Quest Journals Journal of Research in Agriculture and Animal Science Volume 4 ~ Issue 4 (2016) pp: 09-15 ISSN(Online) : 2321-9459 www.questjournals.org

Research Paper

Phylogenetic Distribution of the C₃ and C₄ Syndrome in the Centrospermeae (Dicot) Species

Sikolia, S.F.

School of Physical Sciences and Biological Sciences, Maseno University Box 333, Maseno, Maseno /Kisumu / Kenya

Received; 17 July 2016 Accepted; 11 October 2016; © The author(s) 2013. Published with open access at **www.questjournals.org**

ABSTRACT: Centrospermeae species were collected at different sites along gradient of altitude and aridity in the semi-arid, saline and arid habitats in western region of Kenya. $\delta^{13}C$ values, Kranz leaf anatomy and carbon dioxide compensation points were used to examine for C_3 , $C_4 C_3$ - C_4 intermediate and Crassulacean metabolism (CAM) species photosynthesis. The C_4 , C_3 , C_3 - C_4 and CAM species were confirmed to be present in the Centrospermeae group in different proportionate percentage. Interspecific species occur in the group. The percent frequency of the photosynthetic type show that the C_4 syndrome exhibit recent phylogenetic development and might have evolved independently several times in the dicot species. Further, the distribution of C_4 pathway is both taxonomically uncommon and phylogenetically wide spread among the species of the Centrospermeae. Results show C_4 photosynthesis is a trait of modern dicotyledonae species and is of multiple evolutionary origins. Thus, the C_4 syndrome is polyphyletic in origin. C_4 subtypes exist in the Centrospermeae group. The data on the distribution and occurrence of the C_4 , C_3 , C_3 - C_4 and CAM syndrome types can be used to understand the phylogenetic affinity in a given taxonomic unit of the angiosperm. More data on the distribution of the C_4 , C_3 - C_4 in the angiosperm is required to understand the phylogenetic affinity and their biological functions and consequences during the evolutionary processes at different development phases of the plant species.

Keywords: Centrospermeae, Dicot species, C₄, C₃, C₃-C₄ and CAM species, Phylogenetic affinity, Polyphyletic origin

I. INTRODUCTION

There is consensus that C_3 pathway evolved first and wide spread in terrestrial and aquatic species and habitats (Sikolia, Onyango, Beck and Kinyamario, 2009[1]). The C_4 syndrome is phylogenetic younger achievement and apparently evolved independently in monocots and dicot perhaps as many as twenty times (Quade and Cerling, 1995[2]; Edwards, Franceschi and Vozsenenskaya, 2004[3]; Edward, Furbank, Hatch and Osmond, 2001[4] [1] Sikolia, 2016[5]). This interpretation is corroborated by the existence of different types of the C_4 syndrome, namely, the NADP-Malic type, the NAD-malic type and the PEP-Carboxykinase [1]. Phylogenetic distribution of the C_4 syndrome has been extensively investigated in the Gramineae and Cyperaceae families but few dicot species. Studies in the dicot do not provide comprehensive data for analysis of the taxonomic distribution of the plants possessing C_3 and C_4 photosynthetic pathway. Furthermore, the few studies on the dicots have rarely been carried in the semi-arid and or saline tropical ecosystems. Exhaustive studies are therefore warranted. Downton (1975) [6], Imbamba and Papa (1979) [7], Mateus-Andre's (1993) [8] and AKhana, Trimborn and Ziegler (1997)[9] have listed some of the investigated C_4 perennial species. However, in the Euphorbiaceae some of the C_4 tree forms do occur (Pearcy and Troughton, 1975) [10].

