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ABSTRACT:Not being doubtful of the fact that Inflation is one of the most important macroeconomic indicators 

assessing the economic well-being of a nation, this paper seeks to develop a model to forecastmonthly inflation 

rate for Liberia using Time Series Econometric tools and concepts. The paper used a monthly data on inflation 

from January 2005 through May 2018. Part of the data from January 2005 through May 2017 were used to 

assess the model’s in-sample performance. The rest of the data were used to assess the out-of-sample 

performance of the model. It was realized that running the routinely ARIMA model was restrictive and less 

informative given the model’s inability to capture any seasonality when there exists. Raw plot of log of inflation 

was stationary with evidence from the ADF, ADF-GLS and the PP testsfor unit root. Nonetheless, seasonal 

peaks were highly discernible from AC and PAC plots which appear to decay at a very slow rate. Seasonal 

difference was taken and the paper proposed 8 candidate models intended to slim the likelihood of missing out 

on a good model. Out of these models, 𝐴𝑅𝐼𝑀𝐴(1,0,0)(0,1,1)12  emerged as the best model. Gross attention for 

model selection was given to the Information Criteria (AIC and SBIC), Ljung-Box test for serial correlation and 

significance of model’s coefficients.𝐴𝑅𝐼𝑀𝐴(1,0,0)(0,1,1)12outperforms all other 7 proposed models both in-

sample and out-of-sample with a fairly lower forecast error 

. 
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I. INTRODUCTION 

Generally speaking, the practice of forecasting macroeconomic indicators has been considered a pivotal 

tool in both fiscal and monetary policymaking. Like any other macroeconomic indicator, future forecasts of 

inflation aids in determining current monetary policy as well helps both buyers and sellers to have an idea about 

the future outlook prices. The term inflation is defined as the persistent increase in the general prices of goods 

and services in a particular economy that results into a decline in the purchasing power of money. Inflation is an 

economic phenomenon that affects the behaviors of economic agents. Inflation can be used to effectively gauge 

the variation in the prices of the basket of consumable goods and services in a month, quarter or year. In Liberia, 

inflation is calculated by using Consumer Price Index (CPI). 

Inflation is mainly caused by an imbalance between money supply and money demand, increase in 

taxes on goods or changes in the cost of production and distribution of goods and services. During this time, the 

value of money tends to fall whenever an economy experience an inflation. In other words, consumers can no 

longer buy the usual quantity of goods that they used to buy before inflation. The worst effect of inflation can be 

felt by consumers, especially households that depend on fixed income. The increase in the price of goods and 

services negatively affect their purchasing power, thereby, inducing them to demand for higher wages. As a 

result, government strive to keep inflation as low as possible. Even though inflation hurts the poor and fixed 
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income earner, a modest level of inflation is good for an economy. Hence, research has proven that an inflation 

rate of 2% to 3% is advantageous for an economy given that consumers are encouraged to spend and borrow 

more because interest rate will tend to be low when inflation is low, hence, both the fiscal and monetary 

authorities of government always strive to maintain a moderate level of inflation.  

Given the current wave of rising inflation in the Liberian economy, forecasting the next twelve months 

inflation would help buyers and sellers to prepare ahead of the uncertainty that inflation generate when price 

changes significantly over time. Therefore, in this paper, we use a time series Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model to forecast Liberia’s monthly inflation rates among numerous 

models available. ARIMA models have received great criticisms about its failure to include explanatory 

variables in its modelling other than the past term of the process and past term of the errors. With this 

notwithstanding, according to Saz (2011),ARIMA models have been touted for the highest level of forecast 

accuracy compared to other econometric models because of its dynamism. The need therefore to extend such 

model to the domain of seasonality could be an interested field to explore (see, for example, Litterman 1986; 

Stockton & Glassman 1987; Nadal-De Simone 2000). Therefore the need to study SARIMA models and its 

application to macroeconomic data has become increasingly apparent. SARIMA models unlike simple 

econometric models have gained an appreciable limelight in the area of forecasting as almost every time 

dependent data contain a negligible to enormous amount of seasonality. 

