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ABSTRACT: In present paper, we solved a third order non-homogeneous ordinary differential equation with
the use of Lie symmetry method (LSM). Third order non-homogeneous ordinary differential equation (ODE)
have a vital role in applied mathematics, applied sciences etc. LSM reduces the order of third order ODE to
second order ODE then second order ODE transform into first order linear ODE, which is solvable by any
known method. LSM is the general method for solving ODE, it gives exact solution of the given ODE. Which is
shown in this paper by an example.
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I. INTRODUCTION

Differential equations are mathematical equations that involve one or more derivatives of an unknown
function. They describe the relationship between a function and its derivatives and are widely used to model
various physical, biological and engineering etc. Differential equations play a crucial role in understanding
dynamic systems. Differential equations are used in various scientific disciplines to model phenomena such as
heat conduction, fluid dynamics, population growth, quantum mechanics and electrical circuits. Solving these
equations can provide valuable insights into the behavior of systems and help to make predictions or optimize
designs. Various methods, including analytical techniques and numerical simulations, are employed to solve
differential equations depending on their complexity and nature. There are various methods for solving third
order non-homogeneous ODE. In this work, we shall apply Lie symmetry method to find the solution of given
differential equations.

The Lie symmetry method provides a systematic and elegant approach to solve differential equations,
offering insights into their structure and yielding solutions that might be challenging to obtain through other
methods. It has applications across various fields, including physics, engineering and mathematical modeling.
The Lie symmetry method involves finding a Lie group of transformations that leaves the differential equation
invariant. These transformations can be represented by a Lie algebra, and their corresponding infinitesimal
generators are used to determine the symmetries.

Il. LITERATURE REVIEW
F. M. Mahomed and P.G.L. Leach (1989) studied about the second order ODE and their Lie algebras.

In this paper, they showed that a second order ODE can have exactly 0,1,2,3 or 8 point symmetries. F. M.
Mahomed and P.G.L. Leach (1990) studied about the symmetries of differential equations. In this work, they
showed that any differential equations of order (n 2 3) can’t have more than (n + 4) symmetries. Which is

very useful for our research. R.Z. Zhdanov (1998) developed lie theory for first, second order ODE. He solved
many examples of first and second order linear and non-linear differential equations. S. Hasan and W. Salman
Abd (2016) used lie symmetry theory for the systems of ODE. They defined this method for homogeneous
systems and linear differential equations of systems. Mousa lllie and Jafar Biazar (2017) used the lie
symmetry theory for second-order fractional differential equation. They solved fractional differential equation
with the help of Lie symmetry theory. R. Mohanasubha and V.K. Chandrasekar(2017) derived the linearized
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symmetry condition for second-order non-linear ODE. G. Kumar (2019) solved first order homogeneous ODE
with use of Lie symmetry theory. W. Khalid Jaber and K. Salman Hasan (2020) In this paper, they used Lie
symmetry for solving first and second order linear differential equations. They found the linearized symmetry
condition for first order linear ODE. N. Sharma and G. Kumar (2022) described the lie symmetry method to

solve linear ODE of first order. A. Kumar and G. Kumar (2023) solved third order linear ODE with the help
of lie symmetry theory.

11l. EXAMPLE
We consider a special type of third order ode which is given as

ylll:1 (1)
Lt  HOY™y"y,y,x)=(y"-1)=0 (2)
we shall use third extension of S (3] thus we have
skl = slzl Byt Syt STt 3y sy O
+(r y y y )ay"'
0 0
stl=st+(pr—2y"s'—y'6)—+("-3y"s'—y'6"-3y"s") —
oy" oy™
9252 4,0 ey ey Dy 2y ) Lk By Sy 53y s L
= oy (r'-vy )6y' (r'=y y )6W" (r y y y )aym

(3)

now we operate S B on equation (2) then we get
sPl[H]=0
[S(y™)+7.0+(y'—y'8).0+(y"=y'8"—2y"8).0+(y"—3y"5'=3y" 5"~ y'5").(1) | = 0

[5(y™)+(r"—3y" &'~y &"—3y" 5] =0 (4)
Differentiate equation (2) with respect to X, we get
oH .. 5
ox Y =0 ( )

Putting the values from equation (5) in equation (4) we get
[5.0+ (7/Ill_3ylll5l_ y|5||1_3y||5u)] — O

[»"—3By™"s'—y's™"—3y"s"]|=0 (6)
The derivatives of 7/ and o are
. Oy Oy 7
e ——|— —_
r =Ty 7

since {ﬂ :%ju%(@j}
dx ox oy \ ox
d 67/ Oy
" dx [ Y ey j

:azy+a[ang+y, o (or),
ox? oy \ ox ) ox ox\ oy

2(5_7]_@}+8_7_y
oy\oy ) ox| oy
Y

. 07 o%y o° o OF o "
yr =L X gy Xy C X Ty
oxZ | oxoy Xy oy? oy
%y Oy , 0%y Oy 8
. oy
7 T axr 7Y axay +y” oy? vt oy Y (8)
and
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3y %y oy oy 2 O oy 3 Oy
"= + 3y’ +3y" +y" = ' +3y'y" +Vy'
Y= e T aay T axey Y oy T oy T Y T Y T 50
(9)
Similarly, we have
_95 .95 10
otV oy (10)
s d [85 y,@j
dx oy
sr_25 [65 ¥y {3[@}2[@]@} o5 |,
ox oy " Ox ox \ oy oy \ oy oxX oy
sn_ OS5 o5 vy oS5 by o5 | o5 v
- Ox®  oxoy " oxoy "oy? oy
2 2 2
5,,=af+2y,65+y.zaf+65y. (11)
OX OXoy oy oy
And
w O35 , O°5 . OS5 OS5 o O35 L W08 3 O°5
S"=—75+3y'—_—+3y +y oy Y =7ty 3
OX oOX“oy OXoy oy OXoy oy oy
(12)

