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Abstract 
A potent cellulase-producing strain, Aspergillusniger S4, was isolated from lignocellulosic-rich habitats in 

Ajmer, Rajasthan, India, and evaluated for its capacity to utilize mango peel, a low-cost agro-industrial by-

product, as a substrate under solid-state fermentation (SSF). Preliminary optimization using the one-factor-at-

a-time (OFAT) approach identified suitable baseline conditions for enzyme production. To further enhance 

cellulase yields, response surface methodology (RSM) was employed, enabling statistical modelling and 

interaction analysis of critical process parameters. RSM optimization resulted in a 1.33-fold increase in β-

glucosidase activity and a 5.39-fold enhancement in endoglucanase production compared to unoptimized 

conditions. These improvements highlight the efficiency of RSM in fine-tuning fermentation processes, 

surpassing conventional approaches by accounting for synergistic effects among variables. The study 

demonstrates that integrating RSM into cellulase production strategies not only maximizes enzyme output but 

also establishes A. niger S4 as a sustainable biocatalyst for industrial applications such as bioethanol 

production, animal feed, and paper-pulp processing. 
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I. Introduction 
The rapid pace of global industrialization has increased the demand for sustainable, cost-effective 

technologies to support diverse sectors such as biofuels, textiles, paper, food processing, detergents, and 

pharmaceuticals. Enzyme-based biocatalysis has emerged as a key strategy in this context due to its 

biodegradability, energy efficiency, and eco-friendly nature. Among these biocatalysts, cellulases play a central 

role by converting lignocellulosic biomass (LCB)—a renewable and abundant agricultural byproduct—into 

fermentable sugars that serve as feedstocks for bioethanol and other value-added bioproducts. Beyond biofuel 

applications, cellulases are widely employed in the food, beverage, textile, paper, and detergent industries, 

making them the third most valuable group of industrial enzymes worldwide. 

Despite their industrial importance, cellulase production remains economically challenging. Substrate 

costs account for nearly half of the total hydrolysis expense. Valorization of agro-industrial residues such as 

fruit processing waste provides an attractive solution by reducing production costs while supporting waste-to-

value bioprocessing. Among filamentous fungi, Aspergillusniger is particularly favored due to its robustness, 

adaptability to solid-state fermentation (SSF), and high cellulase productivity. 

Optimization of culture conditions is a critical step in improving enzyme yields. Traditional methods, 

such as the one-factor-at-a-time (OFAT) approach, are limited by their inability to capture interactions among 

variables, often leading to suboptimal results. In contrast, Response Surface Methodology (RSM) has gained 

recognition as a powerful statistical tool for process optimization. RSM not only evaluates the individual and 

combined effects of multiple factors but also identifies optimal conditions with fewer experiments, improving 

both accuracy and cost-efficiency. 

http://www.questjournals.org/
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The present study investigates the enhancement of cellulase production efficiency by Aspergillusniger 

S4 using mango peel as a low-cost lignocellulosic substrate under SSF. Special emphasis is placed on the 

application of RSM to optimize key parameters, including nitrogen sources, mineral salts, pH, and moisture 

levels, in order to maximize enzyme yield. By integrating waste valorization with statistical optimization, this 

work highlights a sustainable and economically viable strategy for large-scale cellulase production. 

 

II. Methodology 
Sample Collection and Isolation of Microorganisms 

Fifteen environmental samples were collected from lignocellulosic degradation sites in Ajmer district, 

Rajasthan, India, including composting grounds, decaying wood, paper pulp residues, and wastepaper dumps. 

Samples were transported aseptically at 4 °C and processed within 24 h. Each sample (5g) was serially diluted 

and plated on modified Mandels and Reese agar medium containing carboxymethyl cellulose (CMC) as the sole 

carbon source and supplemented with chloramphenicol (50 µg/mL). Distinct fungal colonies were purified by 

repeated subculturing on potato dextrose agar (PDA). 

 

Screening for Cellulolytic Activity 

Primary cellulase screening was conducted using the Congo red assay on CMC agar, where hydrolysis 

zones were measured to calculate the cellulolytic index (CI). The most active isolates underwent secondary 

screening in CMC broth, and enzyme activity was quantified through the Filter Paper Assay (FPA). Among 31 

isolates, the most efficient strain, designated S4, was selected. Morphological and microscopic examination 

confirmed its identity as Aspergillusniger. 