For a univariate time series forecasting, it is worth using quite a lengthy data as a minimum of 50 

observations are recommended for a sound performance of model. (Meyler et al. 1998). With monthly inflation 

data from January 2005through May 2018, the selected model performed well both in-sample and out-of-

sample. The paper proposed eight candidate seasonal ARIMA models including a constant model of only 

seasonal difference. Several criteria were used in carefully eliminating the models. However, the paper is 

particularly concerned with the out-of-sample performance rather than the in-sample fit. Being apprehensive of 

a situation where other closely competing models could outperform the selected model in terms of out-of-

sample performance, the out-of-sample performances of these models were compared to the initially chosen 

model and the results were quite striking. There were insignificant to zero differences among the models with 

the MAE, RMSE and MAPE out-of-sample performance measures but slight differences were in favor of the 

initially chosen modelARIMA(1,0,0)(0,1,1)12 . Our best model in the framework of forecasting inflation in 

Liberia has by far lower forecast errors compared to the ARIMA(0,1,0)(2,0,0)12  model proposed by (Fannoh et 

al. 2014) with fairly larger out-of-sample performance values. Therefore with thorough scrutiny of the data’s 

behavior and being fastidious on modelling selection criteria entailing the AC and PAC plots, differencing, 

information criteria as well as adopting the appropriate tests,the SARIMA model was appropriateand more 

efficient for forecasting inflation in Liberia. 

The rest of the paper is categorized into three sections, section II is concerned with the time series 

methods adopted in the modelling procedure, section III talks about the data and analysis and section IV 

presents the discussion of issues arising from data analysis and conclusions. 

 

II. METHODOLOGY 

The Time Series Econometrics 

Time series models and concepts are fast becoming the most adopted concepts in analyzing and 

explaining a phenomenon thatis time related or occurs with time. Key among these modelsis the widespread 

ARMA model which forecasts a phenomenon looking at the past terms and past error terms of the phenomenon. 

The number of past terms and past error terms to consider depends massively on the data process. 

 

ARMA Model 

Generically, the Autoregressive Moving Average (ARMA) modelcan be written with (𝑝)Autoregressive (AR) 

terms and (𝑞) Moving Average (MA) terms as: 

𝐴 𝐿  𝑦𝑡 − 𝜇 = 𝐵(𝐿)𝑢𝑡 for 𝑡 = −∞,…… . . , 𝑇 and 𝑢𝑡~𝑖. 𝑖.𝑑(0, 𝜎2) 

𝐴 𝐿 = 1 − ∅1𝐿 − ∅2𝐿
2 − ⋯…… . −∅𝑝𝐿

𝑝  and 𝐵 𝐿 = 1 + 𝜃1𝐿 + 𝜃2𝐿
2 + ⋯…… . +𝜃𝑞𝐿

𝑞  

In the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model there are generally(𝑝 + 𝑞) parameters to estimate (∅1, ∅2 ,……,∅𝑝and𝜃1, 𝜃2,......,𝜃𝑞). 

Here, the error terms 𝑢𝑡  are independent and identically distributed or are more conveniently called White Noise 

since independence is rather a stronger assumption. 𝐿  is the lag operator or (back shift operator) and the 

equations 𝐴 𝐿 𝑎𝑛𝑑𝐵(𝐿)  are the characteristic equations or polynomials of the AR and the MA part 

respectively.Special cases in the ARMA models are when 𝜇 = 0 and𝐴 𝐿 = 𝐵 𝐿 = 1, then the  𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

model is the Independent White Noise process. When 𝐴 𝐿 = 1, then the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model becomes the 

𝑀𝐴(𝑞) model, when 𝐵 𝐿 = 1, the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model becomes 𝐴𝑅(𝑝) model. 
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Unit Root Process (Random Walk) 

Unit root also known as random walk almost always confront econometricians analyzing time series 

data as it becomes impossible to evade without obtaining spurious outcomes. Aware of this, innovative 

approaches are constantly sought to find out the possibilities of its occurrence in the data process. Famous and 

frequently used of these approaches are the Augmented Dickey-Fuller ADF (Dickey and Fuller, 1979), 