An exhaustive study in the Middle East and USSR (Winter, 1981) [11] has shown most of the flora are C_4 species. They include trees or tall shrubs of high biomass with economic value, in that they are fast growing, sand binders, for fuel, honey, improved biodiversity and source of alkaloids. Clearly, there is need for more information on the occurrence of C_4 species, especially from semi-arid and arid regions outside North America [11]. This missing gap and/or situation on the C_4 dicot studies and data availability have not changed much [5]. Similarly, there is little information about the relationships within the Sedges, Cyperaceae, and Centrospermeae and more so about their quantitative occurrence. The relative causal factors that influence C_4 species partitioning

*Corresponding Author: Sikolia, S.F. 9 | Page School Of Physical Sciences And Biological Sciences, Maseno University Maseno, Maseno /Kisumu / Kenya in their ecosystem, whether monocots or dicots have recently been discussed in detail (Ehleringer *et al*, 1997[12] [5). The current studies will attempt to correct the imbalance in research and investigation bias against the dicot studies. Thus, in C_4 photosynthesis, we have C_4 pathway whose quantitative data is both taxonomically unknown and phylogenetically not completely described [1]. Exhaustive studies should enable an evolutionary assessment of the hierarchial dichotomous tree of the angiospermous species and across the families (Raghavendra, 1980[13]; Das and Raghavendra, 1973[14]). Further studies of the occurrence of interspecific differences in the operation of the C_4 pathway would provide biological lead to examine the close relationship between C_3 and C_4 species [13] and therefore the evolutionary selective forces for photosynthetic pathway development. Taxonomically, species misplacement in a family can be explained, especially from semi-arid ecosystems.

Takeda, Ueno and Agata (1980) [15] reported C_4 pathway in three of the seven tribes of Cyperaceae: Cyperdeae, Fimbristydeae and Rhynchosporeae, and Brown (1977) [16] reported in the Poaceae. Further, C₄ syndrome is reported in the Poaceae (Hattersley and Watson, 1976[17]; Hattersley, 1984[18]; Prendergast, Hattersley and Stone, 1987) [19], Sueda monoica (Shomer-Ilan, 1975) [20], Arudinella hirta (Crookston and Moss, 1973) [21], Asteraceae (Smith and Turner, 1975) [22], Eleocharis, a sedge (Ueno, Samejima and Koyama, 1989) [23], Scaevola and Euphorbia (Robichaux and Pearcy, 1984) [24], Flaveria (Monson and Charles, 1991) [25], Chenopodiaceae [9], intermediate Flaveria (Ku, Monson, Littlejohn, Nakumaoto, Fischer and Edwards, 1983) [26]. The study is informed that there is little information on the ecology or ecophysiology of C_3 - C_4 intermediates [26]. Further, no information is available on the characteristics of C_3 - C_4 intermediates in their natural habitats. This lack of information has hindered the understanding of the adaptive and evolutionary characteristics of the C_3 - C_4 intermediates [26]. Furthermore, these studies are useful in the postulation of phylogenetic affinities within a given family or families. This paper provides data on the phylogenetic distribution and affinity amongst the dicot species of the Centrospermeae families. The study involved Aizoaceae, Amaranthaceae, Basellaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae, Zygophyllaceae and Elatinaceae families of the Centrospermeae. Further, the study provides the much required quantitative data on the C_3 , C_4 and C_3 - C_4 intermediate dicot plant species in their semi-arid, arid and saline habitats.

II. MATERIALS AND METHODS

Sampling Sites

Sampling sites were randomly selected along North West-North East belts transect. The belt transect was about 30km wide between 36° 30'E and 34 '30'E, ran from south-west of Mt. Elgon to Mt. Kulal near Lake Turkana. It was about 365km long rising from 670m at Lodwar to 4200m at Mt. Elgon through 250m in Kerio valley up to around 2,415m to 2293m Mt. Kulal, 950m Samburu game reserve and Kapedo-Nginyang. Twenty-five quadrats were placed at 10m interval random sites along the belt transect. The dicot species of the Centrospermeae were collected for identification from each quadrat, counted and recorded. Percentage frequency of occurrence of each species sampled in the quadrats was determined. Thus, the total number of each species divided by the total species in the sampled in the quadrats times 100% was worked out.

Identification of the Plant Species

Identification was done both in the field and laboratory. Unknown species were sent to the East African Herbarium or Chiromo Campus Herbarium, University of Nairobi, Kenya for verification. Healthy floral organs and leaves organs were collected for plant identification and Kranz leaf anatomy studies, respectively. Leaves were dried in natural conditions between 25 °C -30 °C in the field.

Determination of the C₃ and C₄ species

Kranz leaf anatomy, δ^{13} C values and carbon dioxide compensation points were used to distinguish between the C₃ and C₄ dicot species [1] [5].