 

Substrate Preparation  

Mango peel waste was collected, shade-dried, milled to ~1.2 mm particle size, and used directly as a 

substrate for SSF. For fermentation, 10 g of mango peel was moistened with mineral salt medium, sterilized, 

and inoculated with A. niger S4 spore suspension (10⁶ spores/mL) at 10% inoculum (v/w). After incubation 

under defined conditions, crude enzyme extracts were prepared by suspending fermented material in citrate 

buffer (pH 4.8), shaking at 150 rpm, and centrifuging at 10,000 × g for 15 min. 

 

Optimization of Enzyme Production 

One-Factor-at-a-Time (OFAT): Preliminary optimization of pH (4–7), temperature (25–40 °C), incubation 

period (4–14 days), and substrate-to-moisture ratio (1:5–1:10, w/v) was performed individually to determine 

approximate working ranges for enzyme production. 

 

Response Surface Methodology (RSM): To enhance cellulase production efficiency, a Box–Behnken design 

was applied using Design Expert software. Independent variables included nitrogen sources ((NH₄)₂SO₄, 

NaNO₃, and peptone) and mineral salts (MnSO₄, CoCl₂, CaCl₂). Their effects on total cellulase activity (FPA), 

endoglucanase, exoglucanase, and β-glucosidase were evaluated. Experimental data were analyzed using 

analysis of variance (ANOVA) to develop predictive quadratic models. Model adequacy was confirmed by 

coefficients of determination (R²) and lack-of-fit tests. Optimal conditions predicted by the model were 

validated through confirmatory experiments. 

 

Enzyme Activity Assays 

Cellulase activity was quantified using a set of standard assays to evaluate the synergistic action of 

different enzyme components. The total cellulase activity was determined through the Filter Paper Assay (FPA), 

in which Whatman No. 1 filter strips were incubated with enzyme extract at 50 °C for 60 min, and the released 

reducing sugars were estimated using the dinitrosalicylic acid (DNS) method. Endoglucanase (CMCase) 

activity was assessed using 1% carboxymethyl cellulose (CMC) as substrate, followed by quantification of 

reducing sugars with DNS. Exoglucanase (Avicelase) activity was measured with 1% Avicel as substrate and 

analyzed similarly via the DNS assay. β-Glucosidase activity was assayed using p-nitrophenyl-β-D-

glucopyranoside (pNPG) as the substrate at 50 °C, with absorbance recorded at 410 nm. In all cases, one unit 

(IU) of enzymatic activity was defined as the amount of enzyme required to release 1 µmol of product per 

minute under the assay conditions. 

 

Enzyme Purification 

Crude enzymes were precipitated with ammonium sulfate (0–80% saturation), followed by desalting 

through Sephadex G-50 and gel filtration chromatography on Sephadex G-100. Fractions were assayed for 

activity, and protein concentration was determined by the Lowry method. Fold purification and recovery 

percentage were calculated. 
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Statistical Analysis 

All experiments were performed in triplicate, and results expressed as mean ± SD. RSM models were validated 

by comparing predicted and experimental results, with significance determined at p < 0.05. 

 

III. Results 
Isolation and Identification of Cellulolytic Fungal Strain 

From 15 collected samples (compost, decaying wood, paper, and pulp) in Ajmer, Rajasthan, a total of 

31 fungal isolates were obtained using modified Mandels and Reese agar medium with enrichment culture. 

Among these, isolate S4 was selected for its superior cellulase production. Morphological analysis confirmed 

the strain as Aspergillusniger, characterized by velvety colonies with pale yellow undersides and abundant black 

conidia. Microscopic features included globose conidial heads, thick-walled conidiophores (14–18 µm), and 

globose vesicles (50–80 µm) with dark brown sterigmata (Fig. 1). 

 

 
Fig.1: Colony characteristics of the isolate (S4) Aspergillusniger on Czapek agar and PDA 

 

Preliminary Enzymatic Screening 

All isolates produced catalase and urease with varying activity levels. Notably, S4 demonstrated high catalytic 

activity across multiple enzymes, including pectinase, highlighting its strong cellulolytic potential (Table 1). 

 

Table 1: Enzymatic activity of the selected strains (Enzymatic activity is shown on a scale where ‘+++’ 

represents the high, ‘++’ is for moderate, ‘+’ denotes poor but still tangible and ‘-’ denotes no enzymatic 

activity) 

Isolate No. Lipase Catalase Pectinase Urease 

S2 + + - + 

S4 +++ +++ ++++ ++ 

S5 - ++ + + 

S12 - + - + 

 

Substrate Pretreatment Effects 

Untreated mango peel was the most effective substrate for cellulase production. Acid (1 N H₃PO₄) and oxidant 

(1 N NaHClO₃) pretreatments slightly increased exoglucanase activity by 19.1% and 15.1%, respectively, but 

endoglucanase activity decreased by 70.5%, indicating that pretreatment generated inhibitory compounds and 

was unnecessary for this strain. 

