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ABSTRACT: In present paper, we solved a third order non-homogeneous ordinary differential equation with 

the use of Lie symmetry method (LSM). Third order non-homogeneous ordinary differential equation (ODE) 

have a vital role in applied mathematics, applied sciences etc. LSM reduces the order of third order ODE to 

second order ODE then second order ODE transform into first order linear ODE, which is solvable by any 

known method. LSM is the general method for solving ODE, it gives exact solution of the given ODE. Which is 

shown in this paper by an example.  
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I. INTRODUCTION 
            Differential equations are mathematical equations that involve one or more derivatives of an unknown 

function. They describe the relationship between a function and its derivatives and are widely used to model 

various physical, biological and engineering etc. Differential equations play a crucial role in understanding 

dynamic systems. Differential equations are used in various scientific disciplines to model phenomena such as 

heat conduction, fluid dynamics, population growth, quantum mechanics and electrical circuits. Solving these 

equations can provide valuable insights into the behavior of systems and help to make predictions or optimize 

designs. Various methods, including analytical techniques and numerical simulations, are employed to solve 

differential equations depending on their complexity and nature. There are various methods for solving third 

order non-homogeneous ODE. In this work, we shall apply Lie symmetry method to find the solution of given 

differential equations. 

             The Lie symmetry method provides a systematic and elegant approach to solve differential equations, 

offering insights into their structure and yielding solutions that might be challenging to obtain through other 

methods. It has applications across various fields, including physics, engineering and mathematical modeling. 

The Lie symmetry method involves finding a Lie group of transformations that leaves the differential equation 

invariant. These transformations can be represented by a Lie algebra, and their corresponding infinitesimal 

generators are used to determine the symmetries.  

                                                            

II. LITERATURE REVIEW 
             F. M. Mahomed and P.G.L. Leach (1989) studied about the second order ODE and their Lie algebras. 

In this paper, they showed that a second order ODE can have exactly 0,1, 2,3  or 8 point symmetries. F. M. 

Mahomed and P.G.L. Leach (1990) studied about the symmetries of differential equations. In this work, they 

showed that any differential equations of order ( )3n   can’t have more than ( )4n +  symmetries. Which is 

very useful for our research. R.Z. Zhdanov (1998) developed lie theory for first, second order ODE. He solved 

many examples of first and second order linear and non-linear differential equations. S. Hasan and W. Salman 

Abd (2016) used lie symmetry theory for the systems of ODE. They defined this method for homogeneous 

systems and linear differential equations of systems.  Mousa Illie and Jafar Biazar (2017) used the lie 

symmetry theory for second-order fractional differential equation. They solved fractional differential equation 

with the help of Lie symmetry theory. R. Mohanasubha and V.K. Chandrasekar(2017) derived the linearized 
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symmetry condition for second-order non-linear ODE. G. Kumar (2019) solved first order homogeneous ODE 

with use of Lie symmetry theory. W. Khalid Jaber and K. Salman Hasan (2020) In this paper, they used Lie 

symmetry for solving first and second order linear differential equations. They found the linearized symmetry 

condition for first order linear ODE. N. Sharma and G. Kumar (2022) described the lie symmetry method to 

solve linear ODE of first order. A. Kumar and G. Kumar (2023) solved third order linear ODE with the help 

of lie symmetry theory. 

 

III. EXAMPLE 
 We consider a special type of third order ode which is given as  

                                                            ''' 1y =                                                                                                     ( )1                                                                    

                   Let          H( ''', '', ', , ) ( ''' 1) 0y y y y x y= − =                                                                       ( )2           

 we shall use third extension of 
 3

S , thus we have 

   3 2
( ''' 3 ''' ' ' ''' 3 '' '')

'''
S S y y y

y
   


= + − − −


 

   3 1
( '' 2 '' ' ' '') ( ''' 3 ''' ' ' ''' 3 '' '')

'' '''
S S y y y y y

y y
      

 
= + − − + − − −

 
 

 3
( ' ' ') ( '' ' '' 2 '' ') ( ''' 3 ''' ' ' ''' 3 '' '')

' '' '''
S y y y y y y

x y y y y
          
    

= + + − + − − + − − −
    

                                                                                                                                                                          

now we operate 
 3

S on equation ( )2 then we get  

                                                             
   3

0S H =  

( ) ( ) ( )'''' .0 ' ' ' .0 '' ' '' 2 '' ' .0 ( ''' 3 ''' ' 3 '' '' ' ''').(1) 0y y y y y y y          + + − + − − + − − − =  

