
Quest Journals

Journal of Software Engineering and Simulation

Volume1 ~ Issue1 (2013) pp: 13-18

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

*Corresponding Author: Komal Sachdeva 13 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

Research Paper

Methods of Software Analysis and Design

Komal Sachdeva
1

Received 21 September, 2013; Accepted 05 October, 2013; © The author(s) 2013. Published with

open access at www.questjournals.org

ABSTRACT : The paper describes the process of the software analysis and design in detail. Why the analysis

is required and what are the benefits of analysis, side by side how analysis and design processes are related. The

various analysis methods along with their use in software architecture is explained. The design process along

with the various design methodologies is well explained here. The Design Concepts with all the attributes

required and the design concepts for the methods of the software design are explained here. The views in UML

are also explained here. Structured method, Object Oriented Approach, Data Flow Diagram, Algorithmic

Designs are explained here. SAAMER ESAAMER analysis approaches are also explained here.

Keywords: Algorithmic Design, Object Oriented Design, SAAMER, Software Architecture, UML

 I. INTRODUCTION
Software Analysis is the process by which customer needs are understood and documented. Software

Analysis is the process of prediction of the quality of a system before it has been built and to identify the

potential risks and the verification of the quality requirements that have been addressed in the design. Software

Analysis process expresses “What” is to be built and not” How” is to be built. The Software Requirement

Analysis depends upon C- and D- requirements [1] - Customer wants and needs, expressed in the language

understood by the customer. D- For the developers, it may be formal. C- Requirements make use of number of

processes like: Use Cases Diagrams, Data Flow Diagrams, State Transition Diagrams, and User Interfaces .D-

Requirements organize the D- requirements, make Sequence diagrams for the use cases, and validate with the

customer and then release. D- Requirements should have various properties like: Traceability, Testability,

Categorization, Prioritization Strategy, Completeness and Error Conditions. Analysis is the investigation of the

problem (what). Design is the conceptual solution to fulfill the requirements; how will the system do what it is

intended to do. Object Oriented Analysis considers a problem from the perspective of objects (real world things,

concepts etc). Object oriented design defines the solution as a collection of software objects (allocating

responsibilities to the objects). Like Object Oriented Analysis, in the case of Library Information Systems, , one

would find concepts like: book, library. In Object Oriented Design, , there is an emphasis on designing the

software objects , finally, these objects are implemented in some programming language; Book, may have a

method name print.

1.1 ANALYSIS AND DESIGN MODELS
Analysis model is related to the investigation of the domain and the problem space e.g. Use Case

Diagrams, Design model is related to the solution. e.g.: Class Diagrams. UML is unified modeling language.

Parts of UML are: Views: it shows the different aspects of the system that are modeled, and links the modeling

language to the method chosen for the development. Diagrams: it graphs that describe the contents in a view.

Model Elements: these are the concepts used in a diagram.

Views in UML: As shown in the Fig.1:

Use Case View: The view showing the functionality of the system as perceived by the external actors.

Logical View: This is the view showing how the functionality is designed inside the system, in terms of the static

structure and dynamic behavior.

Component View: This is the view which shows the organization of the code components.

Concurrency View: This is the view which shows the concurrency of the system.

Deployment View: This is the view which shows the deployment of the system in terms of the physical

architecture.

Methods of Software Analysis and Design

*Corresponding Author: Komal Sachdeva 14 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

UML can best be defined in terms of the following Model Elements:

 Class

 Object

 State

 Use Case

 Interface

 Association

 Link

 Package

UML diagrams can best be described with the following diagrams:

 Use Case Diagram: Deals with external interaction with the actors

 Class/Object Diagram: it captures static structural aspects, objects and relationships.

 State Diagram: it describes the dynamic state behavior.

 Sequence Diagram: it models object interaction over the time.

 Collaboration Diagram: it models components interaction and structural dependencies.

 Activity Diagram: it models the object activities.

 Deployment Diagram: it models the physical architecture

 Component Diagram: it models the software architecture.