 

Optimization Using Response Surface Methodology (RSM) 

RSM Design and Analysis 

To maximize cellulase production, RSM with Box–Behnken design was employed, evaluating the combined 

effects of six medium components: ammonium sulfate, sodium nitrate, peptone, MnSO₄, CaCl₂, and CoCl₂. 
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Thirty experimental runs were conducted, and contour plots were generated to visualize the interaction between 

the most influential factors as identified by ANOVA. 

 

Interactive Effects of Medium Components 

The interactive effects of medium components on cellulase production were evaluated using overlaid 

contour plots, which indicated that the combination of ammonium sulfate and sodium nitrate had the most 

significant positive influence on enzyme yield. Based on RSM analysis, the optimal concentrations of the 

medium constituents were determined as 0.04 g of (NH₄)₂SO₄, 0.06 mg of MnSO₄, 0.01 g of CaCl₂, 0.09 mg of 

CoCl₂, 0.0232 g of NaNO₃, and 0.12 g of peptone. Experimental validation under these optimized conditions 

resulted in protein content of 51.75 mg/g, filter paper activity (FPA) of 192.58 IU/g/min, endoglucanase activity 

of 197.19 IU/g, exoglucanase activity of 29.73 IU/g, and β-glucosidase activity of 2613.86 IU/g (Table 2). The 

predicted values closely matched the experimental results, with only a 5.04% deviation, confirming the 

reliability of the RSM model. Interestingly, β-glucosidase activity exhibited a 1.33-fold increase, whereas 

endoglucanase and exoglucanaseactivities showed slight reductions, highlighting the differential effects of the 

optimized medium on the individual enzyme components. 

 

Table 2: RSM experimental values for solid state fermentation for cellulose production under SSF by A. Niger. 

S.No. Protein 

(mg/g) 

FPA  Endoglucanase 

(IU/g) 

Exoglucanase 

(IU/g) 

β-glucosidase 

(IU/g) 

1 29.38  19.76  145.30  37.40  3507.72 

2 39.17  166.06  228.33  43.01  3698.39 

3 45.70  41.51  311.36  13.09  1285.40 

4 45.87 41.51  124.54  44.88  2288.07 

5 57.12  183.211 186.81  5.61  1867.28 

6 21.22  539.68  394.38  33.66  3451.83 

7 42.43  373.63  373.63  39.27  3438.68 

8 101.18  394.38  83.03  22.44  2284.78 

9 79.97  103.79  103.79  46.75  2320.95 

10 55.49  62.27  20.76  11.22  1995.49 

Average 51.75 192.58 197.19 29.73 2613.86 

 

Enhancement of Cellulase Production 

Under unoptimized conditions (30 ± 2 °C, pH 4.5, 1:3 substrate-to-medium ratio, 10% inoculum, 1.5 mm 

particle size, 10-day static incubation), cellulase production was limited. RSM optimization of medium 

constituents led to a 5.39-fold increase in endoglucanase activity and an overall 4.96-fold enhancement in 

total cellulase production. Further refinement of physicochemical parameters (temperature, pH, substrate-to-

medium ratio) contributed an additional 2.47-fold increase in enzyme yield. 

The study demonstrated that RSM-based optimization significantly enhanced cellulase production by A. niger 

(S4), allowing precise determination of the optimal concentrations of multiple medium components and their 

interactions. The mango peel substrate, being native to the microorganism, required no pretreatment, indicating 

that S4 is naturally adapted to efficiently degrade lignocellulosic biomass. This RSM-guided strategy provides a 

reproducible and robust method for maximizing cellulase yields under solid-state fermentation. 

 

IV. Discussion 
The present study demonstrated the successful isolation and identification of a highly efficient 

cellulase-producing fungal strain, Aspergillusniger S4, from lignocellulosic habitats in Ajmer, Rajasthan, India. 

Out of 31 isolates screened, S4 showed superior enzymatic potential, producing a wide range of hydrolytic 

enzymes, including pectinase, catalase, urease, and lipase. This broad enzymatic repertoire indicates a strong 

lignocellulose-degrading capacity, further supported by its morphological characteristics, which were consistent 

with classical descriptions of A. niger (Klich, 2002). 