Augmented Dickey-Fuller GLS (Elliott et al. 1992), PP (Phillips and Perron, 1988) tests etc. This paper adopted 

the ADF test of unit root. The ADF test modifies the customary Dickey-Fuller test in order to account for any 

serial correlation in the dependent variable. The ADF test runs the following regression:∆(𝑦𝑡) = 𝛼 + 𝜃𝑦𝑡−1 +
𝛾1∆𝑦𝑡−1 + ⋯ + 𝛾𝑝∆𝑦𝑡−𝑝 + 𝑢𝑡 under the condition that  |𝛾𝑖| < 1

𝑝
𝑖=1 . It tests the hypotheses; 𝐻0: 𝜃 =

0 against𝐻1: 𝜃 < 0  where 𝜃 = 𝜌 − 1 , 𝜌 is the parameter of the process and −1 ≤ 𝜃 < 0 . Under the null 

hypothesis, ∆(𝑦𝑡) is weakly stationary and weakly persistent 𝐴𝑅(𝑝) process. Under the alternative hypothesis, 

𝑦𝑡  is a weakly stationary and weakly persistent 𝐴𝑅(𝑝 + 1) process. If the null hypothesis is not rejected, there 

will be problems of unit rootsince 𝜌 will be equal to unity and hence non-stationarity. Consequently, under the 

plausibility of the null hypothesis, the process could then be transformed using the appropriate econometric 

tools and concepts to attain stationarity. 

 

Integrated ARMA Model (ARIMA) 

ARMA processes by default are weakly stationary and weakly dependent if the absolute or square 

summable of the MA coefficients are finite and the sum of the absolute values of the AR coefficients are less 

than unity {  𝜃𝑖 
𝑞
𝑖=1 < ∞,  𝜃𝑖

2 < ∞
𝑞
𝑖=1  and  |∅𝑖| < 1

𝑝
𝑖=1 } . There could be alarms of unit root (non-

stationarity)in the ARMA model if one of the roots of the AR characteristic equation 𝐴 𝐿  lies either within or 

on the boundaries of a unit circle. Box and Jenkins (1976), suggest taking a difference of the process addressing 

non-stationarity or unit root problems. Taking the first difference of the random walk (unit root) process results 

in the White Noise process which are basically independent with constant mean and variance.Extending the idea 

of differencing to ARMA processes, the ARMA model becomes the Autoregressive Integrated Moving Average 

(ARIMA) model denoted by𝐴 𝐿 ∇𝑑 𝑦𝑡 − 𝜇 = 𝐵(𝐿)𝑢𝑡  or 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)where 𝑑 is the order of difference. 

 

Modeling Seasonality  

Running a non-seasonal ARIMA model canoften timesbe restrictive given the model’s failure to 

capture any seasonality if there exists. Forecasts from modelsthat fail to account for the presence of seasonality 

could be severely biased and there is noa better cause to believe these biases would be unsubstantial. 

Consequently, allowing the model to account for the presence of seasonality is very informative. We can either 

in the additive sense model seasonality by addinga slowly decaying seasonal component to the model to account 

for the seasonal dependence or in the multiplicative sense allow the seasonal and non-seasonal effect to interact 

by multiplying the AR and MA polynomials by seasonal polynomials. Additive seasonal model is given as 

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎 𝑠𝑦𝑡−𝑠 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 , adding a slowly decaying AR seasonal component 𝑎 𝑠𝑦𝑡−𝑠 to the 

𝐴𝑅𝑀𝐴(1,1) model to capture seasonality. The multiplicative seasonal models are given as: 𝐴 𝐿 𝑦𝑡 =

 1 + 𝜃 𝑠𝐿
𝑠 𝐵(𝐿)𝑢𝑡  or  1 − 𝑎 𝑠𝐿

𝑠 𝐴 𝐿 𝑦𝑡 = 𝐵(𝐿)𝑢𝑡  where 𝑠 is the seasonal component. 

