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ABSTRACT The method of reverberation ray matrix (MRRM) is presented for buckling analysis of thin 

multi-span rectangular anisotropic plates. The reverberation ray matrix is formulated based on the modal 

solution for an orthotropic plate together with the continuity conditions among adjacent span plates and 

boundary conditions for the entire plate structure. The buckling loading can be determined from zero value of 

the determinant of difference between the unit matrix and the resulting reverberation ray matrix. The algebraic 

equation is analytically given for buckling loading under the action of a uniaxial pressure along a side of the 

multi-span plate. For the case of simply-supported boundary conditions, computational results for the buckling 

loading are presented, and compared with the data from the finite element simulation by using ANASYS code. 

The results show the validity and exactness in computation for MRRM. The resulting solution can be effectively 

and readily used to evaluation on the buckling for multi-span rectangular anisotropic plates. 

KEY WORDS multi-span, thin rectangular plates, orthotropic, buckling, method of reverberation ray-matrix 

 

Received 10 December, 2020; Accepted 25 December, 2020 © The author(s) 2020.  

Published with open access at www.questjournals.org 

 

I. INTRODUCTION 

Plate structures have found a wide use in civil, mechanical, aeronautic and aerospace engineering. 

Analysis of buckling problem of such surface structures under in-plane compressive loadings is one of most 

important topics in engineering design and evaluation of safety. There exist extensive analyses of buckling of 

various plate-type structures (e.g., sandwich plates, multi-span plates and stiffened plates, and so on) by using 

state-space method, etc.
 [1-5]

. 

Howard and Pao proposed a method of reverberation ray-matrix (MRRM) for analysis of dynamics 

response of two dimensional framed structures
 [6,7]

. This method is based on analysis of a reverberation-ray 

matrix reflecting the properties of wave propagation in beam members. The matrix is resulted from the relation 

among the arriving and departing wave amplitudes for joints, and these amplitudes are unknown coefficients in 

steady-state solutions for extensional, bending and twisting wave motions in beam members. The MRRM has 

been extended to analysis of transient response and wave propagation in three dimensional frame structures and 

layered media
 [8-12]

, and also developed for static analysis of internal forces and deformations of framed 

structures
 [13]

. More recently, a procedure of MRRM is proposed to determine analytically buckling loading of 

thin multi-span rectangular isotropic plates having internal line supports or stiffeners
 [14]

. 

So far there is no related study of MRRM for buckling analysis of anisotropic plate structures under 

uniaxial or biaxial in-plane compressive load. This paper is aimed at seeking the solution for buckling of 

multi-span orthotropic plates in the frame of MRRM. For the structure having two opposite simply-supported 

edges with spans, a formulation is established by using the modal solution for an orthotropic plate together with 

the continuity conditions among adjacent span plates and boundary conditions for the entire plate structure. As 

an application, a three-span plate is analyzed, and an equation for buckling loading is presented analytically. The 

computational results from MRRM are given and compared with the numerical solutions from the finite element 

simulation. It is shown that the present formulation for MRRM has enough exactness in computation. 
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II. SOLUTION FOR BUCKLING OF A THIN PLATE WITH TWO SIMPLY-SUPPORTED 

OPPOSITE EDGES 

Let us consider a rectangular plate with n spans in the Y- direction, as shown in Fig. 1. The plate is of 

thickness h , width a and length b . The two opposite edges with spans (OB and AC) are simply-supported, 

and two remaining edges (OA and BC) may be in free, simply-supported or clamped edges. It is assumed that 

the plate is subjected to in-plane uniform pressures ,x yp p  in X- and Y-directions, respectively. The individual 

spans are indicated by lowercase letters i, j…. , and the ith span is of length 
ijl . The origin of the coordinate 

system is set at the junction of edges OA and OB, and Z -direction follows the right-hand rule. 

 
Fig. 1  Geometry and coordinate system of a thin multi-span plate 

 

The governing equation for buckling of a thin rectangular orthotropic plate under the uniform pressures 

is written by 

 

4 4 4 2 2
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where w  is the deflection, and 
1 2 3, ,D D D  are flexural rigidities with respect to axes Y and X and twisting 

rigidity respectively expressed by 
3 3 3

1 2
1 2 3 2 1 1 2

1 2 1 2

, , 2 2 ,
12(1 ) 12(1 ) 12

k k k

E h E h Gh
D D D D D D D D 

   
      

 
  (2) 

in which 1 2,E E  and 
1 2,   are Young’s modulus in the directions of axes X and Y and corresponding 

Poisson’s ratios, respectively; G and is shear modulus in the XY plane, and kD  is twisting rigidity around 

Z-axis. 

For the plate with two opposite simply supported edges with spans (i.e., OB and AC), the solution for the 

deflection is expressed by 

    
1 1

, sinn n

n n

n x
w w x y Y y

a

 

 
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where n  is the half-wave number in x direction. For each half-wave number n , substitution of Eq. (3) into (1) 

results in 

 
(4) 2 (2) 2 2

2 3 12 ( ) ( ) ( ) 0n n x n

n n n
D Y D Y D p Y

a a a

   
    

 
         (4) 

The solution for the above equation has the form of 

   1 2 1 2

y y y y

nY y a e a e d e d e                         (5) 
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where 
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Then we rewrite the deflection for half-wave number n as 

    1 2 1 2, ( )y y y y

n nw x y a e a e d e d e w x        ,                  (7) 

where   sinn

n x
w x

a


 , and ia  and   1,2id i   are undetermined coefficients. 

