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. INTRODUCTION
Consider the following Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNSs) with delays:

Xij(t) = _aij(Xij(t)){bij(xij(t))+ Z Ciljd(t)fij(t’Xkl(t_Tkl(t)))Xij(t)_Lij(t)}1t>0’
cMeN, (i, j)
;) = @,{)te[-,0Li=12...,n j=12...,m,

where 7;; (t) represents axonal signal transmission delays and is continuous with 0z (t)<7 ; C;;(t) denotes

the cell at the (i, J) position of the lattice at the t; the I -neighborhood N (i, j) of C(t) is
N, (0, J) ={Cy (t) : max(| k =i, [T - j)<r, 1<k<n, I<I<m},

X;; (t) is the activity of the cell C;(t); L (t) is the external inputs to C; (t); a; (X;(t)) and by (x; (1))
represent an amplification function at time t and an appropriately behaved function at time t, respectively;

Ci‘j‘I (t)>0 is the connection or coupling strength of postsynaptic activity of the cell transmitted to the cell Cij ;

the activity functions fij (t,-) are continuous functions representing the output or firing rate of the cell C,, ®,

?; (t) are the initial functions.

Since Bouzerdout and Pinter in [4-6] described SICNNs as a new cellular neural networks (CNNSs),
SICNNs have been extensively applied in psychophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing. Hence, they have been the object of intensive analysis by numerous
authors in recent years. In particular, there have been extensive results on the problem of the existence and
stability of periodic and almost periodic solutions of SICNNs with constant time delays and time-varying delays
in the literature. We refer the reader to [7-10,13-15] and the references cited therein. Moreover, it is well known
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that the discrete systems are more important than their continuous counterparts in implementing and application.
In addition, it is essential to formulate discrete-time counterparts of the continuous-time functional differential
systems when one wants to simulate or compute the continuous-time systems after we obtained its dynamical
characteristics, but it is troublesome to study the existence and stability of periodic solutions for continuous and
discrete systems respectively. Therefore, it is meaningful to study that on time scale which can unify the
continuous and discrete situations.

However, to the best of our knowledge, few authors have considered CGSICNNs with delays on time
scales. The main purpose of this paper is to study the existence of periodic solution of the following Cohen-
Grossberg shutting inhibitory cellular neural networks with variable coefficients and impulses on time scales:

Xi? (t) = _aij (Xij (t)){bij (Xij (t)) + z Cil;l (t) fij (t, Xk| (t —Ty (t))) Xij (t) - Lij (t)}!

c¥eN, (i,])
t,t eT,t>0t=t,,i=12,...,n,j=12,...,m, (1.2
aX; (t) =X ) —x;t) =e (x;t)i=12,...,n,j=12,..,mk=12,..,

where T is an @ -periodic time scale, €, : IR — R is continuous and there exists a positive integer g such
that t,,, =t +@,8.,,() =)t >t, Eiﬂltk =0, aX;(t)=X;(t)—x; () are the impulses at

momentst, , for t, #0(k =1,2,...), [0,0]; n{t. }={t,.t,,....t,}.
The initial conditions of system (1.1) are of the form

X;(s)=¢;(s)=0,se[-7,0],i=12,...,n,j=1,2,...,m,

where ¢, € C([-7,0], R™™),7 = maxlgkgm,lglgn{tg(])aw)]( 7, (D}

For the sake of convenience, we denote

1
. ® 5~ 1o
g =maX, o, |9(0],g=min,, 190 lgl,=(["o®F at)>,g =5I0 g(DAt,

where g isan @ -periodic function.
Throughout this paper, we assume that:

(Hl)aij () eC(R,R"),L C;' eC(T,R),(i=12,...,n,j=1,2,...,m) are @ -periodic functions,

ij

ij bij(o)zo'

0<a;<g;()<g; < l;bij () € C(R,R) are delta differential and 0 < p; <bj'(-) <&
®

(H,) fij (t,),i=L12,...,n,J=12,...,m are continuous @ -periodic functions respect to t and there exist

constants fijM >0 such that | fij |< fijM )

(H,)e, € C(R,R) are bounded functions, kK =1,2,.....
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(H,) There exists positive constants K.

j such that | i (t,x)— f;(t, y)|<K; |x=y[|, for all
teT,i=12,...,n,j=12,....m.

