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Abstract Construction projects are notorious for schedule overruns, leading to significant financial losses and 

stakeholder dissatisfaction. This research presents a novel machine learning (ML) approach to predict 

construction schedules with enhanced accuracy. This research methodology employs a comparative analysis of 

multiple ML algorithms trained on historical project data from 87 commercial construction projects completed 

between 2018-2023. Results demonstrate that the ensemble model achieves a 27% improvement in schedule 

prediction accuracy compared to traditional Critical Path Method (CPM) estimations, with a mean absolute 

percentage error (MAPE) of 8.3%. The findings provide construction professionals with a reliable tool to mitigate 

scheduling risks and improve project delivery outcomes. 

 

Index Terms Construction management, Machine learning, Schedule prediction, Project management, 

Ensemble methods, Decision support systems 

 

I. INTRODUCTION 
CONSTRUCTION projects frequently face schedule delays, with studies indicating that 70% of projects 

exceed their planned duration by an average of 20% [1]. These delays result in cost overruns, resource 

inefficiencies, contractual disputes, and reputational damage. Traditional scheduling methods like the Critical Path 

Method (CPM) and Program Evaluation and Review Technique (PERT) rely heavily on subjective expert 

judgment and often fail to account for the complex, dynamic nature of construction projects [2]. Machine learning 

offers promising capabilities to enhance the accuracy of construction schedule predictions by identifying patterns 

in historical project data and incorporating multiple influencing factors [3]. Recent advancements in ML 

algorithms and computational capabilities have enabled more sophisticated modeling approaches that can capture 

the intricate relationships between diverse project variables and scheduling outcomes [4]. This research aims to: 

1. Develop and evaluate multiple ML models for construction schedule prediction 

2. Identify key factors influencing schedule performance 

3. Compare ML-based predictions with traditional scheduling methods 

4. Provide practitioners with insights for implementing ML-based scheduling tools. 

 

II. LITERATURE REVIEW 
A. Machine Learning in Construction Management Machine learning is increasingly applied in 

construction management. Wang and Ashuri [10] used support vector regression to predict project duration with 

80% accuracy, while Assaad et al. [11] demonstrated that neural networks outperform traditional regression for 

forecasting completion times. Ensemble methods, such as those used by Gondia et al. [12], have achieved 82% 

accuracy in predicting cost overruns. However, their use for schedule prediction remains limited. Recent trends 

focus on integrating project-specific and external factors like weather, material availability, and labor conditions 

into ML models [13]. 

 

III. METHODOLOGY 
A. Data Collection and Preprocessing: This research utilized data from 87 commercial construction projects 

completed between 2018 and 2023, primarily located in California. The dataset encompasses diverse project types, 

including office buildings, healthcare facilities, educational institutions, and retail spaces. Project values ranged 

from $5 million to $150 million, with planned durations spanning from 8 to 36 months. Table I summarizes the 

key characteristics of the collected dataset. Table IA provides a more detailed breakdown of the dataset by project 

type and performance metrics. Data collection involved three primary sources: 

1. Project documentation (contracts, schedules, progress reports) 
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2. Interviews with project managers 

3. Environmental and economic databases.  

 

TABLE I: DATASET CHARACTERISTICS 

Characteristic Description 

Number of projects 87 

Time period 2018-2023 

Project types Office (32), Healthcare (23), Education (18), Retail (14) 

Project value range $5M - $150M 

Planned duration range 8-36 months 

Actual duration range 9-45 months 

Schedule performance On-time (24), Delayed (63) 

Features collected per project 47 

 

TABLE IA: DETAILED DATASET BREAKDOWN BY PROJECT TYPE 

Project Type Count Avg. Value 

($M) 

Avg. Planned Duration 

(months) 

Avg. Actual 

Duration (months) 

Avg. Delay 

(%) 

On-time Projects 

(%) 

Office 32 42.6 18.3 21.7 18.6 31.3 

Healthcare 23 78.9 24.7 31.2 26.3 21.7 

Education 18 35.4 16.1 18.9 17.4 33.3 

Retail 14 12.8 11.2 12.8 14.3 28.6 

Overall 87 46.2 18.5 22.3 20.5 27.6 

Data preprocessing involved several steps: 

1. Missing value imputation using k-nearest neighbors 

2. Outlier detection and treatment using the interquartile range method 

3. Feature normalization using min-max scaling 

4. Categorical variable encoding using one-hot encoding 

 

B. Feature Selection and Engineering Initial data collection yielded 47 potential features. To identify the most 

significant predictors, this research employed a combination of correlation analysis, recursive feature elimination, 

and domain expert validation. This process resulted in 18 key features, categorized as shown in Fig. 1. 
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Feature engineering involved creating several composite variables: 

1. Complexity Index: Combined factors related to project scale, technical complexity, and coordination 

requirements 

2. Resource Availability Ratio: Calculated based on planned versus available labor, equipment, and 

materials 

3. Stakeholder Alignment Score: Derived from communication frequency, response times, and decision-

making timelines 

4. Weather Impact Factor: Incorporated historical weather patterns and seasonal considerations 

 