 

Seasonal Difference and the SARIMA Model 

In order to properly handle a noticeable seasonality in the data process, seasonal difference at the 𝑠𝑡ℎ  

lag (seasonal lag) is routinely taken. Given a process 𝑦𝑡  with seasonality, it is worth noting that 𝑚𝑡 ≡ (1 −
𝐿𝑠)𝑦𝑡 is the best option, and𝑚𝑡  is the deseasonalized process. Seasonal difference is necessary when the 

autocorrelation at the seasonal lags appear not to decay at a rapid rate, then seasonal difference is taken. It is 

interesting to learn that seasonal difference does not stimulate unit root, by contrast, it strengthens the 

stationarity of the process as evidenced by unit root tests. In order to forecast using deseasonalized data, it is 

thus appropriate to reseasonalize the data to obtain raw forecasts.Multiplicative seasonal ARIMAor SARIMA 

models are generally written in the form 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠  where 𝑝and 𝑞  are non-seasonal ARMA 

coefficients,𝑑  is the number of non-seasonal differences, 𝑃  is the number of multiplicative seasonal AR 

coefficients, 𝐷 is the number of seasonal differences, 𝑄 is the number of multiplicative MA coefficients and 𝑠 is 

the seasonal period. The most commonly used and efficient SARIMA models are the ones with fewer seasonal 

and non-seasonal AR and MA terms such as 𝐴𝑅𝐼𝑀𝐴(1,1,0)(0,1,1)𝑠  and 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)𝑠  because the 

entertain parsimony pretty well. 

 

III. DATA AND ANALYSIS 

In order to realize the objective of this paper, we applied the econometric methods discussed in section 

II on monthly time series data in this section. The data used in the paper is a monthly data on inflation for 
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Liberia from January 2005 through May 2018. The paper divided the data intotwo unequal parts with one part 

from January 2005 through May 2017. The second partis from June 2017 through May 2018. The first part of 

the data will be used to assess the in-sample performance of the model (assessing how well the model fits the 

data). The second part of the data will be used to assess the out-of-sample performance of the model (assessing 

how well the model predicts the data outside of the sample). 

 
  

From the plot of the raw data of log of inflation, naively, we observe stationarity inferring from the fact 

that the plot does not trend with time. However the absence of either an upward or downward trend by a mere 

observation of plots could sometimes lead to false conclusions regarding stationarity. The Dickey-Fuller tests 

for unit root is conservative in testing for stationarity. In order to capture any time dependence in the data, 

change in the log of inflation (∆ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡) is regressed on time trend 𝑡 and first lagged term of the log of 

inflation ( 𝑙𝑛(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡−1 ). In order to guard against issues of serial correlation in the error terms of 

(∆ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡), the test included 4 differencedlagged terms of (𝑙𝑛(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡−1). The approach is widely 

adopted by researchers in stationarity check called the Augmented Dickey-Fuller (ADF) test for unit root 

(Random Walk). From the test, we can infer from the test statistic -4.052 that, since the absolute value of the test 

statistic is greater than the absolute values for the tests at 1%, 5% and 10%level of significance each, then, we 

can reject the null hypothesis of unit root in the alternative’s favor. The MacKinnon p-value of 0.0074 for the 

test suggest even a stronger evidence against unit root. Other convincing tests for unit root were performed on 

this data including the Augmented Dickey-Fuller GLS and the Phillips Peron tests and the results 

likewiseprovided evidence against the null hypothesis of unit root. Therefore the raw data of the log of Inflation 

is a stationary data. Syntax for Augmented Dickey-Fuller test in Stata is;dfuller depvar, trend 

regress lags(k)where 𝑘 is the number of lags. 

 

Output of the Augmented Dickey-Fuller test is shown below(regression output not shown): 

 

 

 
 

Guaranteed thus about the stationarity of the data, yet, we couldrun into issues of seasonality given the 

monthly report of data on Inflation. First seasonal difference was taken in an attempt to sidestep the issue of 

seasonal fluctuations or high peaks which appear persistent and repeats periodically at a regular interval. The 

best guess of a type of model for this kind of data process would be a model (not specifying AR and MA terms) 

with a seasonal difference and zero non-seasonal difference so to speak. After the seasonal difference, the ADF, 

ADF-GLS and the Phillips Peron tests for unit root even revealed an overwhelming evidence against the null 
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hypothesis of unit root. MacKinnon’s p-value for the test (output not shown) is 0.0020 indicating no concern of 

random walk. 