Anatomical Studies

Microtome sections for Kranz leaf anatomy (presence/absence) were prepared and studied. C_4 and C_3 species exhibited Kranz leaf anatomy and non-Kranz leaf anatomy, respectively. Modified anatomical description of 0-3cells or 5-15 cells or 4-5 cells for the lateral cell count was adopted in the studies [17].

Measurement of the \Box^{13} C Data

Leaves were dried with circulating air in the oven at 25 °C -30 °C until there was no change in weight. Dried leaves of each species were milled into minute grains used for the determination of ${}^{13}C/{}^{12}C$ isotopic analysis of the species. Dried leafy-milled grains of each species were analyzed using an elemental analyzer (HERAEUS CHN.O RAPID) for Dumas combustion of the samples, a FINNIGAN MAT Delta (δ) gas isotope

mass spectrometer with a dual inlet system, a method of Gebauer and Schulze (1987) [27]. Standard gas carbon dioxide was calibrated with respect to international standard (CO in Pee Dee Belemnite) by use of the reference substance NBS 16 to 20 for carbon isotopic ratio provided by the International Atomic Energy Agency (IAEA), Vienna. The ¹³C/¹²C isotopic ratios (denoted as δ values or ¹³C/¹²C values), were calculated using the formula equation below:

$$\delta_x = R_{\text{sample}}/R_{\text{standard}} - 1)\chi 1000(\%)$$

where, δ_x is the isotope ratio of carbon in delta units relative to the international standards and R_{sample} and $R_{standard}$ are the ${}^{13}C/{}^{12}C$ ratios of the samples and standards, respectively [27]. The $\delta^{13}C$ values were assigned against each species investigated.

Measurement of the Carbon Dioxide Compensation Points

Six week old plant species in enclosed in gas-airtight cover using vaseline oil just before the experiment to prevent gas exchange with the soil, was put in an airtight 19litre fan stored glass chamber at 20 °C controlled temperature. The carbon dioxide concentration(ppm) were continuously measured by pumping a stream of air through a closed, oxygen tight, circuit with an Infra-Red Gas Analyzer (Biros 1.1, Leybold, Hanau, Germany) for carbon dioxide compensation points measurements [5]. A constant light intensity of 350µmol/m2/sec was used. The carbon dioxide concentration in the chamber was arbitrary set by injecting small amount carbon dioxide with a calibrated syringe through a small rubber plug in the jar lid, at a time to avoid fluctuations on the scale recorder. Experiments were run in atmospheres ranging from 1000ppm to 60-40ppm or 20-8ppm carbon dioxide. Sodium hydroxide pellets were used to remove excessive transpired moisture from the gas chamber. The carbon dioxide bind effect was nullified because it was used in each of the experiment carried out.

III. RESULTS

The families of Centrospermeae studied were as follows: Aizoaceae, Amaranthaceae, Basellaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae. Zygophyllaceae and Elatinaceae. Two hundred and fifty-eight species were collected and analyzed for the photosynthetic pathway types. About seventy-two plant species possess the C_4 photosynthetic pathway whereas one hundred and eighty possess the C_3 photosynthetic type. Basellaceae was represented with Basella Alba and B. paniculata and investigation indicates the presence of CAM pathway as shown by carbon dioxide compensation points. Studies indicated Mollugo nudicaulis (Aizoaceae) is a C_3 - C_4 intermediate dicot species. Portulacaria afra species require further investigations to ascertain the status of its photosynthetic type. The syndrome shows C_3 - C_4 intermediate syndrome to C_3 syndrome manifest at different stages of development. About 28.5% of the total species investigated were C_4 species, 70.3 % were C_3 species and 1.2% C_3 - C_4 intermediate/CAM species. Concomitantly, the C_4 photosynthetic pathway occurs in the dicot species of the Centrospermeae group in the angiosperm. Interspecific photosynthetic species occurred in the genera of Mollugo and Trianthema in the Aizoaceae, Aerva and Alternathera in the Amaranthaceae, Melandrium and Silene in the Caryophyllaceae, Gyroptera in the Chenopodiaceae and Dianthus in the Elatinaceae.