Il.  PRELIMINARIES
According The theory of time scales, one may see [12].

Definition 2.1 ([12]) For each t € T', let N be a neighborhood of t. Then, for V € C [T xR", R"], define

D'V (t, X(t)) to mean that, given & > 0, there exists a right neighborhood N, = N of t such that

—u(i SV COXEO)VEXEO) 19 L XON <DV EXO) +o

for each se N_,s>t, where u(t,s)=o(t)—s. If t is right-scattered and V (t, X(t)) is continuous at t,

this reduces to

oV 110 = LEOHED N x(o0)

Definition 2.2 ([11]) We say that a time scale T is periodic if there exists p >0 such that if t € T, then
ttpeT.For TR, the smallest positive p is called the period of the time scale.

Definition 2.3 ([11]) Let T # R be a periodic time scale with period p . We say that the function
f:T— R is periodic with period @ if there exists a natural number n such that @ =np, f(t+w)=
f(t) forall teT and @ is the smallest number such that f (t+w) = f(t).

If T=R, we say that f is periodic with period @ >0 if @ is the smallest positive number such that
f(t+w)=1(t) foranteT.

Lemma 2.1 ([2]) Assume that P,q:T — IR are two regressive functions, then
(i), (o (1),5) = L+ u(®) P(D)e, (1, 5);

1 |
(ll)m:eep(t,S),
_1

(ii)e, (t,s) = e 5.0)

(iv)e, (t,s)e, (s,r) =¢e,(t,r).

=e_,(s1);

Lemma 2.2 ([2]) Assume that T,Q:T — R are delta differentiable at t € T*. Then

(fg)*®=f*Oa®+ f(c®)g*(t) = F g )+ F* O g(o®).

Lemma23If a,beT,a, R and f,g € C(T,R), then
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Q) [Tef®+pa®lat=af tOAt+a[ gOAt;
(i) If f(t)>0 forall a<t<b, then Lbf(t)Atzo;

i) 1F] £ (1)< g(t) on [a,b):={t e T:a<t<b},then | [ f(D)At}< [ g(t)AL.
a a
The proofs of the following lemmas can be found in [1,3,17], respectively.

Lemma2.4 Let t,t, €[0,w]; . 1fX: T —> R is o -periodic, then

XO<xX(t)+ [T (5) | As, x(02x(t,) — [ (5)] As.

Lemma 2.5 (Cauchy-Schwarz inequality) Let @,b € T . For rd-continuous functions f,g:[a,b] > R we
have

[t g0 a<([ O F 8 (O a)-
Lemma 2.6 (compact result [18]) Assume that { f.}._ is a function sequence on J such that
() {f.},_y is uniformly bounded on J ;
iy {f "}, is uniformly bounded on J .
Then there is a subsequence of {f } _, converges uniformly on J .

Lemma 2.7 (Mean value theorem) Let function f be continuous on [a,b], and delta differentiable on

[a,b)., then there exist &, ¢ €[a,b), such that

FH(E)b-a)< f(b)-f(a)< f (c)(b-a).

I, MAINRESULTS
In this section, by using the Mawhin's continuation theorem, we shall study the existence of at least one periodic

solutions of system (1.1).
Let X,Y be normed Banach spaces, L:DomL c X —dimY be a linear mapping, and

N : X —Y be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dimKerL =codimImL < +oo and ImL is closed in Y . If L is a Fredholm mapping of index zero and

there exist continuous projector P: X — X and Q:Y —Y such that ImP = KerL,KerQ =Im(l -Q),
it follows that mapping L |5, ~kerp: (I = P)X — ImL is invertible. We denote the inverse of that mapping

by Kp . If Q is an open bounded subset of X , the mapping N will be called L -compact on Q. if

*Corresponding Author: Lili Wang 4| Page



Existence of periodic solutions to impulsive CGSICNNs on time Scales

QN(Q) is bounded and K, (I —Q)N :Q — X is compact. Since ImQ is isomorphic to KerL , there
exists an isomorphism J : ImQ — KerL.

