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ABSTRACT: Consolidation settlement prediction is an important aspect of geotechnical engineering, which 

influences the performance and stability of various civil engineering structures. Traditional methods rely 

heavily on empirical correlations and time-consuming laboratory tests, often lacking in accuracy and efficiency. 

This research examines the use of machine learning (ML) techniques for predicting consolidation settlement 

in civil engineering, encompassing both one-dimensional (1D) and three-dimensional (3D) consolidation 

processes. The principal aim is to illustrate the integration of AI/ML methodologies into geotechnical 

engineering, aiming to optimize prediction tasks while minimizing human intervention and potential errors. 

Various ML models such as Decision Tree Regressor, Gradient Boosting Regressor, Linear Regression, 

Random Forest Regressor, ARIMA, GRU, and LSTM, were harnessed to forecast settlement outcomes. 

Additionally, an innovative approach was adopted, utilizing a perforated consolidation ring to gather data for 

3D consolidation settlement. The results of the study showcase promising accuracy levels, with R-squared 

values of 0.9942 and 0.9876 values achieved for Gradient Boosting Regressor and Random Forest Regressor, 

respectively, in 1D settlement prediction. These findings highlight the substantial potential of AI/ML techniques 

in strengthening predictive capabilities within geotechnical engineering which leads to more efficient and 

precise settlement predictions in civil infrastructure projects. By using advanced ML algorithms and novel data 

acquisition methodologies, this research underscores the transformative impact of AI/ML integration in 

enhancing the reliability and efficacy of geotechnical analyses. Such advancements not only facilitate improved 

decision-making processes but also hold promise for optimizing resource allocation and mitigating risks 

associated with settlement-related challenges in civil engineering projects. 
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I. INTRODUCTION  

 Soil consolidation is a fundamental process in geotechnical engineering, wherein soil gradually settles 

under applied loads, impacting the stability and performance of civil engineering structures. In other words, 

consolidation is the slow compression/settlement of soil caused by pore water outflow under constant pressure. 

In contrast to consolidation, compaction is an instantaneous process. Consolidation is a gradual process. - The 

soil is unsaturated during compaction but saturated during consolidation. There are numerous methods for 

compaction. The soil should be loaded with static loading over time for consolidation. In the event of 

compaction, the volume of air spaces is reduced. However, pore water ejection happens during 

consolidation. 
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II. EXPERIMENTAL METHODOLOGY 
 

The aim of this experimental study is to assess the soil settlement under various consolidation scenarios. 

Specifically, the experiments try to investigate both the conventional 1D consolidation settlement observations 

with loading over time and 3D consolidation as well. The experimental procedure involves systematically 

recording the applied pressure, dial reading, compression (change in height), Specimen height over time and 

collecting a dataset of values. 

Upon completing the data collection, the gathered measurements will be utilized to develop different 

machine learning models. The obtained results will then be collected and processed in a way that can be used 

to train the ML Models. The experimental work was carried out at the Soil Mechanics Laboratory, Delhi 

Technological University, located in Shahbad Daulatpur Village, Rohini, Delhi, 110042. This facility is 

equipped with advanced instrumentation and resources necessary for conducting high precision Geotech 

experiments. The choice of this laboratory underscores the commitment to obtaining accurate and reliable data 

using state-of-the art equipment. 

 

In conducting this experiment, several critical aspects were considered to ensure the validity and 

reproducibility of the results. These include the calibration of dial gauge and other meters for proper readings, 

the meticulous setup of the apparatus for 3D consolidation using a perforated consolidometer ring. This 

research seeks to enhance the current understanding in geotechnical engineering by emphasizing precise 

machine learning models that either corroborate or challenge theoretical frameworks, thus improving our 

comprehension of soil consolidation. 

 

Experimental Setup 

 

The experiment was conducted using the following apparatus: 

A. Consolidometer: The consolidometer is a specialized apparatus utilized in geotechnical engineering for 

conducting consolidation tests on soil specimens. It comprises a container designed to accommodate a 

consolidation ring containing the soil specimen, sandwiched between porous stones positioned at the top and 

bottom ends. The container is equipped to be filled with water, allowing the specimen to be submerged to a 

level higher than the top of the upper porous stone. Additionally, the consolidometer is capable of applying an 

axial, vertical load to the top of the specimen, facilitating the application of pressure representative of field 

conditions. This load application is essential for inducing consolidation settlement within the soil specimen. 

 

Figure 1: Consolidometer Apparatus Set Up                                            Figure 2: Consolidometer rings 

1.1 Experimental Procedure 

1. Sample Preparation:  
Sampling: Obtain an undisturbed soil sample from the field using a sampling tube or other appropriate method. 

Trimming: Prepare the soil sample to fit the consolidation ring perfectly, making sure it has a uniform, smooth 

surface. The ring dimensions are usually standardized (e.g., 50 mm in diameter and 20 mm in height). 

Saturation: Ensure the sample is saturated with water if the test requires it. This is done by submerging the 

sample in water and allowing it to saturate. 