Box Jenkins Conventional Approach 

 

Identifying and estimating the Seasonal and Non-seasonal terms 

The autocorrelation (AC) and partial autocorrelation (PAC) plots are used here in determining both 

seasonal and non-seasonal AR and MA terms of the prospective model. The AC and PAC plots of the first 

seasonal difference of the log of inflation are shown below.   

 

 
 

Deducing from the correlograms, the AC plot on the left is not very educational as it shows relatively 

quite a considerable number of lags beyond the Bartlett 95% confidence region. This suggests including either 3 

seasonal or 3 non-seasonal MA terms which is counterintuitive and hostile to addressing concerns of parsimony. 

Conversely, the PAC plot on the right shows a first significant lag and subsequently noticeable significant lags 

appear to be seasonal (multiple of 12 or roughly 12) indicating a very strong seasonal AR term (seasonal AR 

term of a unit order). The AC and PAC plots of log of inflation free of seasonal difference show a similar 

pattern (plots not shown). This further logically suggests fitting a model with seasonal and non-seasonal AR 

terms of a unit order each. With this notwithstanding, the study identified and estimated 8 possible seasonal 

ARIMA models including a constant model (model with the first seasonal difference without AR, MA, SAR and 

SMA terms). This is done to slim the likelihood of missing outon a good fitting model observing the 

correlograms alone. These models were compared based on their Akaike (1974) Information Criterion (AIC), 

Schwarz (1978) Bayesian Information Criterion (SBIC), significance of the models’ estimated coefficients and 

the Ljung Box test for serial correlation (a.k.a. Portmanteau test for white noise). Gross attention was however 

given to the Information Criteria, AC and PAC plot of models’ residuals while entertaining frugality in fitting 

model parameters. The table below shows the diagnostic checks of the proposed models estimated in Stata with 

the arima depvar, arima(p,d,q) sarima(P,D,Q,S)command and the vce(robust)option to 

address potential issues of heteroskedasticity. 

 
 

 

Model 

 Diagnostic Check 

Information Criteria Portmanteau Test (16 Lags) 

AIC BIC Q-Statistic p-value 

1. ARIMA(0,0,0)(0,1,0)12 230.3255 236.1655 230.4270 0.0000 

2. ARIMA(1,0,0)(1,1,0)12 90.4653 102.1452 10.8940 0.8160 

3. ARIMA(0,0,1)(1,1,0)12 142.2758 153.9557 92.1401 0.0000 

4. ARIMA(1,0,1)(1,1,0)12 91.1572 105.7571 9.0251 0.9124 

5. ARIMA(2,0,1)(1,1,0)12 92.7063 110.2262 9.0438 0.9116 

6. ARIMA(1,0,2)(1,1,0)12 92.6755 110.1954 8.6819 0.9259 

7. ARIMA(1,0,1)(1,1,1)12 50.9888 68.5087 4.8969 0.9962 

8. ARIMA(1,0,0)(0,1,1)12 50.6203 62.3002 6.5699 0.9807 

 

The constant model ARIMA(0,0,0)(0,1,0)12  and ARIMA(0,0,1)(1,1,0)12inferring from the table above 

are not good models at all given their relatively large AIC and BIC values and Q-Statistic of the Portmanteau 

test. Moreover, the p-values of the test for white noise are not significantly different than zero. This implies an 

overwhelming evidence against the null hypothesis which posits that the errors are white noise against the 

alternative hypothesis of serially correlated errors. The null hypothesis in this fashion is not a plausible 

statement. Models 1 and 3 therefore have issues of poor fitting and appreciable evidence of serial correlation 