In order to obtain the main results, we introduce the Mawhin's continuation theorem as follows.

Lemma 3.1 ([16]) Let Q < X be an open bounded set and let N : X — Y be a continuous operator which is

L -compact on Q). Assume

(@) foreach A €(0,1),xe QnDomL,Lx# ANX,
(b) foreach x e QN KerL,QNx =0, and deg(JON,Q~KerL,0)=0.

Then LX = NX has at least one solution in Q~DomL .

Theorem 3.1 Assume that (H,)—(H;) hold, D =diag(d,,,...,d

) im?

dy,.nd, .. d

yUomseeesUppy ey

d,,)is a
diagonal matrix, and the following condition (H;) hold

8 (1_a)§‘ij5ij) B

(Hy) d = i > Ci>0i=12..nj=12..m,

, U
03,3, 4 CYeN, (i, j)

ij
then system (1.1) has at least one @ -periodic solutions.

Proof. Let C[0,w;t,t,,...,t ], ={X:[0,w], &> R™ is a piecewise continuous map with first-class

discontinuous points in [0, @], N{t, } and at each discontinuous point it is continuous on the left }. Take

X ={xeC[0,wit,,...,

and [ x= Y.

(.J)

tq]’]T . X(t + a)) = X(t)}’ 7 =X XRme(qﬂ)

rE)a>]( | %; (t) |, then X is a Banach space. Set
@lr

L:DomLNX = Z,x— (x*,ax(t,),...,ax(t,),0),

where DomL:{XeCl[O,a);tl,...,tq]:X(O): X(w)},and N: X > Z,

Au() ) [ (0)) ) [ & (xu(t)) € (% (t;))
An(®) | | &0 (1)) | | & (X (L)) € (X1 ()

NX = S, : : : ,0
Au(t) | | &0 (W) || &(Xu(t)) & (Xu ()
An(©)) (806 (6))) {8 (X (£)) € (X (&)

where
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Aij ()= &; (Xij (t)){bu (Xij (1) + Z Cilj(l (t) fij (t, % (t—7 (t)))xij t)- Lij (t)}, i=12,...nj=12..,m

CHeN,(i,j)

Take Z=(f,C1,...,Cq,d)e ImL < Z , then
» q
KerL={xe X |x=heR™}, |mL={(f,C1,...,Cq,d)EZ :Io f(S)AS+ZCk +d =0}
k=1

and dimKerL =nm =codimImL.

So, ImL isclosed in Z, L isa Fredholm mapping of index zero. Define two projectors

1 co
Px:g.[o X(t)At,

° q
Qz=Q(f,C,,C,,....C.,d) = (l[j0 f(s)as+Y'C, +d].0,...,0,0).
@ k=1
It is easy to show that P and Q are continuous and satisfy
ImP =KerL, ImL =KerQ = Im(l —Q).
Further, let L' = L |o,n, -kerp @nd the generalized inverse K, = L is given by

1 co q
K,z =j; f(s)as+Y.C, -] j; f(s)AsAt—kZ:;Ck.

t>t, w

Thus, the expression of QNX is

1o 1
Sl A DA e (6 (1)
1o 13
P R HOLE e AACHCY)

1o 13
ol A8t =D e (0,0)

1o 13
S An 08t =36, (6, (1))

and then
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t>t,

[T A)As+Y e (k) | (L [] Aus)asat
@ Y0 J0

[ Am(s)As+§ek(xlm(tk)) é [ [ An(9)asAt

KP(I _Q)NU = —

Jo A5+ e, 06(0)) | | 27T A, (s)asat
W Y0 J0

>t

i An()8s+ X e (%, () ijo‘” [ An(s)asAt
>, [0}

AL aens | | 2etut)

w 27 k=1 .