III. REVERBERATION RAY MATRIX FOR A MULTI-SPAN ORTHOTROPIC PLATE 

Let us consider adjacent spans, e.g., the jth, kth, lth, … spans, as shown in Fig. 2. The x-direction of 

coordinates is assumed to be the same, and y- direction is opposite to each other for a set of dual local 

coordinates. The z-direction still follows the right-hand rule. Every coordinate is labeled by two superscripts. 

The first one is the support where the origin of the coordinates locates, and the second one is the other support 

of the same span. 

 
Fig. 2 Dual local coordinates in adjacent spans 

For the jth span, in the dual local coordinates  , ,ij ij ijx y z  and  , ,ji ji jix y z , the deflection can be 

expressed as 

  1 2 1 2( ) ,
ij ij ij ijij ij y ij y ij y ij y

n nw a e a e d e d e w x                      (8) 

  1 2 1 2( ) .
ji ji ji jiji ji y ji y ji y ji y

n nw a e a e d e d e w x                    (9) 

where   sin / .nw x n x a  For the kth span, in the dual local coordinates  , ,jk jk jkx y z  and 
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 , ,kj kj kjx y z , the corresponding transverse displacements, ,jk kj

n nw w , can be also written by replacing 

superscripts ij and ji by jk and kj in Eqs.(8) and (9) respectively. 

The continuity conditions for the support connecting two adjacent ith and jth plates are 
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                          (10) 

in which n
ny

w

y






. Eq.(10) can be expressed in the form of matrix 
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Eq.(11) can be rewritten by 

 4 4 ,

J J J
d = S a                                    (12) 

where  
1

J J J
S = D A  is the local scattering matrix. 

The boundary conditions for the left and right edges are 

, 0 0 0 0 n n n n
D d = A a D d A a                       (13) 

where , , ,0 n 0 n
D D A A  can be determined by boundary conditions for two opposite edges OA and BC. 

Eq.(13) can be written in a similar form of Eq.(12) 
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Global scattering matrix can be assembled by all local scattering matrices 
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 is global scattering matrix. 

For the jth span, the transverse displacements in two local coordinates satisfy 
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which is expressed in the form of matrices below 
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where 
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P  is the local phase matrix. Eq.(18) can be rewritten as 
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U  is the local permutation matrix. Hence, the relation 

between a and d for a multi-span plate can be constructed as 

 ,a = PUd                                  (20) 
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Using Eq.(16) and Eq.(20), one gets the equation for d  in the following 

  4 4 ,n n I R d = 0                               (21) 

where R = SPU  is the reverberation ray matrix. 

The buckling load 
xp  ( yp ) can be determined by putting the determinate of coefficients for d  in the 

above equation to be zero. In view of Eq.(21), the dimension of reverberation ray matrix, R ,  increases with 

the number of spans. Based on Eq.(12), the direct relation between local coordinates  , ,ij ij ijx y z  and 

 , ,kj kj kjx y z  can be derived, which contains the phase relations in jth and kth spans. The following relation 

can be finally obtained 
[14]

 

  4 4 ,I - R d = 0                                 (22) 

where R = SP  is a reduced reverberation ray matrix, which includes the same information as the above 

conventional reverberation ray matrix, R . However, the matrix, R , is always a matrix of 4 4  and 

independent of the number of the spans of a plate, and its use will enhance efficiency in computation for 

muti-span plate-type structures. 

IV. NUMERICAL EXAMPLES 

Let us consider a three-equal-span orthotropic plate with internal line support under the action of a 

uniaxial pressure xp  or yp , as shown in Fig.3. Four edges are assumed to be all simply-supported. The 

geometrical parameters of the plate are 0.5cmh  , 20cma  and 3 60cmb l  . The boron fiber/epoxy 

composite material is chosen as its material, and some used material constants are 1 211GPaE  , 

2 21.1GPaE   12 7.0GPaG  and 1 0.3  [15]
. 

For the simply-supported plate subjected to a uniform uniaxial pressure, the determinant of the 

difference between the unit matrix and reverberation ray matrix in Eq.(31) can be written by 
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The results of the buckling loadings by MRRM and finite element method (FEM) by using ANSYS 

code are listed in the Table 1. In finite element simulation, a shell63 element is used. The total numbers of nodes 

and elements are 19521 and 19200, respectively. The results show that the present MRRM has enough 

accurateness in computation. 

 

Table 1  Comparison of buckling loading 

    ( / )xp N m          ( / )yp N m  

MRRM             547240.0            1198177.0 

FEM               544120.0            1227100.0 

 

The first-order mode of buckling of the plate under the pressure along the long side for FEM is 

displayed in Fig. 3. A comparison for the mode of buckling between MRRM and FEM is shown in Fig. 4. In 

contrast to the mode in FEM model (Fig. 4b), when the plate is constrained along its long side, the deflection 

has a change in the form of the trigonometric function along the direction of the short side of the plate, and a 

half-cycle curve can be derived, and it agrees with the corresponding result for MRRM, as shown in Fig. 4a. 
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Fig. 3 The first-order mode of buckling for FEM 

 

 
(a) 

 

 
(b) 

Fig. 4  Comparison of mode of buckling (a) MRRM; and (b) FEM 

 

V. CONCLUSIONS 

In this paper a method of reverberation ray matrix (MRRM) is formulated for buckling of thin 

multi-span rectangular orthotropic plates. A corresponding reverberation ray matrix is derived based on the 

modal solution for an orthotropic plate together with the continuity conditions among the adjacent span plates 

and boundary conditions for the entire plate structure. The equation for buckling loading is analytically given for 

the case of a uniaxial pressure along a side of the multi-span plate. Numerical examples are given to show the 

validity and exactness in computation for MRRM. The present formulation of solution is helpful to effective 

evaluation on the buckling behavior of multi-span rectangular anisotropic plates. 
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