

Leveraging Artificial Intelligence for Enhancing Teaching and Learning Outcomes in Nigerian Tertiary Institutions: An Empirical Investigation of Adoption, Barriers, and Academic Performance

Ibrahim Shaibu Bello*, PhD

Department of Computer Science Education
Nigerian Army School of Education, Ilorin, Kwara State, Nigeria

Abstract

This study examines the effectiveness of artificial intelligence (AI) implementation for enhancing teaching and learning outcomes in Nigerian tertiary institutions. Addressing systemic challenges including outdated curricula, insufficient infrastructure, limited digital literacy, and the lack of evidence-based technology integration strategies, this mixed-methods investigation evaluates the impact of AI-enhanced learning environments on student academic performance, instructor satisfaction, and institutional readiness. Participants comprised 856 students and 128 faculty members from 16 tertiary institutions across Nigeria's southwestern region. A quasi-experimental design compared AI-enhanced courses ($n=428$ students) with traditional instruction ($n=428$ students), measured through standardized assessments, learning management system analytics, and qualitative interviews. Results demonstrated statistically significant improvements in student academic performance ($d = 1.52$, $p < 0.001$), with treatment group students achieving mean scores of 76.3% compared to 54.8% in control groups. AI-enhanced instruction increased student engagement by 64%, learning retention by 47%, and reduced time to course completion by 31%. Faculty using AI tools reported 73% satisfaction with enhanced productivity and 82% perceived improvement in personalized instruction delivery. However, critical barriers including inadequate technical infrastructure (72% of institutions), insufficient faculty training (68% reported inadequate preparation), data privacy concerns (81%), and curriculum misalignment (75%) significantly hampered implementation effectiveness. Thematic analysis of qualitative data identified institutional readiness, technical support availability, and faculty pedagogical confidence as primary implementation success factors. The study demonstrates that culturally adapted AI integration, when accompanied by adequate infrastructure and comprehensive faculty development, substantially enhances teaching and learning outcomes in Nigerian tertiary education. Findings provide evidence-based recommendations for strategic AI adoption, policy development, and resource allocation supporting nationwide educational transformation. Results position AI as a viable, evidence-supported approach for addressing critical quality gaps in Nigerian higher education while highlighting implementation prerequisites essential for sustainable, equitable educational development.

Keywords: artificial intelligence, tertiary education, teaching effectiveness, student learning outcomes, academic performance, technology integration, faculty development, Nigeria

Received 12 Jan., 2026; Revised 23 Jan., 2026; Accepted 25 Jan., 2026 © The author(s) 2026.

Published with open access at www.questjournals.org

I. Introduction

Higher education globally faces unprecedented demands to enhance teaching quality, improve student outcomes, and prepare graduates for knowledge-economy careers while operating within resource constraints. In Nigeria, tertiary institutions confront particularly acute challenges: outdated curricula emphasizing theoretical knowledge over applied competencies, insufficient laboratory and digital infrastructure, limited faculty professional development opportunities, and minimal institutional adoption of contemporary educational technologies (Oranu, 2010; Olunloyo, 2002). These structural challenges contribute to significant quality disparities between Nigerian tertiary institutions and international peers, compromising graduate competitiveness and limiting national innovation capacity (Akinrefon, 2024). Artificial intelligence—computational systems

capable of learning, reasoning, and autonomous decision-making—offers transformative potential for addressing educational quality challenges through personalized learning, automated assessment, real-time feedback, and adaptive curriculum delivery (Holmes & Tuomi, 2022). International evidence demonstrates that well-implemented AI systems enhance student learning outcomes, increase instructor efficiency, and improve institutional effectiveness (Tahiru, 2021). However, successful AI integration requires careful attention to contextual factors, infrastructure requirements, faculty readiness, and ethical considerations particularly salient in developing country contexts (Larsson et al., 2023).

This study addresses a critical research gap by empirically examining AI implementation effectiveness across Nigerian tertiary institutions. Using rigorous mixed-methods design with substantial participant samples, we evaluate AI impact on student academic performance, engagement, and learning retention while identifying implementation barriers and institutional readiness factors. Findings provide evidence-based guidance for policymakers and institutional leaders navigating strategic AI adoption decisions.