The C₃ and C₄ syndrome in the Aizoaceae, Amaranthaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae, Zygophyllaceae and Elatinaceae were represented by 63.6%:36.4%, 21.1%:79.9%, 9.5%:90.5, 72.7%:27.3%, 33.3%:66.7%, 0%:100%, 22.2%:78.2%, 14.3%:85.7%, 50%:50% and 25%:75% percent frequency at the generic level, respectively as shown in Figure 1. In the figure 1, legend 1 represents the C₄ genera and legend 2 represents C₃ genera whereas the families: Aizoaceae, Amaranthaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae, Zygophyllaceae and Elatinaceae are represented on -axis by 1,2,3,4,5,6,7,8,9 and10, respectively. It is significant to observe that there is equal probability that C₄ and C₃ syndrome exist in the Zygophyllaceae family whereas no possibility of the C₄ syndrome in the Phytolacaceae family. Caryophyllaceae shows low degree of C₄ syndrome occurrence but Phytolacaceae shows the C₃ syndrome only. Further, Portulacaceae shows low frequency of theC₄ syndrome

compared to the C₃ syndrome. Thus, the progressive and sequence of the C₄ syndrome assumes the following trend: Chenopodiaceae (72.7%) >> Aizoaceae (63.6%) >>Zygophyllaceae (50%) >>Nyctaginaceae (33.3%) >>Elatinaceae (25%) >>Polygonaceae (22.2%) >>Amaranthaceae (21.1%) >>Portulacaceae (14.3%) >>Caryophyllaceae (9.5%) >>Phytolacaceae (0%), in the Centrospermeae group. This reflects also the possible degree of phylogenetic affinity amongst the parameters that determine the syndrome at the generic level. This option can be interpreted differently depending on the observation of further studies of the C₄ syndrome between and within the genera and genus, respectively.

The C_3 and C_4 syndrome in the Aizoaceae, Amaranthaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae, Zygophyllaceae and Elatinaceae were represented by 53.9%:46.1%, 28.3%%:71.7%%, 8.2%:91.8%, 50.0%:50.0%, 33.3%:66.7%, 0%:100%, 9.1%:98.9%, 53.9%:46.1%, 50.0%:50.0%, 14.3%:85.7% percent frequency at specific epithet level, respectively, as shown in Figure 2. In the figure 2, legend 1 represents the C_4 species and legend 2 represents C_3 species whereas the families: Aizoaceae, Amaranthaceae, Caryophyllaceae, Chenopodiaceae, Nyctaginaceae, Phytolacaceae, Polygonaceae, Portulacaceae, Zygophyllaceae and Elatinaceae are represented on x-axis by 1,2,3,4,5,6,7,8,9 and10, respectively.

It is worth to observe the percent frequency difference in the distribution and occurrence of the C_4 syndrome in the Aizoaceae, Chenopodiaceae and Portulacaceae at the specific epithet level and generic level. Further, there is minimal percent frequency difference in the distribution of the C_4 syndrome in the Amaranthaceae, Caryophyllaceae, Polygonaceae and Elatinaceae but no difference is recorded in Nyctaginaceae, Phytolacaceae and Zygophyllaceae families.

IV. DISCUSSION

Three principal mechanism of carbon dioxide reduction occur in the Centrospermeae families, the dicot group of angiosperm. The C_3 pathway is certainly the most common followed by C_4 pathway, C_3 - C_4 intermediate, and Crassulacean metabolism in the investigated dicot species. Studies have shown that C_4 pathway evolved recently from the C_3 syndrome [1][12]. The distribution of C_4 pathway is both taxonomically uncommon and phylogenetically wide spread among the species of the Centrospermeae. The C_4 syndrome exhibit recent phylogenetic development and might have evolved independently several times in monocots and

^{*}Corresponding Author: Sikolia, S.F.