SARIMA Modelling of Inflation: The Case of Liberia 

Corresponding Author:Felix Atanga Adongo52 Page 

Wang – Yanan Institute for Studies in Economics – School of Economics 

among the error terms. The remaining 6 models fit the data pretty well observing the lines plots (not shown) of 

actual and predicted log of inflation. Not forgetting, we must entertain parsimony pretty well while looking at 

goodness of fit. As we fit a seasonal ARIMA model with higher parameters to be estimated, the reliability or 

significance of the estimates could be adulterated and may severely affect the precision of the modelfrom the 

angle of forecasting. A victim of this is theARIMA 2,0,1  1,1,0 12  model where none except seasonal AR term 

of the estimates was found to be significant despite joint significance.Also, amidst joint significance, the 

ARIMA(1,0,2)(1,1,0)12  model has only the seasonal and non-seasonal AR terms significant at the expense of 

the 2 non-seasonal MA terms. These are utterly attributed to over fitting or a case I call the parsimony breach. 

Their AIC and BIC are fairly large as well. 

ARIMA(1,0,1)(1,1,0)12  estimates three parameters with significant AR terms and an overall significance. Not 

dwelling solely on AIC and BIC for the smallest possible values, ARIMA(1,0,1)(1,1,1)12  estimates 4 

parameters with again significant autoregressive terms at the expense of seasonal and non-seasonal MA terms. 

The models ARIMA(1,0,0)(1,1,0)12  and ARIMA(1,0,0)(0,1,1)12  are both estimating two parameters and 

estimates are both significant at the 1% level. Now comparing the AIC and BIC values of these two 

parsimonious models, we will unhesitatingly choose ARIMA(1,0,0)(0,1,1)12  given its relatively smaller AIC 

and BIC values. So the best possible model now in our setting is ARIMA(1,0,0)(0,1,1)12 , anAR term with a 

seasonal MA term. A model which is jointly significant with the lowest AIC and BIC and more parsimonious. 

Later on in this section, we will compare the out-of-sample performance of our selected model 

ARIMA(1,0,0)(0,1,1)12 to ARIMA(1,0,0)(1,1,0)12  and ARIMA(1,0,1)(1,1,1)12  using the Mean Absolute 

Forecast Error (MAFE), the Root Mean Square Forecast Error (RMSFE) and the Mean Absolute Percentage 

Forecast Error (MAPFE) 

 

Graphical Representation of 𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟎, 𝟎)(𝟎, 𝟏, 𝟏)𝟏𝟐 Performance (Further Diagnostic Checks) 

 
 

The AC and PAC plots of the residuals of our selected modelARIMA(1,0,0)(0,1,1)12  confirm the 

smaller Q-Statistic and a bigger p-value for the Portmanteau test of white noise. Roughly 98% of lags from AC 

and PAC plots are within the confidence regions indicating an overwhelming possibility of having serially 

uncorrelated errors for the ARIMA(1,0,0)(0,1,1)12 model. Essentially, the line graphs beneath AC and PAC 

plots were smoothened using the moving average method of two lags and two leads so to differentiate the signal 

from the noise using the tssmooth ma newname = varname, window(2,1,2)Stata 

command.Thegraph on the left is the fitted and true values of log of inflation using the ARIMA(1,0,0)(0,1,1)12  

model with data through May 2017. The graph on the right is the fitted and the true values of log of inflation 

with the same model using data through May 2018. The fitted values from June 2017 through May 2018 on the 

right are out-of-sample forecasts. From the line graphs, we can obviously say that, the model has good in and 
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out-of-sample performance.The motivation behind every time series forecasting is to minimize the loss function. 

This can be achieved by minimizing the forecast error so that predicted values (forecasts) will always go closer 

to the realized values. The common statistics used in assessing the out-of-sample performance are the MAFE, 

RMSFE and MAPFE mentioned earlier. 
Date Log of Inflation 

(Realized) 
Log of Inflation 

(Forecasted) 
Forecast Error 

June 2017 2.381974 2.437996 -.0560212 

July 2017 2.348729 2.218437 .1302918 

August 2017 2.510719 2.221353 .2893659 

September 2017 2.570459 2.424552 .1459068 

October 2017 2.473851 2.509969 -.0361185 

November 2017 2.569608 2.387816 .1817915 

December 2017 2.631469 2.477067 .1544024 

January 2018 2.737488 2.530545 .2069433 

February 2018 2.881157 2.597584 .2835728 

March 2018 2.971609 2.702623 .2689858 

April 2018 3.063391 2.782496 .2808952 

May 2018 3.057080 2.828655 .2284243 

 