1.2 Software Analysis Properties

The following are the properties of the Software Analysis which have to be fulfilled:

 The method should be able of being applied at all the stages of the system lifecycle

 The method should not results in an increase of the work required at the subsequent later stages of the

design

 The Analysis should help in the design phase by doing all the comparisons of alternatives at the initial

levels.

 Analysis should have a high degree of failure confidence

 The Analysis should allow the design to be checked incrementally as the process proceeds.

 The result of Analysis should be used at any of the another stages of the Software Development Life

Cycle.

1.3 Software Analysis Methods

There are various methods available for doing the software analysis [2]:

a) Scenario-Based Architecture Analysis Method (SAAM): This method deals with the better

understanding of the general architectural concepts. Against the documents which are used for describing the

desired properties of an application, basic architectural and principles are verified. In this method, the scenarios

represent the foundation for showing the properties of Software Architecture. Scenarios show two things, the

kinds of activities that the system must support and, the kind of the predictable changes that will be made to the

system. Based upon the requirement of modification by a scenario, they are categorized as direct scenarios, else

as indirect scenarios. The activities of the method are shown in Fig.2 as the main inputs of SAAM. Here, the

main inputs are: Problem Description, Requirements Statement, and Architecture Descriptions.

b) Extending SAAM by Integration in the Domain (ESAAMI): By integrating the SAAM in the domain-

specific and reuse-based development process, ESAAMI is achieved. Fig.3 describes the main inputs of

ESAAMI and the relationships between them.

c) Software Architecture Analysis Method for Evolution and Reusability (SAAMER): To support the

quality objectives and risk levels, SAAMER is used. The framework of SAAMER consists of mainly four

activities: Gathering Information about stakeholders, Software Architecture, Quality, and Scenarios. So as to

cover each objective, the scenarios are identified and clustered. Quality Function Deployment (QFD) is used to

validate the balance of scenarios with respect to the objective. A flow of matrices is generated to show the

relational strength between the stakeholders and the architectural objectives. Now, quality attributes are

translated to scenarios. And corresponding to each of the quality attribute, an imbalance factor is calculated. If

the factor comes out to be 1, more scenarios will be required to address the attribute concurrent to the

stakeholder, Software Architecture and quality importance.

d) The Architecture Trade-Off Analysis Method (ATAM): The result of individual attributes on

architectural analysis gives ATAM. This method is considered as the spiral model of analysis and design. When

there are multiple competing quality attributes, to understand the Software Architecture capability, ATAM is

Methods of Software Analysis and Design

*Corresponding Author: Komal Sachdeva 15 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

used. ATAM activities that consider scenarios are: Scenario brainstorming, Scenario coverage checking,

Scenario grouping and prioritization, Map high priority scenario onto the architecture.

II SOFTWARE DESIGN
The process of implementation of software solutions to one or more set of problems is called as

software design. Software requirement analysis is one of the most important parts of software design. Software

Design may be platform independent or platform dependent, depending upon the technology used for the design.

The main difference between the software analysis process and software design process is that the output of

software analysis consists of smaller problems to solve. The analysis should remain same even if it is designed

by different team members or the groups. The focus of the design is on the capabilities, and there can be multiple

designs for the same problem.

2.1 Design Concepts

The software design is described with the help of the following concepts:

 Abstraction - The process of generalization by reducing the information content of a concept and to

retain only relevant information is called as the abstraction.

 Refinement - The process of breakdown of large set of instructions into small instructions is called as

the refinement. Abstraction and Refinement are complementary concepts.

 Modularity - Software architecture is divided into small components which are called as the modules.

 Software Architecture –Maintaining the conceptual integrity of a system,a structure of the software is

developed.

 Control Hierarchy –Based on the hierarchy of control, the program structure is organized.

 Structural Partitioning - The program structure is divided intotwo partitions: Horizontal Partition and

Vertical Partition In Horizontal partition,separate branches of modular hierarchy for each major

program function is defined. In Vertical partitioning,control and work is distributed top down in the

program structure.