dicots [1]. The low composition and distribution index of the C₄ mechanism amongst the Centrospermeae indicates its relatively recent description on the evolutionary mesoscale and has been reported in a small percentage (< 1%) of extant species (Ehleringer, Sage, Flanagan and Pearcy, 1991[2] [3]) and is highly polyphyletic in the angiospermous families [1]. This is further exemplified with the transition in the Kranz leaf anatomy paradigm in different species of angiosperms in different terrestrial and aquatic species and habitats (Monson, 1989[29]; Monson, Edwards, and Ku, 1984[30][12];Drincovich, Casati, Andreo, Chessin, Franceschi, Edwards and Ku, 1998[31]; Ueno, Takeda, Samejima and Koyama,1986 [32];Vozsenenskaya, Franceschi, Kiirats, Freitag and Edwards, 2001[33]; P'yankov, Vozsenenskaya, Franceschi, Kiirats, Freitag and Edwards, 1997[34]; Crookston and Moss, 1973[21]; Brown, 1975[35], 1977[16]). Similarly, the CAM lends further evidence to the progressive evolutionary phenomenon in the nature of photosynthesis development. Regimes observed or recorded in the environmental factors played a disproportionate role in the evolutionary trends of the biological reactions and structural ramifications in the Centrospermeae dynamics.

The percentage frequency of the genera or species showing a particular photosynthetic mechanism showed varied occurrence and distribution with respect to the two levels of taxonomic determination. The C_4 photosynthetic pathway was genera specific with the exception of the Portulacaceae. The percent frequency of C_4 composition in the genera, 12.5%, could not be used to deduce an estimated percent frequency of 53.6% for the species level. The C_4 syndrome occurrence in the genera should be reference point of divergence from C_3 syndrome but define or show high degree of phylogenetic affinity in that genera or species epithet level. Deviation from this paradigm is an indication of disparity in the taxonomic identification and determination process of the genera or specific epithet of the plant species along the hierarch of species, genera and family lineage and placement. The parameters used in the determination should be re-evaluated if there are doubts about taxonomic placement. However, the distribution of the syndrome is noticeable in different taxonomic units.

The highest degree of occurrence and distribution of C_4 pathway was recorded in Aizoaceae but least in Caryophyllaceae and non-existent in the Phytolacaceae and Basellaceae. Similarly, C_3 pathway was widely distributed in the genera of the Phytolacaceae, Caryophyllaceae, Polygonaceae, Portulacaceae, Amaranthaceae and Elatinaceae with over 80% in the sampled species. The distribution had lower index in the Zygophyllaceae and Chenopodiaceae but lowest in the Aizoaceae. An observation that Portulacaceae recorded high percent of C_3 mechanism occurrence and distribution at the genera level is significant. This is because the habit of succulence offers morphological advantage of the C_4 -like activity in their habitat. The general trend is a high percentage of C4 species occurrences with corresponding reduced proportion at the genera level, for example, in the Portulacaceae and Amaranthaceae. This phylogenetic percent shift, for example in the Amaranthaceae, may be exhibited by their advanced refining adjustment responses towards variable climatic ecotypes and therefore its ecotypes superiority against the species in the other families, between 200m a.s.l. to 2000m a.s.l. Similar trend of occurrence does not exist for the C_3 mechanism in a given family.

The percent distribution of the C_3 and C_4 mechanisms and the associated species in the families of the Centrospermeae are characterized by specific interrelated attributes of the syndrome which function well in their habitats. These attributes are anatomical, biochemical, physiological and ecological in nature. The attributes and climatic variables [1] [12] [31] [32] [33], P'yankov, Vozsenenskaya, Kondratchuk and Black, (1997) [35] synergistically plays role in the partitioning of the C_3 and C_4 photosynthetic types, abundance and occurrence of the species in their habitats [1] [12] [32]. This process of partitioning must have impacted on the evolution and expansion of the C_3 photosynthetic pathway variants, the C_4 , C_3 - C_4 and Crassulacean acid metabolism (CAM) during the early period of angiosperm development and became common in families present around 60M BP [3].

The percent C_3 species and C_4 species distribution in the Centrospermeae families reveals varying degree of development expansion of the photosynthetic mechanism that enables taxa to spread and occupy different ecological habitats with varied conditions. Similar observations have been recorded in different habitats in Namibia (Ellis, Vogel and Fuls, 1980 [36]; Vogel, Fuls and Ellis, 1986 [37]) [1]. These evidences are indicator indices for the partitioning of the photosynthetic mechanisms caused by earlier (2.5 to 3.3 billion years BP) and prevailing varying climatic and environmental conditions[12], Sage (2004) [38]. An oxygenic atmosphere, for example, did not develop until 18 to 2.3 billion years BP [3] [4] [33] and relatively recent (60M BP) climatic conditions became more seasonal and certainly in some geographical areas, more and likely saline. This must have influenced and modified the structural apparatus, physiological and biochemical processes to adapt to the emerging conditions and sustain the primary bioproductivity of the dicot species [1], Hatch and Slack (1998) [39]. The changing status in the carbon dioxide metabolic organization must have provided selective force for the highly polyphyletic nature existing in the Centrospermeae families todate.