Enzyme activity profiling confirmed that S4 could produce the full complement of cellulases necessary 

for effective cellulose hydrolysis. High β-glucosidase activity was particularly significant since this enzyme is 

often a limiting factor in biomass saccharification due to cellobiose accumulation and feedback inhibition 

(Singhania et al., 2013). The ability of S4 to utilize untreated mango peel as a substrate is noteworthy, as it 

bypasses the need for costly and energy-intensive pretreatment processes. Although chemical pretreatments 

improved exoglucanase activity slightly (up to 19.1%), they also resulted in a drastic reduction (70.5%) in 

endoglucanase activity, underscoring the complex effects of pretreatment-generated inhibitors on enzyme 

systems. 
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Initial optimization using the One-Factor-at-a-Time (OFAT) approach revealed that the 10th day of 

incubation, at 30 °C, pH 5.5, and a substrate-to-medium ratio of 1:10 (w/v), was optimal for cellulase 

production. These results are consistent with previous studies (Ahmed et al., 2010; Gautam et al., 2010) and 

reaffirm the preference of A. niger for slightly acidic and moist conditions in solid-state fermentation (SSF). 

A major advancement in this study was the use of Response Surface Methodology (RSM) to optimize 

cellulase production efficiency. RSM allowed for the assessment of interactive effects between medium 

components, revealing that the combination of ammonium sulfate and sodium nitrate had the most significant 

impact on enzyme yields. The optimized medium—comprising 0.04 g of (NH₄)₂SO₄, 0.06 mg of MnSO₄, 0.01 g 

of CaCl₂, 0.09 mg of CoCl₂, 0.0232 g of NaNO₃, and 0.12 g of peptone—produced experimentally validated 

results closely matching the model predictions, with only a 5.04% deviation. Notably, β-glucosidase activity 

improved 1.33-fold under optimized conditions, while endoglucanase activity increased 5.39-fold compared to 

unoptimized conditions. This highlights the precision and reliability of RSM in enhancing enzyme yields 

through systematic medium optimization, which would not have been possible with OFAT alone. 

Purification studies further demonstrated the industrial potential of the enzyme system. Ammonium 

sulfate precipitation followed by Sephadex gel filtration achieved significant fold purification across all 

cellulase components. β-glucosidase, in particular, exhibited an exceptionally high purification fold (83.27) 

after Sephadex G-50 treatment, suggesting structural stability and high affinity for the purification matrix—

desirable traits for industrial biocatalysts. 

Overall, the findings establish A. niger S4 as a promising candidate for cost-effective cellulase 

production using agro-industrial residues such as mango peel. This not only addresses waste management but 

also contributes to sustainable enzyme production. The integration of RSM proved critical in enhancing yields 

nearly five-fold, demonstrating its value as a robust statistical tool for process optimization. The dual advantage 

of valorizing agro-waste while generating high-value biocatalysts underscores the broader industrial 

significance of this study. 

Future research should explore large-scale bioreactor trials, evaluate enzyme synergism in biomass 

degradation, and investigate the possible role of oxidative cellulases in S4. Such studies could further improve 

hydrolytic efficiency, thereby strengthening the role of A. niger S4 in bioethanol production, animal feed 

processing, and pulp and paper industries. 

 

V. Conclusion 
The present study highlights Aspergillusniger S4 as a highly efficient cellulase producer with 

significant potential for industrial applications. Isolated from lignocellulosic habitats, the strain demonstrated 

strong cellulolytic activity, particularly high β-glucosidase production, which is often a bottleneck in biomass 

saccharification. Its ability to utilize untreated mango peel as a substrate underscores the feasibility of 

converting low-cost agro-industrial residues into high-value biocatalysts, thereby addressing both enzyme 

production costs and waste management challenges. 

Optimization using Response Surface Methodology (RSM) proved instrumental in enhancing cellulase 

yields, achieving nearly a five-fold improvement compared to unoptimized conditions. This statistical approach 

allowed for precise tuning of medium components and revealed synergistic effects that would have been 

overlooked by conventional OFAT methods. The purification of enzymes, especially the high fold enrichment of 

β-glucosidase, further confirmed their structural stability and industrial viability. 

Collectively, these findings establish A. niger S4 as a promising and sustainable source of cellulases for 

applications in bioethanol production, animal feed, and the paper-pulp industry. The dual benefit of cost-

effective enzyme production and agro-waste valorization strengthens its relevance in green biotechnology. 

Future efforts should focus on scaling up production, investigating enzyme synergism, and exploring oxidative 

cellulase activity to further improve biomass hydrolysis efficiency in integrated industrial processes. 
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