From the table above, MAFE for the model is 0.189, RMSFE is 0.206 and MAPFE is 6.883.The 

selected model seems not disappointing in forecasting the data out-of-sample. But how could we justify it is 

really the best among the 2 other closely contended models? Now returning to the equally parsimonious 

multiplicative Autoregressive model ARIMA(1,0,0)(1,1,0)12  with two highly individual significant AR 

coefficients and the model with comparatively smaller AIC and BIC values,ARIMA(1,0,1)(1,1,1)12 , we can 

make comparisons of how these models are performing out-of-sample with our selected 

modelARIMA(1,0,0)(0,1,1)12 .Below is the tabulated results for the forecast performances of the three models. 

 
 

Model 

Forecast Performance Measure 

MAE RMSE MAPE 

1. ARIMA(1,0,0)(0,1,1)12 0.189 0.206 6.883 

2. ARIMA(1,0,1)(1,1,1)12 0.190 0.212 6.915 

3. ARIMA(1,0,0)(1,1,0)12 0.189 0.208 6.907 

 

The parsimonious models ARIMA(1,0,0)(0,1,1)12  and  ARIMA(1,0,0)(1,1,0)12  have roughly an 

identical MAFE but a very slight difference in RMSFE and MAPFE in favor of ARIMA(1,0,0)(0,1,1)12  

indicating a better out-of-sample performance of the initial selected model over the other competing two 

models.ARIMA(1,0,0)(0,1,1)12  minimizes the loss function than any of the closely contended models given the 

lower forecast errors. However in a broader spectrum, any of these three competing models could be used in 

forecasting inflation given the slight differences among the models in assessing forecast performances.But the 

best model in our context is ARIMA(1,0,0)(0,1,1)12 . In a much simplified form the selected model can 

equivalently be written as: ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡 = 𝛼0 + ∅1ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡−1 + 𝜖𝑡 + 𝜃12𝜖𝑡−12 , where 𝛼0  is the 

intercept, ∅1 is the non-seasonal AR coefficient, 𝜃12  is the seasonal MA coefficient and 𝜖𝑡  is the error term. The 

other two competing models can equally be written as: 

ln 𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑡 = 𝛼0 +  1 + ∅1𝐿  1 + ∅12𝐿
12 ln 𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑡−1 + 𝜖𝑡  

ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡 = 𝛼0 + ∅1ln(𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛)𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡 + ∅12 ln 𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑡−12 + 𝜃12𝜖𝑡−12  

 

IV. DISCUSSION AND CONCLUSIONS 

In effect, this paper explicitly scrutinizes the data and identified 8 candidate models based on the 

pattern of lags on correlograms whiles being mindful of the goodness of fit parsimony trade off. Generally, 6 

models seem to fit the data well given their 0.0000 p-value for the test of an overall model fit or joint 

significance. Per the PAC plots of log of inflation and the deseasonalized log of inflation, incorporating an 

autoregressiveterm is key given a significant lag in both plots. The AC plots of similar data was not very 

instructive as we found rather quite a substantial number of significant lags with a great decayof lags thereafter, 

an incident suggesting none or a maximum of one moving average termin the model prioritizing parsimony. The 

AC plot alternatively suggests that, moving average terms could be nuisance to the model. Despite the 

moderately larger AIC and BIC values of ARIMA(1,0,0)(1,1,0)12 , its terms perfectly align with the PAC plots 

which clearly evidencedthe presence of AR terms both seasonal and non-seasonal.ARIMA(1,0,0)(0,1,1)12  and 

ARIMA(1,0,1)(1,1,1)12also were found with extremely low AIC and BIC values relative to the other competing 

models. The differences in values of the Information Criteria between the two models canbe ignored. However, 

the principle of parsimony would choose the former over the latter.So the paper selected the model based on 
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parsimony, the values of the Information Criteria and the end result was not regrettable.The best model among 

the numerous models proposed is ARIMA(1,0,0)(0,1,1)12 and the model is thus estimated and shown below and 

can be used henceforth for forecasting inflation in Liberia: 