Further subdivision of the C_4 photosynthetic mechanism reveal three subgroups based on differences in the mode of carboxylation: NADP-Malic enzyme type, NAD-Malic enzyme type and PEP Carboxykinase type. Analysis of the three subtypes of the C_4 species suggests that the malate –forming NADP-me species thrive in

less water stress habitats while the aspartate-forming NAD-me species are successful under xeric conditions [37], Schulze, Ellis, Schulze, Trimborn and Ziegler (1996) [40]. The C₄ subtypes, NAD-me, for example, *Portulaca oleracea* and NADP-me, for example *Portulaca grandiflora, P. quadrifida* and *P. pilosa* showed decreasing relative abundance gradation along the altitude as temperature increased, respectively [1]. Other examples of NADP-me type, NAD-me type and PEP Ck-type species included *Amaranthus hybridus, Portulaca quadrifida* and *Zygophyllum simplex* species, respectively (Sikolia, Ph.D. Thesis) [41].

Recent studies has revealed unique and novel anatomies observed in dicot species including some Chenopodiaceae species (Freitag and Stichler, 2000) [42]; Asteraceae species (Guadalupe and Katinas, 2003) [43] and *Eleocharis vivipara* (Minorsky, 2002) [44]. Thus, there is need to investigate the angiosperm species to provide concise and elaborate structural and cellular organization of the different photosynthetic types and subtypes to understand the unique blending with the physiological and biochemical specialization in enhancing bioproductivity in different environmental conditions, worldwide. The data derived will also be useful in understanding phylogenetic relationships of the C_3 , C_4 and C_4 variants, C_3 - C_4 intermediate syndromes between species and genera and within the genera in different habitats and different families of the angiosperm. Further, data on the C_3 - C_4 and C_4 species is significant for the evaluation and prediction of vegetation change during global climatic and geographic change and for the restoration and conservation of natural ecosystems (2004) [45]. The studies of C_3 - C_4 intermediate are encouraged and can provide knowledge and evidences to evaluate the extent of the evolutionary process of C_4 photosynthesis.