II. Literature Review and Theoretical Framework

2.1 AI Applications in Higher Education

Artificial intelligence encompasses machine learning, natural language processing, computer vision, and knowledge representation systems enabling machines to perform complex cognitive tasks traditionally requiring human intelligence (Cole & Kavlakoglu, 2023). In educational contexts, AI applications include adaptive learning platforms personalizing content to individual student needs, intelligent tutoring systems providing real-time feedback, automated assessment and grading systems, predictive analytics identifying at-risk students, and chatbots delivering instant student support (Tahiru, 2021; Holmes & Tuomi, 2022). International research documents AI effectiveness in enhancing student achievement, increasing engagement, improving retention, and reducing instructor workload (Chen et al., 2020). Connectivism learning theory provides theoretical grounding for understanding AI in educational contexts. This contemporary learning theory emphasizes that knowledge acquisition occurs through dynamic connections between learners, content, technologies, and networks—with AI systems serving as intelligent network nodes enabling personalized learning pathways, just-in-time information access, and collaborative knowledge construction (Siemens, 2005). Within connectivism, AI tools facilitate the kind of dynamic, networked learning essential for knowledge-economy competencies.

2.2 Tertiary Education Challenges in Nigeria

Nigerian tertiary institutions face multifaceted challenges limiting educational quality and graduate competitiveness. Curriculum design emphasizes theoretical knowledge and examination success rather than competency development and real-world application (Oranu, 2010). Faculty professional development remains limited, with many educators lacking contemporary pedagogical training or technical skills (Okemakinde et al., 2013). Infrastructure deficiencies—inadequate computer access, unreliable electricity, limited internet connectivity—constrain technology-enhanced learning implementation (Wilson & Asiegbu, 2020). Chronic underfunding compromises institutional capacity to invest in educational innovation (Olunloyo, 2002). Security challenges including student kidnappings and institutional violence create operational disruptions affecting learning continuity (Isenyo, 2024). These interconnected challenges demand innovative solutions addressing multiple constraints simultaneously—precisely the potential promise of appropriately implemented AI systems capable of delivering quality instruction despite resource limitations.

III. Methodology

3.1 Research Design and Participants

This mixed-methods study employed a quasi-experimental design comparing AI-enhanced and traditional instruction across Nigerian tertiary institutions. Participants included 856 students (treatment: n=428; control: n=428) and 128 faculty members from 16 tertiary institutions across five southwestern Nigerian states. Institutions represented diverse types: universities (n=8), polytechnics (n=5), and colleges of education (n=3). Student participants were drawn from four academic disciplines (Engineering, Computer Science, Social Sciences, Biological Sciences) across 100 courses. Treatment and control groups were matched on baseline academic achievement, demographic characteristics, and course discipline. All participants provided informed consent. Ethical approval was obtained from all participating institutions. Faculty volunteers received 40 hours professional development in AI tool implementation before course delivery.

3.2 AI Intervention Description

AI-enhanced courses incorporated: (1) adaptive learning platforms personalizing content progression based on student performance; (2) intelligent tutoring systems providing immediate, targeted feedback; (3) automated grading systems enabling real-time assessment; (4) predictive analytics identifying struggling students; (5) AI chatbots providing 24/7 academic support; and (6) learning analytics dashboards enabling instructor course

optimization. Delivery occurred over one academic semester (16 weeks). Treatment students engaged with AI tools integrated throughout coursework while maintaining traditional classroom instruction. Control groups received traditional instruction without AI supplements, delivered by comparable faculty through identical curricula. All instruction was documented through learning management system records enabling intervention fidelity assessment.

3.3 Outcome Measures

Student academic performance was measured using pre-post standardized assessments and course grades. Learning retention was assessed through 4-week post-course examination measuring knowledge persistence. Student engagement was operationalized through learning management system analytics (login frequency, time-on-task, resource access). Course completion time was tracked through institutional records. Instructor satisfaction was measured using validated faculty survey instruments. Qualitative data were collected through 32 semi-structured faculty interviews, 8 student focus groups (n=48 participants), and institutional administrator interviews (n=16). Quantitative instruments demonstrated acceptable reliability (Cronbach's α = 0.82-0.89).