AL aas | | e 06
o 27 k=1

t 1 e d
(—=2)], Auls)as PILACALY)

t 1 e q .
(5 _E)J‘O A1m (S)AS Z ek (Xnm (tk ))

Thus, QN and K, (1 —Q)N are both continuous. Using the Lemma 2.6, it is easy to show that
K, (1 —Q)N(Q) is compact for any open bounded set Q — X . Moreover QN (Q) is bounded. Thus, N
is L -compact on Q for any open bounded set Q < X .

Now, it needs to show that there exists an domain Q, that satisfies all the requirements given in
lemma 3.1. Corresponding to operator equation LX = ANX, A € (0,1) we have

x2 @) = AL-a, 0, OB, @)+ > CHO)F, (o E -7 O)X, () - L, O }]

c¥eN, (i,j)
t=t,te[0,0],,i=12,...,n,j=12,...,m, (3.1
aX; (t) =% (t) —x; (t) = e, (% (). k=12,...,0,i=1,2,...,n,j=1,2,...,m.

Suppose that X(t) = (X, (). .., X, (€), X0y () oy Xor (€)oo Xy (1), X (1))T € X is a solution of
system (3.1) for a certain 1 €(0,1). Sett, =t;, =0,t

iy =0, from (3.1), Lemma 2.5 and Lemma 2.7, we

have
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L 1at=3 11 b8t 3 0)-5,)]

<[]0, At [0 18+ [ T 6yt x5O 1%, 160+ Y 05 6D (32
CkIN(Ij) k=1
<@gollxl,+ ¥ Vo lxll, +a oL, +Zbk(xu(t Nl
CHeN,(i,j)

i=12,...,nj=L2,....,m

Integrating both sides of (3.1), over the interval [0, a)]T, we obtain

fowA,-(t)Aszq;ek(xij(tk))=o,i=1,2,...,n,j=1,2,_,_,m
namely,
[["a, (% )b, (%, () At =
T a0 1, % - D%, OA [ 3, (O OAL+ Y e, 4, 0)

CMeN, (i)

where 1=1,2,...,n,]=12,...,m. By Lemma 2.5 we get

| [, (%, )b, (x, ()AL
<JW 2 a”C'l‘d f” 1% (0] AtJraij\/5 I L I, +Zq:pk(xij )|

CHeN,(i,])

avo Y CUM Ikl +aa L, +Z|ek(x.,(t Nl

cMeN (1, 0)

where i =1,2,...,n, j=1,2,...,m. Then by (H,), we obtain

” 8 (XIJ (t))XIJ (At | <— \/7 Z CI;(I fuM I X, H

Pij ceN,(,j)

\/7”'— H +— Zbk(xu(t ))l

i k=L

(3.3)

From Lemma 2.4, for any t1J t [0, o];,i=12,...,n,j=1,2,...,m, we have

[ 06 (0)x; (DA 3 (% ()% (&)t + [ 0 O) ([ g (0] AL At

and

[ 04 ©)x; (AT ay (%, ()% (6)At— [ a0 O)([Ix: (1) | At) At
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Dividing by J:o a; (x; (t))At on the two sides of the inequalities above, we obtain that

Xij t1”)
>w;
[ a0 )At

! ’ RN
LI ool oiad

"3, 06, @)%, (A= I (1) | At

and

oy ()< [a, 4 O DAL+ [ b ()| at
[a, 0 @)t ;

<L [, 0 @)% Ot +[ b 01 8t
a)gij

by the arbitrariness of t,t, let 14, % €[0, @], suchthat x; (§;) =min, g, X;(t),

%; (6) =max, o, % ©),1=12,...,n, j=12,...,m

X; ()= —[wi@_ |72y O ) At [+ ) 1at]
and
x, ()< é [ @, 0t @)%, @t |+ @) At
Hence,
max | x,(t)] <~ | [, (%, ()% AL +]" b () A, (34)

wherei=1,2,...,n, J =1,2,...,m. In addition, from (3.4) we have that

;1% =2, ([ b OF At)?<a, Vo max | x,(0)]
(3.5)

1 ® © . .
<ﬁlfo aij(xij(t))xij(t)m|+gj\/5j0 K@) |ALi=12,...,n,j=12,...,m

Combining (3.2), (3.3) and (3.5), we obtain
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3 H x|, <