REFERENCES

- [1]. Sikolia, S., Onyango, J.C., Beck, E and Kinyamario, J.I., The distribution of C₃ and C₄ photosynthetic species of the Centrospermeae along an altitudinal gradient in Western Kenya. **International Journal of Botany**, 5(1), 2009, 47-57.
- [2]. Quade, J. and Cerling, T.E., Expansion of C₄ grasses in the late Miocene of Northern Pakistan: Evidence from stable isotopes in Palaeosols-Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 1995, 91-116.
- [3]. Edwards, G.E., Franceschi, V.R. and Vozsenenskaya, E.V., Single –cell C₄ photosynthesis versus the dual-cell paradigm. Annual Review of Biology, 55, 2004, 173-196.
- [4]. Edward, G.E., Furbank, R.T., Hatch, M.D. and Osmond, C.B., What does it take to be C₄? Lessons from the Evolution of C₄ Photosynthesis. Plant Physiology, 125, 2001, 46-49.
- [5]. Sikolia, S.F., Differentiation of the C_3 and C_4 dicot (Centrospermeae) species along the altitudinal-aridity gradient and their ecological implications in bioproductivity paradigm in Kenya. International Journal of Agriculture and Animal sciences, 2016, (In Press).
- [6]. Downton, W.J.S., The occurrence of C₄ photosynthesis among plants. Photosynthetica, 9, 1975, 96-105.
- [7]. Imbamba, S.K. and Papa, G., Distribution of the Kranz type anatomy in some dicotyledonous families of Kenya. Photosynthetica, 13, 1979, 315-322.
- [8]. Mateus-Andres, I., A revised list of the European C₄ plants. Photosynthetica, 26, 1993, 323-331.
- [9]. Akhani, H., Trimborn, P. and Ziegler, H., Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomic importance. **Pl. Syst. Evol., 206, 1997**, 187-221.
- [10]. Pearcy, R.W. and Troughton, J., C₄ photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol., 55, 1975, 1054-1056.
- [11]. Winter, K., C₄ plant of high biomass in arid region of Asia Occurrence of C₄ photosynthesis in Chenopodiaceae and Polygonaceae from Middle East and USSR. Oecologia, 48, 1981, 100-106.
- [12]. Ehleringer, J.R., Cerling, T.E. and Hellicker, B.R., 1997: C₄ photosynthesis, atmospheric CO₂ and climate. **Oecologia**, **112**, **1997**, 285-299.
- [13]. Raghavendra, A.S., Characteristics of plant species intermediate between C_3 and C_4 pathways of photosynthesis: their focus of mechanism and evolution of C_4 syndrome. **Photosynthetica**, 14, 1980, 271-283.
- [14]. Das, V.S.R. and Raghavendra, A.S., A screening of the dicotyledonous weed flora for the occurrence of C₄ dicarboxylic acid pathway of photosynthesis. Proc. Indian Acad. Sc., Sect. B., 77, 1973, 93-100.
- [15]. akeda, T., Ueno, O. and Agata, W., The occurrence of C₄ species in the genus Rhynchospora and its significance in Kranz anatomy of Cyperaceae. **Bot. Mag. (Tokyo), 93, 1980**, 55-65.
- [16]. Brown, W.V., The Kranz syndrome and its subtypes in grass systematics. Memoirs of the Torrey Botanical Club, 23, 1977, 1-97.
- [17]. Hattersley, P.W. and Watson, L., Diversification of Photosynthesis. In: Grass Evolution and Domestication, Chapman Gp. (Ed.). (Cambridge: Cambridge University Press, 1992).
- [18]. Hattersley, P.W., Characterization of C₄ type leaf anatomy grasses (Poaceae). Mesophyll: Bundle Sheath Area Ratios. Annals of Botany, 53, 1984, 163-179.
- [19]. Prendergast, H.D.V., Hattersley, P.W. and Stone, N.E., New structural and biochemical associations in leaf blades of C₄ grasses (Poaceae). Aust. J. Plant Physiol., 14, 1987, 403-420.
- [20]. Shomer-llan, A., Beer, S. and Weisel, Y., Sueda monoica, a C₄ plant without typical bundle sheaths. Plant Physiol., 56, 1975, 676-679.
- [21]. Crookston, R.K. and Moss, D.N., A variation of C₄ leaf anatomy in Arudinella hirta (Gramineae). Plant Physiol., 52, 1973, 397-402.
- [22]. Smith, B.N. and Turner, B.L., Distribution of Kranz syndrome among Asteraceae. American Journal of Botany, 62, 1975, 541-545.
- [23]. Ueno, O., Takeda, T., Samejima, M. and Koyama, T., Distribution and evolution of C₄ syndrome in Eleocharis a sedge group inhabiting wet and aquatic environments based on culm anatomy and carbon isotope ratios. **Annals of Botany, 64, 1989**, 425-438.
- [24]. Robichaux, R.H. and Pearcy, R.W., Evolution of C_3 and C_4 plants along an environmental moisture gradient: patterns of photosynthetic differentiation in Hawaiian Scaevola and Euphorbia species. **American Journal of Botany, 71, 1984**, 121-129.
- [25]. Monson, R.K. and Charles, H.J., Photosynthetic characteristics of C₃-C₄ intermediate Flaveria floridana (Asteraceae) in natural habitats: Evidence of advantages to C3-C4 photosynthesis at high leaf temperatures. American Journal of Botany, 78(6), 1991, 795-800.

*Corresponding Author: Sikolia, S.F.