Substitute all values of derivatives in equation (6) we get
[ 3y . O% . Oy

3

2 3
—|—y“'a—7/+3y'2—67/ +3y'y“87 s 97

+3y'—5—+3y

3 2 2 + y 3
OX OxX“oy OXoy oy OXoy oy oy
W %5 , 0?5 o OS5 Wole)
—3y > +2Y +Yy +y"—
ox oxdy oy oy
_y' 83_5_'_3y.63—5+3y" 625 +y"'§+3y'263—5+3y'y"82_5+ y'3 835
ox° ox2dy Xy oy oxdYy2 oy oy
aym(85 05| (13)
Y [ax” WH_O
3 3 2 3 2 3
7;+3y'—827 +3y" oy +y"'—87/+3y'2 ¥ 7/2 +3y'y“8 72/+y'3 o Z
OoxX OX“oy oxXoy oy OXoy oy oy
oS o*s o*s 2 0O o0 lolo)
3y"Z 2 @y'y" -3 g2 _gym<2 3 92
e yyaxayyyay (y)ayyxyyay
o35 o35 o*s o0 o35 o%s o35
—y' €2 3y2 22 _3yry" rymZ2 gy —3y 2y L2y =0
Yo Y ey Y aay Y Y'Y Y aay Y'Y af}
(14)
Now we equate the coefficient of various powersof ¥, Y, Y, Y " etc
Coefficientof y'y™ : 499 _ 9
oy
o =a(x) (15)
Coefficientof y" 8_;/_3@ =0
oy OX
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5—7/ =3a’
oy
y=3a'y+b(x) (16)
Coefficientof Y " : 3 o’y _3825 -0
Oxoy ox?
0%y %5
oxoy  Ox?
3a n — a n
a(x) =hx+h, (17)
3
Coefficient of constants: oy =0
ox3
(3a™y+b")=0 (18)
Equate constant b™=0
After solving, we get
2
b(x) = h, X?+ h,x+hy (19)
Where hl, h21 h31 h4, h5 are arbitrary constants.
By equation (15) we have
o =hx+h, (20)
By equation (16) we have
y=3a'y+b(x)

2
y =3(hx+ hz)'y+(hgx?+h4x+h5j

X2
7=3(|‘H)y+(h3?+h4x+h5j (21)
The Generator S of the infinitesimal transformation is of the form,
S—62.,2
OX oy
5] x? o
S:(hlx+h2)&+[3hly+h3?+h4x+h5j5 (22)

Which is five parameter symmetry are given as

o o
S =| Xx—+3y—
1 [ ox yayj

o
S. ==
2 X
2
5 X2
2 oy
S4=x£
oy
o
Ssza (23)
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These all are infinitesimal generators for equation (1)

Now, we take
0

S, =Xx—
oy

The given equation has five Lie one parameter symmetry (23)
Third order prolongation is obtained as follows

S4[°]=x.i+0.i=xi

oy ~ox oy
siM=sM+(1- y'.o)ﬁ, = x3+ﬁ|
oy' oy oy

. L\ 0
sl=sMy(0-2y"0-y 'O)ﬁ

54[21:X£+i|_0_£"
oy oy oy
s,fl=s,”l+(0-3y™.0-3y".0— y'.O)im
oy
84[3]=X£+0.£+ o —0. S +0. °

ay aX ay 1 ay n ay m
Now, we must solve
dx _dy dy' dy” dy™

(0] X 1 (0] (0]
Case 1%: dx _ dy
(@) X
X=U
Where U is a constant.
Case 2M dy _dy’
X 1
Integrating on both side, we get
dy rdy’
I u I 1
Y _ Y '+ Vv,
u
y .
Vl - ; -y
Where Vl is a constant.
Case 3¢ ; dy' _dy*”
1 O
On solving, we get
y n — V

Where V is a constant.
Equation (1) can be reduced as follows

dv D, (v)
du D, (u)

x

dV y oy

du 1
Using equation (1) in equation (32) then

(30)

(31)

(32)
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dv
du
dv = du
Integrating on bothsides
V=u-+t
y'"=Xx+1

2
X
y'=?+t1X+t2

X3 2

y:E+th?+t2x+t3 (33)

Where tl ) tz ) t3 are arbitrary constants.

Equation (33) gives us the solution of equation (1) by the help of Lie symmetry method.

IV. CONCLUSION
In this work, we solved third order non-homogeneous ordinary differential equations with the use of

Lie symmetry theory. Firstly, we found determining equations, it has five-dimensional symmetry algebra. In
which, we took S, which is solvable by Lagrange’s method. Now, the order of differential equation has been

converted into two. After solving this, given differential equation became of first order ODE which is solvable
easily. Thus, we found the solution of given third order non-homogeneous ODE with Lie symmetry theory.
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