C. Model Development: This research developed and compared multiple ML models: 

1. Linear Regression (LR): Baseline model 

2. Decision Tree (DT): Captured non-linear relationships 

3. Random Forest (RF): Ensemble of decision trees 

4. Gradient Boosting Machine (GBM): Sequential ensemble technique 

5. Neural Network (NN): Multilayer perceptron architecture 

6. Ensemble Model (EM): Weighted combination of RF, GBM, and NN predictions The ensemble model 

employed a stacking approach, using a meta-learner (ridge regression) to combine the predictions from 

individual models. The architecture of this ensemble model is illustrated in Fig. 2. For comparison with 

traditional methods, this research developed CPM schedules for the test projects using the same input data 

available to the ML models. 

 

 
 

Model training and evaluation followed a rigorous process: 

1. Dataset splitting: 70% training, 15% validation, 15% testing 

2. Hyperparameter tuning using grid search with 5-fold cross-validation 

3. Model assessment using multiple performance metrics 

 

IV. RESULTS AND ANALYSIS 
A. Model Performance Comparison Performance evaluation employed multiple metrics to provide a 

comprehensive assessment of prediction accuracy. Table II presents the comparative results across all models for 

the test dataset. 

 

TABLE II: PERFORMANCE COMPARISON OF PREDICTION MODELS 

Model MAPE (%) RMSE (days) R² MAE (days) 

Linear Regression 18.7 42.3 0.65 36.9 

Decision Tree 14.2 33.8 0.78 29.5 

Random Forest 10.5 25.6 0.86 21.3 

Gradient Boosting 9.7 23.4 0.88 19.8 

Neural Network 9.2 22.1 0.89 18.5 
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Ensemble Model 8.3 19.7 0.92 16.4 

CPM (Traditional) 21.5 47.6 0.59 43.2 

 

The ensemble model demonstrated superior performance across all metrics, achieving a 27% 

improvement in prediction accuracy (MAPE) compared to CPM estimates. Fig. 3 visualizes the error distribution 

for each model. Additionally, this research evaluated the computational efficiency of each model to assess 

practical implementation considerations, as shown in Table IIA. 

 

 
 

Key Observations: 

● The Ensemble Model has the highest proportion of projects with errors under 5% (42%) 

● Traditional CPM has the highest proportion of projects with errors exceeding 20% (35%) 

● All ML models show better error distribution than the traditional CPM approach 

● The Ensemble Model shows a 32% increase in projects with under 5% error compared to CPM 

 

TABLE IIA: COMPUTATIONAL EFFICIENCY OF PREDICTION MODELS 

Model Training 

Time (s) 

Inference Time (ms) Memory Usage (MB) Scalability Rating 

Linear Regression 0.8 2.1 12 Excellent 

Decision Tree 3.2 3.5 18 Good 

Random Forest 15.7 8.3 45 Good 

Gradient Boosting 22.3 9.7 52 Moderate 

Neural Network 45.6 7.5 78 Moderate 

Ensemble Model 84.2 25.4 175 Fair 

CPM (Traditional) N/A 1.2 5 Excellent 

 

The computational analysis reveals a trade-off between prediction accuracy and resource requirements. While the 

ensemble model delivers superior accuracy, it demands significantly more computational resources, which may 

influence implementation decisions for organizations with limited computing infrastructure. 

B. Feature Importance Analysis Understanding the relative importance of different features provides valuable 

insights for practitioners. Fig. 4 illustrates the top 10 features ranked by their contribution to the ensemble model's 

predictions. 
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The analysis revealed that project complexity, team experience, and procurement strategy had the most 

significant impact on schedule performance. Interestingly, certain traditionally emphasized factors, such as 

contract type and initial budget, showed relatively lower importance than expected. Table III provides a detailed 

breakdown of feature importance weights across different model types, highlighting the consistency of key 

predictors across algorithmic approaches. 

 

TABLE III: FEATURE IMPORTANCE WEIGHTS ACROSS MODELS 

Feature Ensemble Model Random 

Forest 
Gradient 

Boosting 
Neural Network 

Project Complexity 0.18 0.17 0.19 N/A 

Team Experience 0.15 0.16 0.14 N/A 

Procurement Strategy 0.12 0.10 0.13 N/A 

Design Completeness 0.11 0.12 0.09 N/A 

Weather Impact 0.09 0.10 0.08 N/A 

Resource Availability 0.08 0.09 0.07 N/A 

Site Conditions 0.07 0.06 0.09 N/A 

Stakeholder Alignment 0.07 0.07 0.06 N/A 

Regulatory Requirements 0.07 0.08 0.07 N/A 

Contract Type 0.06 0.05 0.08 N/A 

*Note: Neural Network feature importance values are not directly comparable due to the network's architecture 

and are indicated as N/A. 