 

( )[ '''' ( ''' 3 ''' ' ' ''' 3 '' '')] 0y y y y    + − − − =                                                                         ( )4   

Differentiate equation ( )2  with respect to ,x  we get  

                                                            '''' 0
H

y
x


= =



                                                                             ( )5                        

Putting the values from equation ( )5  in equation ( )4  we get  

 .0 ( ''' 3 ''' ' ' ''' 3 '' '') 0y y y    + − − − =                                               

 ''' 3 ''' ' ' ''' 3 '' '' 0y y y   − − − =                                                                                                ( )6                                                 

The derivatives of  and  are  

' 'y
x y

 


 
= +
 

                                                                                                                                    ( )7                                                                                              

since  .
d y

dx x y x

      
= +  
    

 

'' '
d

y
dx x y

 


  
= + 

  

 

2

2
'' . ' . . ''

y y
y y

x y x x x y y y x y

    


              
= + + + +     
               

 

2 2 2 2
2

2 2
'' . ' '. ' . . ''y y y y

x x y x y y y

    


    
= + + + +
      

   

2 2 2
2

2 2
'' 2 ' ' ''y y y

x x y y y

   


   
= + + +
    

                                                                          ( )8   

and  

( )3
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3 3 2 3 2 3
2 3

3 2 2 2 3
''' 3 ' 3 '' ''' 3 ' 3 ' '' 'y y y y y y y

x x y x y y x y y y

      


      
= + + + + + +
         

 

                                                                                                                                                                            ( )9   

Similarly, we have  

' 'y
x y

 


 
= +
 

                                                                                                                                ( )10   

'' '
d

y
dx x y

 


  
= + 

  

 

2

2
'' . ' . . ''

y y
y y

x y x x x y y y x y

    


              
= + + + +     
               

 

2 2 2 2
2

2 2
'' . ' '. ' . . ''y y y y

x x y x y y y

    


    
= + + + +
      

   

2 2 2
2

2 2
'' 2 ' ' ''y y y

x x y y y

   


   
= + + +
    

                                                         ( )11   

And  
3 3 2 3 2 3

2 3

3 2 2 2 3
''' 3 ' 3 '' ''' 3 ' 3 ' '' 'y y y y y y y

x x y x y y x y y y

      


      
= + + + + + +
         

 

                                                                                                                                                                          ( )12   

Substitute all values of derivatives in equation ( )6 we get 

3 3 2 3 2 3
2 3

3 2 2 2 3
3 ' 3 '' ''' 3 ' 3 ' '' 'y y y y y y y

x x y x y y x y y y

            
+ + + + + +

         

 
2 2 2

2

2 2
3 '' 2 ' ' ''y y y y

x x y y y

       
− + + + 

     
3 3 2 3 2 3

2 3

3 2 2 2 3
' 3 ' 3 '' ''' 3 ' 3 ' '' 'y y y y y y y y

x x y x y y x y y y

             
− + + + + + + 

          

   
3 ''' ' 0y y

x y

    
− + = 

  

                                                                                                                 ( )13   

3 3 2 3 2 3
2 3

3 2 2 2 3
3 ' 3 '' ''' 3 ' 3 ' '' 'y y y y y y y

x x y x y y x y y y

            
+ + + + + +

         

 

( )
2 2 2

22

2 2
3 '' 6 ' '' 3 ' '' 3 '' 3 ''' 3 ' '''y y y y y y y y y

x x y y y x y

          
− − − − − −

      
3 3 2 3 2 3

2 3 2 4

3 2 2 2 3
' 3 ' 3 ' '' ' ''' 3 ' 3 ' '' ' 0y y y y y y y y y y

x x y x y y x y y y

             
− − − − − − − =

          

 

                                                                                                                                                                          ( )14   

Now we equate the coefficient of various powers of , ', '', '''y y y y  etc.  