2. Setup: 

Placement: Place the trimmed soil sample into the consolidometer ring. 
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Assembly: Assemble the consolidometer apparatus, placing the ring with the soil sample in the consolidometer 

cell.  

              Porous Stones: Place porous stones on both sides (top and bottom) of the soil sample to allow drainage. 

 

Figure 3: Sampling and trimming                                                Figure 4: Shows Step2 Setup 

 

3. Initial Measurement: 

Height Measurement: Measure and record the initial height of the soil sample within the ring. 

Loading: Apply a small seating load to the sample to ensure proper contact between the sample, the porous 

stones, and the loading cap. 

4. Loading and Measurement: 

Incremental Loading: Apply incremental loads to the soil sample. Each load increment is typically doubled 

from the previous load (e.g., 25 kPa, 50 kPa, 100 kPa, etc.). 

Deformation Recording: Record the deformation (settlement) of the soil sample at specific time intervals (e.g., 

1, 2, 4, 8, 15, 30 minutes, 1 hour, 2 hours, 4 hours, etc.) for each load increment, until primary consolidation is 

considered complete (24 hours per load increment). 

5. Unloading: 

Incremental Unloading: After the final load increment, unload the sample in stages, similarly recording 

the rebound deformation at each stage. 

6. Final Measurements: 

Final Height Measurement: Measure and record the final height of the soil sample. 

Moisture Content: Determine the moisture level of the sample post-test by taking a small amount of the sample 

and drying it in an oven. 

7. Data Analysis: 

Settlement Data: Plot the settlement data against time for each load increment to analyze the consolidation 

behavior. 

Pressure-Settlement Curve: Develop a curve that plots pressure against void ratio or pressure against settlement 

to establish consolidation parameters including the compression index, recompression index, and the coefficient 

of consolidation. 

8. Reporting: 

Result Compilation: Compile all the recorded data, plots, and calculated parameters into a comprehensive 

report. 

Interpretation: Interpret the results to assess the consolidation characteristics of the soil, which are essential for 

geotechnical engineering and foundation design. 

B. Safety and Quality Control: 

Calibration: Ensure all equipment is calibrated and functioning correctly before the test. 

Standard Procedures: Follow standardized procedures (e.g., ASTM D2435) to maintain consistency and 

accuracy in test results. 

Safety Precautions: Adhere to laboratory safety protocols to avoid any accidents or sample contamination. 
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III. ML Model Training                                                                                                

3.1 Data Collection & Processing: To train and validate the ML models for soil settlement prediction, a 

comprehensive data collection and processing approach was employed: 

Experimental Setup: Laboratory experiments were conducted using a consolidometer apparatus to simulate 1D 

consolidation scenarios. Various geotechnical parameters such as sample depth bulk density, plasticity index, 

and moisture content were measured. 

Data Preprocessing: The gathered data went through preprocessing procedures to guarantee its compatibility 

with machine learning algorithms. This process involved normalization, feature scaling, and addressing missing 

values to improve the quality and dependability of the dataset. 

3.2 Model Selection 

Nature of the Data: The first consideration in selecting the AI/ML model is the nature of the data available for 

training and prediction. For example, since the data exhibits complex nonlinear relationships, ensemble learning 

techniques such as Gradient Boosting Regressor or Random Forest Regressor may be more suitable. 

Complexity of the Problem: For more complex problems with nonlinear relationships or high-dimensional 

data, more sophisticated models may be necessary. 

Desired Predictive Performance: If the goal is to achieve the highest possible accuracy in predicting soil 

settlement, models with strong predictive capabilities and robustness to overfitting, may be preferred. 

Model Evaluation and Comparison: Different evaluation metrics, are utilized to evaluate the predictive accuracy 

of each model on a validation dataset. The model that demonstrates the highest predictive accuracy and 

generalization performance across multiple evaluation metrics is ultimately selected for predicting soil 

settlement in this study. 

3.3 Prediction of settlement using ML Models: Once the data was prepared, the trained ML models were 

deployed to predict soil settlement based on the collected data: 

Model Training: Every ML model was developed with the processed data to understand the fundamental 

patterns and connections between the input characteristics and the outcomes of settlement. Prediction: The 

trained models were subsequently utilized to produce forecasts for soil settlement. These forecasts were 

evaluated against the real settlement values to determine the effectiveness and precision of each model. 

Evaluation Metrics: To measure the performance of the machine learning models, we computed evaluation 

metrics including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of 

Determination (R2). These metrics offered valuable insights into the predictive abilities and efficiency of each 

model. 

IV. RESULTS 

The experimental study of soil consolidation, including both one-dimensional and three-

dimensional aspects, provided valuable information regarding the settlement and properties of soil samples. This 

section presents a detailed examination of the data collected during the experiments, including the applied 

pressure, dial readings, compression (change in height), Specimen Height, void ratio and coefficient of 

consolidation.  