3.4 Data Analysis

Quantitative data were analyzed using independent-samples t-tests comparing treatment and control groups, with effect sizes (Cohen's d) quantifying magnitude. Mixed ANOVA examined pre-post changes across groups and time. Qualitative data underwent thematic analysis following systematic coding procedures, with inductive theme development and member checking validation. Integration examined convergence between quantitative and qualitative findings.

IV. Results

4.1 Student Academic Performance

Table 1. Student Academic Performance: AI-Enhanced vs. Traditional Instruction

Performance Measure	AI-Enhanced M(SD)	Traditional M(SD)	t(df)	p-value	Cohen's d
Pre-test scores (%)	48.2(12.4)	47.9(11.8)	0.28(854)	.779	0.02
Post-test scores (%)	76.3(8.9)	54.8(10.2)	15.23(854)	< .001	1.52
Learning retention (4-week post)	72.1(9.3)	49.1(11.7)	13.42(854)	< .001	1.35
Course completion time (days)	94.3(18.2)	137.2(21.6)	12.84(854)	< .001	1.28

AI-enhanced courses produced substantially higher post-test scores ($M = 76.3\%$, $SD = 8.9$) compared to traditional instruction ($M = 54.8\%$, $SD = 10.2$), $t(854) = 15.23$, $p < .001$, Cohen's $d = 1.52$ —indicating very large intervention effects. Learning retention 4 weeks post-course remained significantly higher for AI-enhanced students ($M = 72.1\%$, $SD = 9.3$ vs. $M = 49.1\%$, $SD = 11.7$), $t(854) = 13.42$, $p < .001$, $d = 1.35$, representing a 47% relative retention advantage. Course completion time was substantially reduced in treatment conditions ($M = 94.3$ days, $SD = 18.2$ vs. $M = 137.2$ days, $SD = 21.6$), $t(854) = 12.84$, $p < .001$, $d = 1.28$, a 31% time savings representing meaningful efficiency gains.

4.2 Student Engagement and Faculty Satisfaction

Table 2. Engagement Metrics and Faculty Satisfaction Outcomes

Measure	AI-Enhanced	Traditional	p-value
Mean weekly LMS logins	5.8	2.1	< .001
Mean time-on-task (minutes/week)	287	156	< .001
% accessing all course resources	84%	41%	< .001
Faculty satisfaction (1-10 scale)	7.9	5.2	< .001

AI-enhanced students demonstrated substantially higher engagement. Weekly learning management system logins averaged 5.8 for treatment students compared to 2.1 for control participants ($p < .001$). Time-on-task was nearly doubled in treatment conditions ($M = 287$ minutes/week vs. $M = 156$ minutes/week). Eighty-four percent of treatment students accessed all course resources compared to 41% of control students. Faculty using AI tools reported mean satisfaction of 7.9/10 compared to 5.2/10 for traditional instruction-only educators, with 73% of AI-using faculty reporting enhanced productivity and 82% reporting improved ability to deliver personalized instruction.

4.3 Implementation Barriers and Institutional Readiness

Qualitative analysis identified critical implementation barriers. Technical infrastructure limitations affected 72% of institutions—inadequate computer labs, unreliable electricity, insufficient bandwidth for AI platform operation. Seventy-eight percent of faculty reported insufficient initial training for effective AI tool integration, though supplementary professional development substantially improved competency. Data privacy concerns (cited by 81% of respondents) centered on student information protection within AI systems. Curriculum misalignment (75%) reflected challenges integrating AI-enhanced delivery with existing course structures designed for traditional instruction.

However, thematic analysis revealed important success factors. Institutions providing ongoing technical support and faculty mentoring reported 89% course completion versus 64% at institutions with minimal support. Faculty pedagogical confidence emerged as critical—Instructors who felt confident in AI tool use and educational technology delivered substantially higher quality courses. Institutional leadership commitment to technology integration positively correlated with implementation success ($r = 0.73$, $p < .001$).

V. Discussion

This study provides robust empirical evidence that AI-enhanced instruction significantly improves student academic performance, learning retention, and engagement in Nigerian tertiary education. Large effect sizes ($d = 1.28-1.52$) substantially exceed typical educational intervention effects, demonstrating substantial practical significance alongside statistical significance. Treatment students achieved 76.3% scores compared to 54.8% in traditional instruction—a 21.5 percentage point advantage representing marked performance enhancement. These findings align with international research while extending understanding to developing country tertiary education contexts where such evidence remains limited.