- [26]. Ku, MS.B, Monson, R.K., Littlejohn, R.O., Nakumaoto, H., Fischer, D.B. and Edwards, G.E., 1983: Photosynthetic characteristic of C₃-C₄ intermediate Flaveria species. I. Leaf anatomy, photosynthetic responses to O₂ and CO₂ and activities of key enzymes in the C₃ and C₄ pathways. **Plant Physiol.**, **71**, **1983**, 944-948.
- [27]. Gebauer, G. and Schulze, E.D., Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgerbirge, N.E. Bavaria. **Oecologia**, **87**, **1991**, 198-207.
- [28]. Ehleringer, R.F., Sage, R.F., Flanagan, L.B and Pearcy, R.W., Climate change and evolution of C₄ photosynthesis. Trends Ecol. Evol., 6, 1991, 95-99.
- [29]. Monson, R.K., On the evolutionary pathways resulting in C4 photosynthesis and Crassulacean acid metabolism. Adv. Ecol. Res., 19, 1989, 57-110.
- [30]. Monson, R.K., Edwards, G.E. and Ku, M.S.B., C₃-C₄ intermediate photosynthesis in plants. Bioscience, 34, 1984, 563-574.
- [31]. Drincovich, M.F., Casati, P., Andreo, C.S., Chessin, S.J., Franceschi, V.R., Edwards, G.E. and Ku, M.S.B., Evolution of C₄ photosynthesis in Flaveria species: Isoform of NADP-Malic enzyme. Plant Physiol., 117, 1998, 733-744.
- [32]. Ueno, O., Takeda, T., Samejima, M. and Koyama, T., Morphological and photosynthetic characteristics of an amphibious C4 plant in the genus Eleocharis (Cyperaceae) (IN Japanese). Japan J. Crop Sci. Ext. Issue, 1, 1986, 240-241.
- [33]. Vozsenenskaya, E.V., Franceschi, V.R., Kiirats, O., Freitag, H., and Edwards, G.E., Anatomy is not essential for C₄ plant photosynthesis. Nature, 414, 2001, 543-546.
- [34]. P'yankov, V.I., Vozsenenskaya, E.V., Kondratchuk, A.V. and Black, C., C., Jr., A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy: a possible reversion of C₄ to C₃ photosynthesis. American Journal of Botany, 84, 1997, 597-606.
- [35]. Brown, W.V., Variation in anatomy, associations and origins of Kranz tissue. American Journal of Botany, 62, 1975, 395-402.
- [36]. Ellis, R.P., Vogel, J.C. and Fuls, A., Photosynthetic pathways and geographical distribution in the South Africa/Namibia. South African Journal of Science, 76, 1980, 307-314.
- [37]. Vogel, J.C., Fuls, A. and Ellis, R.P., The geographical distribution of grasses in South Africa. South Africa Journal Science, 74, 1978, 209-215.
- [38]. Sage, R.F., The evolution of C₄ photosynthesis. New Phytologist, 161, 2004, 341-370.
- [39]. Hatch, M.D. and Slack, C.R., C₄ photosynthesis: Discovery, resolution, recognition and significance. In: Kung S. and Yang S. (eds.): "Discoveries in Plant Biology, Vol. 1" pp. 175-196. (Singapore: World Scientific Publishing, 1998).
- [40]. Schulze, E.D., Ellis, R., Schulze, E.W., Trimborn, P. and Ziegler, H., Diversity metabolic types and $\delta^{13}C$ isotope ratios in the grass flora of Namibia in relation to growth form precipitation and habitat conditions. **Oecologia**, **106**, **1996**, 352-369.
- [41]. Sikolia, S.F., Screening some parameters of the C₃ species and C₄ species influencing their distribution along the altitudinal gradient in arid and semi-arid ecosystems of western Kenya. (**PH.D. Thesis, 2005**).
- [42]. Freitag, H. and Stichler, W., A remarkable new leaf type with unusual photosynthetic tissue in a Central Asiatic genus of Chenopodiaceae. Plant Biol., 2, 2000, 154-160.
- [43]. Guadalupe, P. and Katinas, I., A new type of anatomy in Asteraceae. Austr. J. Bot., 51(2), 2003, 217-226.
- [44]. Minorsky, P.V., Anatomy. A sine qua non for C₄ photosynthesis? **Plant Physiol. 128, 2002**, 334-335.
- [45]. Wang, R.Z., C₄ species and their response to large-scale longitudinal climate variables along the Northeast China Transect (NECT). Photosynthetica, 42(1), 2004, 71-79.