Coefficient of ' '''y y  :                              4 0
y


− =


 

                                                                      ( )a x =                                                                              ( )15   

Coefficient of '''y   :                                 3 0
y x

   
− = 

  
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                                                                       3 'a
y


=


 

                                                                        3 ' ( )a y b x = +                                                               ( )16   

Coefficient of ''y :                                  
2 2

2
3 3 0

x y x

   
− = 

   

 

                                                                            
2 2

2x y x

  
=

  
 

                                                                               3 '' ''a a=  

                                                                         
1 2( )a x h x h= +                                                                   ( )17   

Coefficient of constants:                              
3

3
0

x


=


 

                                                                  ( )3 '''' ''' 0a y b+ =                                                               ( )18   

Equate constant                                                       ''' 0b =  

After solving, we get 

                                                                    

2

3 4 5( )
2

x
b x h h x h= + +                                                          ( )19     

Where 1 2 3 4 5, , , ,h h h h h  are arbitrary constants.  

By equation ( )15  we have 

                                                                         1 2h x h = +                                                                         ( )20   

By equation ( )16  we have 

                                                                   3 ' ( )a y b x = +  

                                                                  

2

1 2 3 4 53( ) '
2

x
h x h y h h x h

 
= + + + + 

 
 

                                                                 

2

1 3 4 53( )
2

x
h y h h x h

 
= + + + 

 
                                        ( )21   

The Generator S of the infinitesimal transformation is of the form,  

 S
x y

 
 

= +
 

 

( )
2

1 2 1 3 4 53
2

x
S h x h h y h h x h

x y

  
= + + + + + 

  
                                                                   ( )22   

Which is five parameter symmetry are given as 

1 3S x y
x y

  
= + 

  
  

2S
x


=


 

2

3
2

x
S

y


=


 

4S x
y


=


 

5S
y


=


                                                                                                                                                      ( )23   
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These all are infinitesimal generators for equation ( )1   

Now, we take  

4S x
y


=


 

The given equation has five Lie one parameter symmetry ( )23   

Third order prolongation is obtained as follows 

 0

4 . 0.S x x
y x y

  
= + =

  
                                                                                                                ( )24   

    ( )1 0

4 4 1 '.0
' '

S S y x
y y y

  
= + − = +

  
                                                                                     ( )25   

    ( )2 1

4 4 0 2 ''.0 '.0
''

S S y y
y


= + − −


 

 2

4 0.
' ''

S x
y y y

  
= + −

  
                                                                                                                ( )26        

   3 2

4 4 (0 3 '''.0 3 ''.0 '.0)
'''

S S y y y
y


= + − − −


 

 3

4 0. 0. 0.
' '' '''

S x
y x y y y

    
= + + − +

    
                                                                                  ( )27   

Now, we must solve 

 ' '' '''

0 1 0 0

dx dy dy dy dy

x
= = = =                                                                                                         ( )28   

Case 1st :                                   
0

dx dy

x
=  

                                                     x u=                                                                                                   ( )29   

Where u is a constant. 

Case 2nd :                                  
'

1

dy dy

x
=  

                     Integrating on both side, we get 

                                                
'

1

dy dy

u
=   

                                                 
1'

y
y v

u
= +  

                                                   
1 '

y
v y

x
= −                                                                                         ( )30   

Where 1v  is a constant.  

Case 3rd :                                  ' ''

1 0

dy dy
=  

                     On solving, we get 

                                                      ''y v=                                                                                                 ( )31   

Where v is a constant.  

Equation ( )1  can be reduced as follows  

                                                  ( )

( )
x

x

D vdv

du D u
=

 

                                                 '''

1

dv y

du
=                                                                                               ( )32      

Using equation ( )1  in equation ( )32  then  
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                                                 1
dv

du
=  

                                                dv du=  

Integrating on bothsides  

                                              
1v u t= +  

                                             
1''y x t= +  

                                             

2

1 2'
2

x
y t x t= + +  

                                             

3 2

1 2 3
6 2

x x
y t t x t= + + +                                                                         ( )33   

Where 1 2 3, ,t t t are arbitrary constants.   

Equation ( )33  gives us the solution of equation ( )1  by the help of Lie symmetry method.  

 

IV. CONCLUSION 

In this work, we solved third order non-homogeneous ordinary differential equations with the use of 

Lie symmetry theory. Firstly, we found determining equations, it has five-dimensional symmetry algebra. In 

which, we took 4S  which is solvable by Lagrange’s method. Now, the order of differential equation has been 

converted into two. After solving this, given differential equation became of first order ODE which is solvable 

easily. Thus, we found the solution of given third order non-homogeneous ODE with Lie symmetry theory.  
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