 

 
Table 1: Consolidation result of soil sample 1 
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Table 2: Consolidation result of soil sample 2 

 

 
 

Table 3: Consolidation result of soil sample 3 
 

 
Table 4: Consolidation result of soil sample 4 

 

Now, for the data with time considerations to train the model basis time series as well, we took reading at 

various time periods as well. As below: 
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Table 5: Change in H w.r.t. time at constant load 

The integration of a perforated ring into the experimental setup to facilitate 3D consolidation readings 

represented a novel approach. However, the Machine Learning (ML) predictions based on these readings fell 

short of expectations, resulting in decreased accuracy. Further enhancements to the apparatus are warranted to 

acquire more precise and comprehensive readings for 3D consolidation. These insights highlight the necessity 

for advancements in the apparatus to streamline and optimize data collection processes, ultimately fostering 

more efficient ML model training and yielding superior results. Such advancements are crucial for advancing 

the affordability and usability of 3D consolidation apparatus, thereby driving progress in this field of study. 

In conclusion, the study demonstrates that settlement of soil under various loads over time is influenced by both 

the pressure applied and the saturation of soil. In this detailed analysis, the plot comparing actual and predicted 

values serves as a visual tool to assess how well a Machine Learning (ML) model performs. In this graph, the 

true values of the target variable (often referred to as ground truth or observed values) are compared to the 

values predicted by the model. 

In the context of Machine Learning (ML), a residual plot serves as a visual tool to evaluate how well a 

regression model fits the data. It shows the discrepancies between the actual values and the predicted values of 

the target variable plotted against the predictor variables. 

Residual=Observed value−Predicted value 

First let’s look at the distribution curve which refers to a graphical representation of the distribution of a 

particular variable within a dataset. This curve is often used to visualize the spread or dispersion of values and 

to understand their frequency or likelihood of occurrence. 

 

 

Figure 5: Distribution curve for Height vs Load 
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Figure 6: Distribution curve for Height vs Frequency 

Gradient Boosting Regressor Model 

 

 

Figure 7: Actual vs Predicted Height for soil sample plot for Gradient Boosting Regressor Model 

 

 

Figure 8: Residuals plot for Gradient Boosting Regressor Model 

 

 

 

 

 

 

 

 

 

 

 

Random Forest Regressor Model 
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Figure 9: Actual vs Predicted Height for soil sample plot for Random Forest Regressor Model 

 

 

Figure 10: Residuals plot for Random Forest Regressor Model 

Decision Tree Regressor Model 

 

 

Figure 11: Actual vs Predicted Height for soil sample plot for Decision Tree Regressor Model 
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Figure 12: Residuals plot for Decision Tree Regressor Model 

 

 

Linear Regression Model 

 

 

Figure 13: Actual vs Predicted Height for soil sample plot for Linear Regression Model 

 

 

Figure 14: Residuals plot for Linear Regression Model 
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AutoRegressive Integrated Moving Average (ARIMA) 

 

Figure 15: Actual vs Predicted Height for soil sample plot for ARIMA 

 

Figure 16: Residuals plot for ARIMA 

Long Short-Term Memory (LSTM) 

 

Figure 17: Actual vs Predicted Height for soil sample plot for LSTM 
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Figure 18: Residuals plot for LSTM 

Gated Recurrent Unit (GRU) 

 

Figure 19: Actual vs Predicted Height for soil sample plot for GRU 

 

Figure 20: Residuals plot for GRU 

The comparison of several ML models’ performance is done based on a number of metrics, here we will be 

looking at R2, MAE (Mean Absolute Error) and MSE (Means Squared Error) to have a comparison of accuracy 

of all the models relative to each other. 

In conclusion, R-squared indicates the percentage of variance accounted for by the model, while MAE and MSE 

evaluate prediction accuracy by measuring the size of errors between actual and predicted values. These metrics 

are vital for assessing the performance of various ML models and determining the most suitable model for a 

specific task. 
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V. CONCLUSION  

 

Table 6: Comparison of performance of models 

In this study, various machine learning models—including Gradient Boosting Regressor (GBR), Random Forest 

Regressor (RFR), Decision Tree Regressor (DTR), and Linear Regression—were evaluated for predicting soil 

settlement during consolidation. Among them, the GBR model demonstrated the highest performance with an R² 

value of 0.9942, followed by RFR (R² = 0.9876) and DTR (R² = 0.9848), indicating excellent predictive 

capabilities. The experimental setup and available data were suitable for 1D consolidation analysis, allowing for 

effective model training and accurate predictions. However, the 3D consolidation data, collected using a 

perforated ring setup, lacked the precision and reliability required for model training, leading to significant 

errors and ultimately exclusion from this study. The high accuracy of ML models like GBR not only reduces 

human error in settlement prediction but also contributes to more reliable and durable infrastructure designs. 

Looking ahead, advancements in AI/ML hold great potential for geotechnical engineering, particularly through 

the development of more specialized models capable of addressing complex problems such as 3D consolidation. 
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