CkIfM a L (X
J_ p.,fcueNZ(.n 1%, 1, +p JollL, ||, +— Z|e (%t ) )

_'_gij\/g(aijé‘ij\/5 H Xij HZ + Z anCIljd fu \/_ || le || +au\/_ || LU || +Zbk (Xu (t )) |)

CMeN,(i.j)

ij
ij c¥eN, (i j)

<(wa 5-+in“ > Clixll, +0a,a6; | % |, +(oa,a; ;W\Lut
ij

+(Joog, + Jgpi_)Zkeux.J(t )|

“0ag B S Gl soagan | om + B

ij?
ij CHeN, (i, j) ij

where a;; =|| L; |, +———

\/_ Zbk(xu(t))||_12 N j=12,....m

QA k=1
Hence,
(- wa;o;) :
g"—"nxij <t S Clx ll, +er =120, j=12,...m  (36)
a)gije_‘ij c¥eN, (i,j)
ij

Denote

[BI 1P (1| U [T "3 | OO ' | AU | | AR | e | L

T
C = (e Oy Qg ey Oy ey Qg ooy Ol )
Thus, (3.6) can be rewritten in the matrix form
Dl xl, <C.
From the assumptions of Theorem 3.1, we obtain

x|, <D™*C 2 (B,,...,B,,B,,...,B

im?

BB

211021 Dopyee

thatis || x; [, <Bj,i=12,...,n,j=12,...,m

]!

By (3.2), (3.3) and (3.4) we obtain
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max | X
te[oa %0

( M 1,y + 2o I I S e (%)) )

Lij Ck'eN ) L Pij k=1
_'_g‘ijéij\/5 || Xij ||2 + Z aIJCI;(I fu \/_ || Xu || +alj\/_ || Lu || +Zpk(xu (t ))|
c¥eN, (i, j)

i = ai' =
S—F— \/— [( J +wau§q) fuM Z C I X; Hz +06;8;a; I X; Hz +(_J+waij§ij) | L; Hz
0g;

Pij cken, (i, j) ij

+(Voa, + N U)Zkek(x., t)1]

k=1

<\/_ [(—"+waugq)f““" > Ci'B; + w583, u+(p—+a)augu)au]
_IJ I

cMeN () ij

= A, i=12,n,j=12-m

Denote A= Z A+ A", where A" is a sufficiently large positive constant. Now, we take
(i)
Q={x(t) e X || x[< A}.

Obviously, Q satisfies the condition (a) of Lemma 3.1.

When X € 0QNKerL =0QNR™, X = (X, Xins Xppse -+ Xops X

oy Xogreo s X )T i a constant

vector with || X ||= A. Furthermore, take J : ImQ — KerL,(r,0,...,0,0) = r , then

_ail(xll) [bn(xu) + Z é\gxn - /-L\i-;] + %i—ek (Xil(tk ))

cMeN, (i, j)
X
: . 1d
_aim(xlm)[blm(xim)+ z G1mX1m Lim]+_zek(xlm(tk))
Xim CHeN, (i, j) @ k=1
JON| : |[=]: ,
an
| —au)lbat)+ Y Gk L]+ Zekml(t )
: cMeN ()
X

nm

anm (Xnm)[bnm (Xnm) + Z Gnm nm E;—n:] +%iek (Xnm (tk ))

CHeN, (i, j)
where Gl == j CH(t) f, (t, X, )At .

If necessary, we can take A sufficiently large such that
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n m

X" JQNX = ZZ[— a; (%;)%; [bij (x)+ > é\i‘j‘/'xij - LNU] +£xij Zq:ek (% )] <0,
W

i=L j=L C¥eN, (i,])

so for any xe0QNKerL,QNx =0 . Moreover, let w(r;x)=-rx+(1—r)JQNX , then for any

xe0QnKerL, X y(r;x) <0, we get

deg{JQN,QKerL,0} = deg{—x,o nKerL,0} 0.

So, condition (b) in Lemma 3.1 is also satisfied, we now know that € satisfies all the requirements in

Lemma 3.1. Therefore, (1.1) has at least one @ -periodic solution. The proof is complete.
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