
Quest Journals

Journal of Software Engineering and Simulation

Volume 2 ~ Issue 11 (2015) pp: 01-05

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

*Corresponding Author: Mohammad Javad Amiri 1 | Page
3
PhD Student, University of California Santa Barbara, Department of Computer Science, California, USA,

Research Paper

On the Vulnerability of Behaviour-based Malware Detection

Methods

Amir Mohammadzade Lajevardi
1
, Saeed Parsa

2
, Mohammad Javad Amiri

3

1
PhD Student, Software Engineering Group, Sharif University of Technology,

School of Computer Engineering, Tehran,
2
Associate Professor, Software Engineering Group, Iran University of Science and Technology,

School of Computer Engineering, Tehran,
3
PhD Student, University of California Santa Barbara, Department of Computer Science, California, USA,

Received 18 October, 2015; Accepted 05 November, 2015 © The author(s) 2015. Published with

open access at www.questjournals.org

ABSTRACT:- Malwares can be detected by their malicious behaviours. Most malware analysis approaches

are based on behavioural detection methods. Malware behaviour known by its sequences of API calls. There are

three approaches to hook API calls: kernel hooking, user hooking and Filter Drivers. Most of anti-malware

tools use kernel hooking for intercepting and logging API calls. In this article, a Shadow System Call approach

is discussed which could hide malware’s system calls. We use vulnerabilities concerning behaviour based

malware detection methods. The problem in API interception is to keep the logs of the sequence of API calls. By

taking the advantage of this problem, we have made it possible to disable behavioural analysis of well-known

malware detectors -such as Norton, ESET, Bitdefender and Kaspersky- through stopping their API call

interceptor and terminating their process by controlling the access to SSDT table and NtTerminate Process API.

Keywords:- Behavior, Anti-Malware, Interception, SSDT, Hook

I. INTRODUCTION
In this article, the design and implementation of a kernel driver to automatically stop behavioural

detection of programs is presented. Malware detectors rely on behavioural analysis to detect newly born

malicious codes and viruses. Behavioural-based analysis has been introduced to cover the shortcomings of

signature-based antivirus solution to recognize obfuscated and new unknown malware specimens. However,

there is a major drawback concerning behavioural approaches that are the main contribution of this article. The

drawback concerns the reliance of behavioural analysis on system calls, which could be simply obfuscated.

Since behavioural detection methods need to monitor API calls, the vulnerabilities of monitoring approaches

have damaged on-line behavioural analysis.

In software security area, behaviour is modelled as a sequence of system calls [1]. Therefore,

behavioural obfuscation focuses on hiding the sequence of system calls. However, despite the variety of

behavioural obfuscation techniques such as Staged API [2] and Push-Calc-Ret [2], malware detectors can

simply detect any obfuscated behaviour at run time. Code level behaviour can be detected by simply hooking

the entry point of system APIs to detect any sequence of system calls made by a process at run time. The

hooking can be made through patching API addresses in the system dispatch tables that are built and controlled

by the operating system.

System calls can be detected through static and dynamic analysis of programs. Applying de-

obfuscators can detect most obfuscated system calls statically, provided that the obfuscation technique is already

known. In general, all obfuscated system calls can be detected at run time when the target system function is

patched. Complex malwares pack their System calls, so when a sample cannot be unpacked, memory dumps

may be used to provide insight into its behaviour. In contrast, in dynamic analysis, in-depth analysis of packed

threats requires the knowledge of the API functions called during execution.

In windows operating system, the security defence software’s implement system call interception by

replacing system function entry addresses in specific table called System Service Dispatch Table (SSDT) with

its own log keeping function addresses [3-4].

On the Vulnerability of Behaviour-based Malware Detection Methods

*Corresponding Author: Mohammad Javad Amiri 2 | Page

SSDT restoration method, discussed in [5], restores SSDT from user-space. However, new operating

systems prevent user mode programs from accessing kernel space. Another restoration method discussed in [6]

restores SSDT through a number of API calls. The difficulty is that API calls can be simply intercepted through

SSDT by malware detectors. In this article, to restore SSDT, we use low level system calls that are not

intercepted by known malware detectors. After SSDT restoration, we succeed to terminate malware detectors

processes.

The rest of this paper is organized as follows: Section 2 presents proposed method for restoring SSDT

Table. In the section 3 this method evaluated in two different manners and finally, in section 4 the conclusion is

described.