C. Performance Across Project Types To assess model generalizability, this research analyzed prediction 

accuracy across different project types. Fig. 5 presents the MAPE values for each model by project category. 
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Key Observations: 

● Healthcare projects show the highest MAPE across all models (10.3% for EM, 24.6% for CPM) 

● The ensemble model (EM) consistently outperforms all other models across all project types 

● Retail projects, despite being the lowest complexity, don't have the lowest error rates 

● The performance gap between ML models and CPM is largest for Healthcare projects (14.3% 

improvement). The results indicate that while the ensemble model consistently outperformed other approaches 

across all project types, prediction accuracy varied notably. Healthcare projects exhibited the highest prediction 

errors, likely due to their complex regulatory requirements and specialized systems integration. 

 

D. Prediction Deviation Analysis Conducted a detailed analysis of cases where prediction errors exceeded 15%, 

identifying common characteristics of these projects. Fig. 6 shows the frequency of various factors associated with 

high prediction deviations. 

 

 
Factor Categories: 

● External Factors (30%) Regulatory Changes, Extreme Weather, Other 

● Project Changes (16%) Design Modifications 

● Site Conditions (12%) Subsurface Conditions 

● Resource Issues (26%) Labor Shortages, Material Delays, Funding Issues 

● Stakeholder Factors (8%) Stakeholder Conflicts 

● Technical Challenges (8%) Technology Integration, Safety Incidents 

 

Key Implications: 

● Regulatory changes and design modifications account for 52% of all high deviation cases 

● External factors contribute to 46% of significant prediction errors 

● Resource-related issues (labor, materials, funding) together account for 40% of deviations 

● These factors suggest opportunities for enhancing model robustness through improved risk registers and 

contingency planning. Projects with unexpected regulatory changes, significant design modifications during 

construction, and unforeseen subsurface conditions accounted for the majority of cases with substantial 

prediction errors. 
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V. DISCUSSION 
A. Implications for Practice This research findings have several important implications for construction 

professionals: 

1. Enhanced Decision Support: The ML-based approach provides more accurate schedule predictions, 

enabling better-informed decision-making during project planning and execution. The 27% improvement in 

accuracy translates to approximately 26.8 fewer days of uncertainty in a 12-month project. 

2. Risk Identification: Feature importance analysis highlights key schedule risk factors, allowing project 

teams to implement targeted mitigation strategies for the most influential variables. 

3. Continuous Improvement: The ML model can be continuously updated with new project data, 

enhancing prediction accuracy over time and adapting to evolving industry conditions. 

4. Resource Optimization: More reliable schedule forecasts enable more efficient resource allocation, 

potentially reducing idle time and associated costs. 

 

B. Implementation Considerations While this results demonstrate clear benefits, several considerations should 

guide implementation: 

1. Data Requirements: Effective ML-based scheduling requires comprehensive historical data. 

Organizations should establish standardized data collection protocols to maximize model utility. 

2. Integration with Existing Systems: The ML approach should complement rather than replace 

traditional scheduling methods, with CPM remaining valuable for detailed activity sequencing and visualization. 

3. User Training: Construction professionals require appropriate training to interpret ML outputs and 

understand their limitations. 

4. Contextual Factors: Models should incorporate mechanisms to account for unique project 

circumstances that may not be fully captured in historical data. 

 

C. Limitations Several limitations should be acknowledged: 

1. Geographic Scope: The dataset primarily included projects from the California, potentially limiting 

generalizability to other regions with different construction practices and conditions. 

2. Temporal Relevance: The rapidly evolving construction industry may introduce new variables not 

captured in historical data, potentially affecting long-term prediction accuracy. 

3. Exceptional Events: The models may not adequately account for extremely rare events (e.g., global 

pandemics, major economic crises) that drastically alter construction conditions. 

4. Data Quality: Despite rigorous preprocessing, some degree of inconsistency in the original data 

collection remains unavoidable and may influence model performance. 

 

VI. CONCLUSION AND FUTURE WORK 
This research demonstrated that machine learning approaches, particularly ensemble methods, can 

significantly enhance construction schedule prediction accuracy compared to traditional techniques. This 

ensemble model achieved a mean absolute percentage error of 8.3%, representing a 27% improvement over CPM-

based estimates. The research identified project complexity, team experience, and procurement strategy as the 

most influential factors affecting schedule performance. These insights provide valuable guidance for project 

teams in prioritizing risk management efforts. Future research directions include: 

1. Expanding the dataset to include projects from diverse geographic regions and market conditions 

2. Incorporating real-time project monitoring data to enable dynamic schedule updates as conditions evolve 

3. Developing specialized models for specific project types, particularly healthcare facilities, which showed 

higher prediction errors 

4. Exploring the integration of qualitative factors, such as team dynamics and stakeholder relationships, 

through natural language processing of project communications 

5. Investigating transfer learning approaches to adapt prediction models to projects with limited historical 

data 

Machine learning offers promising capabilities to address the persistent challenge of construction schedule 

overruns. By combining advanced analytics with domain expertise, construction professionals can achieve more 

reliable project planning and improved delivery outcomes. Fig. 7 presents an interactive visualization of the model 

comparison metrics, providing a detailed analysis of performance across different dimensions. The visualization 

can be accessed through the supplementary materials of this research. 
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