 Data Structure – The representation of the logical relationship among individual elements of data.

 Software Procedure - It focuses on the processing of each modules individually

 Information Hiding – Modules of the information are specified and designed in such a way that

information contained within a module is not accessible to other modules that have no need for such

information

2.2 Design considerations

Various design considerations are described below:

 Compatibility –Compatibilty is the ability of the software to operate with other products that are

designed for interoperability with another product. For example, a piece of software may be backward-

compatible with an older version of itself.

 Extensibility –Addition of new capabilities to the software without major changes to the underlying

architecture.

 Fault-tolerance – In case of failure,the software is resistant to and able to recover.

 Maintainability – The ease of bug fixing or functional modifications to the existing software.

 Modularity – All the components of the software should be well defined.. That leads to better

maintainability. The components are implemented and tested individually before being integrated to

form a desired software system.

 Reliability – The ability of the software to perform a required function under stated conditions for a

specified period of time.

 Reusability – The ability ofthe software to add further features and modification with slight or no

modification.

 Robustness - The software is able to operate under stress or tolerate unpredictable or invalid input.

 Security - The software is able to withstand hostile acts and influences.

 Usability - The software user interface must be usable for its target user/audience. Default values for the

parameters must be chosen so that they are a good choice for the majority of the users.

 Performance - The software performs its tasks within a user-acceptable time. The software does not

consume too much memory.

 Scalability - The software adapts well to increasing data or number of users.

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Program_refinement
http://en.wikipedia.org/wiki/Modularity
http://en.wikipedia.org/wiki/Software_Architecture
http://en.wikipedia.org/w/index.php?title=Control_Hierarchy&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Structural_Partitioning&action=edit&redlink=1
http://en.wikipedia.org/wiki/Data_Structure
http://en.wikipedia.org/w/index.php?title=Software_Procedure&action=edit&redlink=1
http://en.wikipedia.org/wiki/Information_Hiding
http://en.wikipedia.org/wiki/Extensibility
http://en.wikipedia.org/wiki/Fault-tolerance
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Modularity
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Performance
http://en.wikipedia.org/wiki/Scalability

Methods of Software Analysis and Design

*Corresponding Author: Komal Sachdeva 16 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

2.2 Modeling language

 A modeling language is any artificial language that can be used to express information or knowledge or

systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of

the meaning of components in the structure. A modeling language can be graphical or textual. Examples

of graphical modeling languages for software design are:

 Business Process Modeling Notation (BPMN) is an example of a Process Modeling language.

 EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose data

modeling language.

 Extended Enterprise Modeling Language (EEML) is commonly used for business process modeling

across a number of layers.

 Flowchart is a schematic representation of an algorithm or a step-wise process,

 Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.

 IDEF is a family of modeling languages, the most notable of which include IDEF0 for functional

modeling, IDEF1X for information modeling, and IDEF5 for modeling ontologies.

 Jackson Structured Programming (JSP) is a method for structured programming based on

correspondences between data stream structure and program structure

 LePUS3 is an object-oriented visual Design Description Language and a formal specification language

that is suitable primarily for modelling large object-oriented (Java, C++,C#) programs and design

patterns.

 Unified Modeling Language (UML) is a general modeling language to describe software both

structurally and behaviorally. It has a graphical notation and allows for extension with a Profile (UML).

 Alloy (specification language) is a general purpose specification language for expressing complex

structural constraints and behavior in a software system. It provides a concise language based on first-

order relational logic.

 Systems Modeling Language (SysML) is a new general-purpose modeling language for systems

engineering.

III. DESIGN METHODOLOGIES
There are various design methodologies available. Some of which are:

 Structured Methods

 Data Flow Model

 Entity Relationship Notation

 Object Oriented Design

 Algorithmic Design

Structured Methods: Here program is broken into functions and subroutines.There is only a single entry point

and a single exit point for any function or routine.Here. program structure is derived from the data

structure.Design is dependent upon temporal ordering of processing phases e.g initialize,

process,cleanup.Changes in data representationsripple through entire structuredue to the lack of information

hiding.