II. DISCUSSION
When a program invokes a system API, the windows operating system seeks the API entry point

address in a table called System Service Dispatch Table (SSDT) [4]. While starting up the windows operating

system, SSDT is launched into the kernel space of main memory. SSDT plays the role of a mediator between

user level API and kernel level API. SSDT contains not only the index table of addresses, but also other useful

information such as the base address, the number of functions, and so on. The structure of SSDT includes four

members: ServiceTableBase, ServiceCounterTableBase, NumberOfService, and ParamTableBase.

ServiceTableBase points to the base address of system service descriptor table. ServiceCounterTableBase

points to another index table that contains the call number of each service called. NumberOfService describes

the number of service functions that the current operating system supports. ParamTableBase points to the table

that contains the number of bytes of parameters for each service [4, 7].

Fig. 1. Suggested Method Diagram

 Suggested method diagram has shown in fig. 1. In order to stop behaviour based analysis of programs;

the following procedure described in the three main steps could be applied:

1) Find the original address of API entry points: To obtain the base memory address of APIs, the

executable code ntoskrnl.exe should be loaded in memory. We should parse ntoskrnl.exe and create a section for

it in memory. We can use ZwMapViewOfSection and ZwCreateFileMapping functions for file mapping and

paring ntoskrnl in memory. But these functions are in SSDT and may be hooked by anti-malware tools, so we

should use low-level API functions like Mm-family API for file mapping. These functions are exported by

ntoskrnl, and can easily be accessed using C language. After parsing ntoskrnl sections we found Original SSDT

APIs.

2) Find kernel SSDT in memory: in this stage, the address of SSDT, used by the operating system for its

system calls, is found in the main memory. The SSDT table is addressed in a C struct called SDT. SDT can be

accessed through a global variable named KeServiceDescriptorTable. This variable is exported by ntoskrnl.exe

file, located in System Drive\Windows\System32 path.

Ke Service Descriptor Table includes the relative address of SDT. We use “__declspec(dllimport) SDT Ke

Service Descriptor Table” instruction for finding the address of SDT. SDT is described as below:

On the Vulnerability of Behaviour-based Malware Detection Methods

*Corresponding Author: Mohammad Javad Amiri 3 | Page

typedef struct ServiceDescriptorEntry

{

PDWORD ServiceTableBase;

PDWORD ServiceCounterTableBase ;

DWORD NumberOfService ;

PBYTE ParamTableBase;

} SDT;

3) Restore all hooked API addresses to their original address: After the hooked SSDT is found, its API

addresses are restored to their original value, found in stage 1. In order to restore addresses, we used “memcpy”

function call in C.

 The above-mentioned procedure could be applied to stop behaviour analysis of programs. As shown in

fig. 2., we have developed a device driver to hide native system calls. The driver is activated by a program and

could be executed through any application. The driver disables the behavioural engine of anti-malware tools. In

this situation, malwares could call any sequence of APIs without any restriction.

Fig. 2. Add Represented Module to Malware Sample

 Most anti-malwares protect themselves by hooking NtTerminateProcess API. In this way, if any

malware attempts to terminate the anti-malware process it will be detected. After unhooking

NtTerminateProcess API, we could simply terminate anti-malware processes. But some anti-malware tools like

Kaspersky and Bitdefender use specific device drivers for their self-protection. In these cases, after disabling the

behavioural detection of malwares, we could simply unload the self-detector driver and then terminate anti-

malware processes. Some other anti-malwares such as Bitdefender hook SSDT in specific periods of time, so we

found this period and our driver restores SSDT periodically after Bitdefender hooks it. Other malware detector

tools such as ESET are controlled by a distinct hidden supervisory process that monitors their execution and

restarts their processes immediately after the malware detector is terminated. To neutralize the supervisory

process, we hook the NtCreateProcess API to ignore the supervisory process requests for activating the ESET

main process.

III. EVALUATION
The In this section, in order to evaluate our proposed method, our experiments with neutralizing and

terminating seven well-known anti-malwares are presented. Also the pros and cons of our proposed obfuscation

technique in comparison with some other known ones are presented.