 

𝐥𝐧(𝑰𝒏𝒇𝒍𝒂𝒕𝒊𝒐𝒏)𝒕 = −𝟎.𝟎𝟏𝟒𝟏𝟔𝟐𝟏 + 𝟎.𝟕𝟔𝟎𝟖𝟔𝟗𝟗 ∗ 𝐥𝐧(𝑰𝒏𝒇𝒍𝒂𝒕𝒊𝒐𝒏)𝒕−𝟏 + 𝝐𝒕 − 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟑 ∗ 𝝐𝒕−𝟏𝟐 

However, this forecasts inflation in natural logarithms. Forecast values of realized inflationcan then be obtained 

by simply exponentiating the logged values of inflation. 

 

Notes: We could not take any first non-seasonal difference because AC and PAC plots did not show any 

significant lag suggesting a constant model for forecasting inflation which is least to say is less informative. 

Additional models could be proposed but again, parsimony must be remembered. The ACplots of the residuals 

and line plots of realized and fitted values of thetwo closely competing models above are shown in the 

Appendix of this paper. This is done to notify future researchers on modelling inflation about the models’ good 

in and out-of-sample performances in the context of forecasting inflation for Liberia.They could also emerge as 

best models in forecasting inflation undervariousforms of data transformationsuch as scaling, differencing, 

smoothing, logging etc.Line plots in Appendix are smoothened with the moving average style including two 

lags and two leads.  

 

REFERENCE 

[1]. Akaike, H., 1974. A New Look at Statistical Model Identification, IEEETransactions on Automatic 

Control, AC-19, pp. 716-723. 

[2]. Box, G.E.P., and Jenkins, G.M. 1976. Time Series Analysis, Forecasting and Control. Holden-day. 

[3]. Enders, W., Applied Econometric Time Series (Wiley series in probability and statistics), 4
th

 Edition. 

[4]. Fannoh, R., Orwa, G. O., Mung’atu, J. K. 2014. Modeling the inflation rate in Liberia SARIMA 

Approach, International Journal of Science and Research (IJSR). ISSN(Online): 2319 – 7064. 

[5]. Litterman, R.B. 1986. Forecasting with Bayesian vector autoregressions- Five years of experience. 

Journal of Business and Economic Statistics 4, 25-38. 

[6]. Meyler, A., Kenny, G., and Quinn, T. 1998, Forecasting Irish Inflation using ARIMA models, Economic 

Analysis, Research and Publications Department, Central Bank of Ireland, PO Box 559, 

Dublin 2. 

[7]. Nadal-de Simone Franscisco 2000. Forecasting inflation in Chile using State-space and Regime-

switching models, IMF Working Papers 00/162, International Monetary Fund. 

[8]. Otu Archibong Otu, Osuji George A., Opara Jude, Mbachu Hope Ifeyinwa, and Iheagwara Andrew 

I.Application of SARIMA Models in Modelling and Forecasting Nigeria’s Inflation Rates. American 

Journal of Applied Mathematics and Statistics 2, no. 1(2014): 16-28. doi:10.12691/ajams-2-1-4 

[9]. Saz,G. (2011).The efficacy of SARIMA models in forecasting inflation rates in developing countries: The 

case for Turkey, International Research Journal of Finance and Economics, 62, 111-142. 

[10]. Stockton, D., and Glassman, J. 1987. An evaluation of the forecast performance of alternative models of 

inflation, Review of Economics and Statistics, Vol 69, No 1 , February, pp 108-117 

 

 

Appendix  

Autocorrelation plot of residuals of ARIMA(1,0,0)(1,1,0)12 and line plots of actual and fitted values of log of 

inflation (both in sample and out-of-sample fit) 
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Autocorrelation plot of residuals of ARIMA(1,0,1)(1,1,1)12  and line plots of actual and fitted values of log 

inflation (both in sample and out-of-sample fit) 

 
 