Data Flow Model: Diagramatically representation of the data and the transfer of the information between the

inputs and the outputs are represented as: Rounded rectangles represent functions which transforms inputs to

outputs, the transformation name indicates its functions, Rectangles represent data stores, Circles represent user

interactions with the system which provides input and receive output, Arrows show the direction of the data

flow.

Entity Relationship Notation: The data modelling technique that creates a graphical representation of the entities,

and the relatioship between those entities is called as an Entity Relationship Notation.

The three main components of an ERN are:

 The entity is a person, object, place or event for which data is collected. For example, if you consider the

information system for a business, entities would include not only customers, but the customer's address,

and orders as well. The entity is represented by a rectangle and labeled with a singular noun.

 The relationship is the interaction between the entities. In the example above, the customer places an

order, so the word "places" defines the relationship between that instance of a customer and the order or

orders that they place. A relationship may be represented by a diamond shape, or more simply, by the line

connecting the entities. In either case, verbs are used to label the relationships.

 The cardinality defines the relationship between the entities in terms of numbers. An entity may

be optional: for example, a sales rep could have no customers or could have one or many customers;

http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
http://en.wikipedia.org/wiki/Process_Modeling
http://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Extended_Enterprise_Modeling_Language
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Fundamental_Modeling_Concepts
http://en.wikipedia.org/wiki/IDEF
http://en.wikipedia.org/wiki/IDEF0
http://en.wikipedia.org/wiki/IDEF1X
http://en.wikipedia.org/wiki/IDEF5
http://en.wikipedia.org/wiki/Jackson_Structured_Programming
http://en.wikipedia.org/wiki/Lepus3
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Profile_(UML)
http://en.wikipedia.org/wiki/Alloy_(specification_language)
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/General-purpose_modeling
http://whatis.techtarget.com/definition/entity
http://searchcio-midmarket.techtarget.com/definition/cardinality

Methods of Software Analysis and Design

*Corresponding Author: Komal Sachdeva 17 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

or mandatory: for example, there must be at least one product listed in an order. There are several

different types of cardinality notation; crow's foot notation, used here, is a common one. In crow's foot

notation, a single bar indicates one, a double bar indicates one and only one (for example, a single instance

of a product can only be stored in one warehouse), a circle indicates zero, and a crow's foot indicates

many. The three main cardinal relationships are: one-to-one, expressed as 1:1; one-to-many, expressed as

1: M; and many-to-many, expressed as M: N.

 Object Oriented Design: It is based on the idea of information hiding. Here, System is viewed as a set of

interacting objects, with their own private state. In this, objects communicate by calling on services offered by

other objects rather than sharing variables, and this reduces the overall system coupling, message passing model

allows objects to be implemented as concurrent processes either as Passive Objects or the Active Objects.

Algorithmic Design: This method is based on the Top-Design approach, which is based on the functions

performed by the system. It generally follows a “divide and conquer” strategy based on functions i.e. more

general functions are iteratively/recursively decomposed into more specific ones.

IV. FIGURES

Fig.1 UML Views

Fig.2: SAAM Inputs and Activities

Methods of Software Analysis and Design

*Corresponding Author: Komal Sachdeva 18 | Page

Department of Computer Science and Engineering, Faculty of CSE,

Manav Rachna College of Engineering, Faridabad

Fig.3 ESAAMI Inputs

V. CONCLUSION
The paper concludes the importance of analysis and design in the case of software architecture. The

various analysis and design methods are explained here. The dependencies of analysis and design are explained

here, the paper results as an software analysis methods and the design methods. The future work of the paper will

be the strategies about where to use which design method.

REFERENCES
Theses:

[1]. BITS/C461 IS/C341 Software Engineering

Journal Papers:

[1]. Liliana Dobrica and Eila Niemela ,A Survey on Software Architecture Analysis Methods, IEEE

Transactions on Software Engineering, Vol 28, No. 7, July 2002.