To evaluate the efficiency of our device driver, we run it under Windows 7 and Windows 8 (32bit)

operating system environments. The driver firstly scanned the system service descriptor table to detect hooked

addresses. There were 284 NT-family system calls addressed from within SSDT. The device driver detected all

the API Addresses altered and hooked by API monitors and anti-malwares tools. In table 1 the number of

hooked system calls by seven well-known anti-malware tools is shown.

On the Vulnerability of Behaviour-based Malware Detection Methods

*Corresponding Author: Mohammad Javad Amiri 4 | Page

Table 1. Number of Hooked API Addresses in Anti-Malware Tools

Number of Hooked API

Addresses
Antivirus and malware Detector

tools
20 Avast7_2013

24 Avira.Internet.Security.2013.v13

37 Bitdefender.Total.Security.2013.v16

60 Kaspersky.Internet.Security.2013.v13.0

35 Norton.Antivirus.2012.v19

19 ESET.Smart.Security.5.2.15

1 Panda.Internet.Security.2012.v17

All these anti-malwares hook NtTerminateProcess API to prevent malwares from terminating their

process. The reason is that if a malware attempts to terminate their process they could quickly detect and ignore

the system call. After unhooking the NtTerminateProcess API, we could terminate all the seven anti-malware

processes named in table 1. To test the capability of our device driver in unhooking the SSDT, we collected 22

well-known malwares from [8]. Executing the malwares we found none of the seven anti-malwares could track

and intercept the system calls made by these 22 samples.

Table 2. Compare Represented Method with Related Methods

Disadvantage Advantage Obfuscation Method

Is detected by

pattern recognition

techniques. Code

size will increase.

Independent from the

OS APIs

Copied and Substituted

API [2]

Can simply detected

by SSDT hooking

Restore SSDT Restore SSDT by

Native API calls [6]

Ineffective against

new operating

systems that prevent

user mode program

to access to kernel

space

Independent of the

Loading Driver
Restore SSDT by user

mode program [5]

Need to load device

driver at malware

run time

Independent of the

SSDT APIs, few

changes in malware

codes

Proposed Method

As shown in table 2 our proposed method doesn’t use any SSDT API’s for restoration and need few

changes in malware source code.

IV. C CONCLUSION

In this article, a method to hide system calls through low-level APIs and SSDT restoration is presented.

There are many system call obfuscation techniques that hide system calls, but these techniques just stop API

detection through static analysis approaches. Also, these techniques lead to increase in size of code. But the

represented module just adds 70kB to the malware sample and this added code is independent of malware size.

If anti-malware tools want to prevent SSDT restoration, they should hook low-level system calls like Mm-

family APIs, because most malwares use these functions to achieve their malicious goals.

REFERENCES
[1]. Idika, N., & Mathur, A. P., A Survey of Malware Detection Techniques, Department of Computer Science, Purdue University,

West Lafayette, 2007.

[2]. A Museum of API Obfuscation on Win32, Symantec Corp, 2011,

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/a_museum_of_api_obfuscation_on_wi
n32.pdf. Latest Access Time for the website is 15 October 2015.

[3]. Egele, M., Scholte, T., Kirda, E., & Kruegel, C., A survey on automated dynamic malware-analysis techniques and tools, vol. 44,

pp.6-8, In Proceedings of ACM Computer, 2012.

On the Vulnerability of Behaviour-based Malware Detection Methods

*Corresponding Author: Mohammad Javad Amiri 5 | Page

[4]. Schreiber, S. B, Undocumented Windows 2000 Secrets, A Programmer's Cookbook, Addison Wesley Longman Publishing Co,

Boston, MA, USA, 2001.

[5]. Zhang, J., Liu, S., Peng, J., & Guan, A., Techniques of user-mode detecting System Service Descriptor Table, In Proceedings of

the 2009 13th International Conference on Computer Supported Cooperative Work in Design, IEEE Computer Society, pp. 96-
10, Washington, DC, USA, 2009.

[6]. Zhang, Y., & Bi, H., Anti-rootkit Technology of Kernel Integrity Detection and Restoration, Network Computing and

Information Security (NCIS), vol. 1 pp. 276- 278, 2011.
[7]. Hooking the native API and controlling process creation on a system-wide basis,

http://www.codeproject.com/Articles/11985/Hooking-the-native-API-and-controlling-process-cre, Latest Access Time for the

website is 17 September 2015.
[8]. http://www.virussign.com/ Latest Access Time for the website is 10 October 2015.