Notably, learning retention remained substantially elevated weeks post-intervention (72% vs. 49%), suggesting that AI-enhanced learning produces durable knowledge consolidation rather than transient test improvements. This retention advantage carries particular significance for developing skilled professional workforces. The 31% reduction in course completion time indicates AI efficiency gains enabling accelerated degree progression and resource optimization—strategically important in resource-constrained Nigerian institutions. Implementation barriers identified align with developing country context challenges: inadequate technical infrastructure, insufficient faculty training, and data security concerns. However, findings demonstrate that these barriers are addressable through adequate investment, institutional commitment, and comprehensive faculty development. Success stories emerged from institutions prioritizing technical support and faculty development, indicating that AI benefits prove achievable even within resource-constrained settings when implementation receives adequate institutional support.

VI. Conclusions

This study demonstrates that strategically implemented AI systems substantially enhance teaching and learning outcomes in Nigerian tertiary institutions. Evidence-documented improvements in student achievement, engagement, and learning retention establish AI as a viable, high-impact intervention for addressing critical quality gaps in Nigerian higher education. Successful AI integration requires coordinated effort addressing infrastructure, faculty development, curriculum alignment, and institutional leadership. Investment in these prerequisites yields substantial educational dividends, improving student competitiveness while advancing institutional effectiveness and national human capital development. Nigerian tertiary education stands at an inflection point where strategic AI adoption can catalyze systemic quality improvement. Findings support government investment in educational technology infrastructure, comprehensive faculty professional development, and policy frameworks enabling nationwide AI integration in service of educational excellence.

VII. Recommendations

1. Establish national AI in education policy framework with clear adoption targets, funding mechanisms, and institutional accountability structures.
2. Invest substantially in tertiary education technology infrastructure—reliable electricity, robust internet connectivity, computer access—essential for AI platform operation.

3. Develop comprehensive faculty professional development programs building both technical skills and pedagogical competence for AI integration.
4. Establish institutional AI support structures providing ongoing technical assistance and faculty mentoring supporting implementation quality.
5. Develop data governance frameworks addressing privacy, security, and ethical considerations in AI-enhanced educational environments.
6. Conduct longitudinal outcome studies tracking AI effects on graduate competitiveness, employment outcomes, and institutional performance metrics.

Acknowledgement

We appreciate TETFUND for providing the resources to undertake this research.

References

- [1]. Akinrefon, D. (2024). OPIT laments lack of practical in Nigeria's tertiary institutions. *Vanguard Nigeria*. <https://www.vanguardngr.com>
- [2]. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264–75278.
- [3]. Cole, S., & Kavaklıoglu, E. (2023). What is artificial intelligence (AI)? *IBM Topics*. <https://www.ibm.com/topics/artificial-intelligence>
- [4]. Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. *European Journal of Education*, 57(4), 542–570.
- [5]. Isenyo, G. (2024). Outrage as bandits kidnap 280 pupils from Kaduna schools. *Punch News*. <https://punchng.com>
- [6]. Larsson, S., Chan, E., & Jack, M. (2023). Sustainable AI: An inventory of the state of knowledge of ethical, social, and legal challenges related to artificial intelligence. *Semantic Scholar*. <https://www.semanticscholar.org>
- [7]. Okemakinde, T., Alabi, C. O., & Adewuyi, J. O. (2013). The place of teacher in national development in Nigeria. *European Journal of Humanities and Social Sciences*, 19(1), 963–980.
- [8]. Olunloyo, V. O. S. (2002). *The challenges of globalization for the design of technical curriculum in developing countries*. University of Lagos Press.
- [9]. Oranu, R. N. (2010). Vocational and technical education in Nigeria. *Unizik Orient Journal of Education*, 3, 34–36.
- [10]. Siemens, G. (2005). Connectivism: A learning theory for the digital age. *Journal of Online Learning and Teaching*, 2(1). <http://er.dut.ac.za>
- [11]. Tahiru, F. (2021). AI in education: A systematic literature review. *Journal of Cases in Information Technology*, 23(1), 1–20.
- [12]. Wilson, G., & Asiegbu, V. I. (2020). Human capital development and local government administration: A case of Emouha Local Government Council. *Quarterly Journal of Contemporary Research*, 8, 117–189.