45 0.1475 148.9511 0.14632 164.1086 
45 0.0175 270.0084 0.01818 297.9743 
45 0.4550 174.7875 0.45340 195.8976 
90 0.0250 305.2746 0.02500 305.2746 
90 0.2000 216.6582 0.20000 216.6582 
0 0.0425 242.7422 0.04240 338.4799 
0 0.3475 159.6071 0.34637 189.0890 

Table 1.  Frequency spikes of 8 directional periodograms of 4 orthogonal direction pairs 
 

 

Figure 2.  Directional Periodogram along 15° 
 Signals: sin (2π·0.4·t) along 30°; 1.5sin (2π·0.05·t) along -30°; noise ~ N (0, 100); 

 
We sampled on directions pairs of (0°, 90°), (-45°, 45°), (-15°, 75°), (-75°, 15°). Figure 2 is an example 

of these directional periodograms. For all available 8 directional periodogram (see table 1), the expected number 
of wave parameter clusters is 2. Table 1 also lists the dominate frequencies and their periodogram values based 
on discrete series and optimized dominate frequencies. Most of the noise effects have been filtered out by the 
periodogram. For the coarse frequency records, the algorithm suggests f1 = 0.0504 and β1 = -30.23°, f2 = 0.3998 
and β2 = 29.96°; while based on the optimized values, the results are f1 = 0.0499 and β1 = -30.08°, f2 = 0.4000 
and β2 = 30.00°. The accuracy is improved after optimization.  

The wave parameter clusters is visualized with Figure 3. It shows 2 clusters with 4 supports, and 2 
clusters with 2 supports. If the expected cluster number is known, it may be good enough to identify the 2 
clusters with 4 supports as the wave parameters. But if the cluster number is unknown and we want to put the 
identification in the frame of statistical hypothesis test, we may need more data to make the decision.  

Figure 4 is for another run of the parameter identification procedure on the same two wave signals. 
This time we include 13 sampling pairs. As we can see, the gap between the support numbers of identified 
clusters and the other potential clusters are enlarged to 12 – 6 = 6. Therefore, we have more confidence to 
decide if the detected clusters are from the real wave parameters. The estimations are consistent with previous 
result: before optimization, we get f1 = 0.0499, β1 = -30.22°, f2 = 0.4004, β2 = 30.04°; after optimization, the 
result is f1 = 0.0499, β1 = -30.06°, f2 = 0.4000, β2 = 30.00°. 
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Figure 3. Supports for identified wave parameter clusters based on 4 orthogonal sampling pairs 
 

 

 

 

  Figure 4. Supports for wave parameter clusters based on 13 orthogonal sampling pairs  
 

VI.  SUMMARY 
This paper introduced directional periodogram based on the definition of KZP. Briefly, directional 

periodograms are averaging of KZP for all parallel sampling lines along a given direction. Averaging helps to 
stable the variance of periodogram and filter out a large part of noise effects. It has been showed that the 
dominate spikes on directional periodogram are the function of the sampling direction, the wave frequency and 
direction. This is the base for KZ spatial wave separation.  

For the task of wave parameter identification, we proposed the algorithm of closure-based clustering 
plus tolerance-based clustering method. The algorithm is designed to resist incorrectly identified or missed 
periodogram signals caused by noises, and it gives consistent estimations when the number of sampling 
directions increases. It works well for spatial waves with sinusoidal signals or single-mode spectrum, and 
usually requires that the wave signals are “stationary” in the wave field.  

This algorithm has been realized in our R package {kzfs}. This package is designed for the separation 
and reconstruction of motion scales in 2D motion images on different directions based on KZP and KZFT. For 
the wave parameter identification, {kzfs} provides functions to check directional periodograms for spatial waves 
in the wave field. It helps to automatically identify and mark prominent spectrum spikes of periodograms. 
Functions are provided to support all four steps of the identification process, and can be used combing with the 
support of KZ adaptive filters {kza} [9]. For signal reconstruction, {kzfs} utilizes KZFT to provide accurate 
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recovered signals under several times of noises with correlation coefficients > 80% for mixed multiple signals, 
and > 90% for separation of dominated wave patterns.  
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Appendix: Proof of Proposition 1 

 
Proof: Don’t lose any generality, suppose wave w(x, y) propagates along direction angle β, as showed in Figure 
A. The wave front starts from the dash line passed through point O to the dash line passed through point A, B, 
and C; the coordinate of O is (0, 0). The segment between the two dash lines is OB = d; and the angle of OBC is 
90°. Assume the directional periodogram is checked along direction of angle θ. The length of line segment OA 
is d /cos (θ - β).  Denote the coordinate of point A as (xA, yA), then we have: 

xA = d · cos (θ) / cos (θ - β)     (A.1a) 

yA = d · sin (θ) / cos (θ - β)      (A.1b)  
 

 
 

Figure A.  Wave signal w(x, y) between two dash lines 
 
From the perspective of x-axis, there are | xA | unit intervals along the line segment of OA. In other words, | xA | 
is the segment length when project OA onto the x-axis. Since wave signal w(x, y) has the same phase at point A, 
B, and C, line segment OA correspond to d·f wave periods, as it is on the line segment of OB. This means that 
the wave frequency is  

fdx = d·f / | xA | =  f · | cos (θ - β) / cos (θ) |. 

Similarly, from perspective of y-axis, there are | yA | unit intervals corresponding to d·f periods of wave, and the 
frequency is 

fdy = d·f / | yA | =  f · | cos (θ - β) / sin (θ) |. 

It is easy to see that this relationship holds for any continuous wave signal w(x, y) along direction θ. For any 
sampling series on a parallel line along direction θ, its KZP is the consistent estimator of w(x, y) spectrum along 
this direction when the sampling frequency is larger than the Nyquist frequency [1]. Then,  

E (νdx
t
 ) =  f · | cos (θ - β) / cos (θ) |, for data series projected on x-axis 

E (νdy
t
 ) =  f · | cos (θ - β) / sin (θ) |, for data series projected on y-axis 

where t∈T, T is the index set for the parallel lines along direction θ in the sampling space. This equation is also 
true for the ensemble average of KZP of data series indexed by a finite set T, which is defined as the directional 
periodogram on direction θ for signal w(x, y). Then we finish the proof of Proposition 1.  


