Volume 10 ~ Issue 1 (2024) pp: 09-23

www.questjournals.org

On Quasi Generalized β- α -topological Group

¹R.Rama vani, ²R.Selvi

¹Research Scholar(Reg No. 19221202092003), ²Associate Professor Department of Mathematics, Sriparasakthi College for Women, Courtallam, Tamilnadu, India Affiliated to Manonmaniam Sundaranar University, Abishikapatti, Tirunelveli-627012, Tamilnadu, India.

Abstract: In this paper, we introduced the concept of Quasi generalized β - α -topological group. Quasi generalized β - α -topological group have the translation mappings and the inversion mapping are G- β - α continuous with respect to the generalized topology.

KEYWORDS: G-α open, G- α_{β} -open, G- β -α-continuous, Quasi G- β -α topological group

Received 17 Jan., 2024; Revised 28 Jan., 2024; Accepted 31 Jan., 2024 © The author(s) 2024. Published with open access at www.questjournals.org

I. Introduction

Topological groups are logically the combination of topological spaces and groups. A topological group is defined as a group binded with a topology such that the binary operations are continuous. A. esaszar [2] introduced the concept of generalized topology in 2002. In 2013 Muard Hussian et.al [16] introduced the concept of generalized topological groups. A.B. Khalaf and H.Z Ibrahim et.al [10] introduced some basic concepts of β - α -topological groups.Let A be a subset of a topological space (G,τ). A subset A of a topological space (G,τ) is called α -open if $A \subseteq Int(Cl(Int(A))$. The complement of an α -open set is called α -closed. By $\alpha O(G,\tau)$, we denoted the family of all α -open sets of G. An operation $\beta: \alpha O(G,\tau) \to P(G)$ [8] is a mapping satisfying the condition, $V \subseteq V^{\beta}$ for each $V \in \alpha O(G,\tau)$. We call the mapping β an operation on $\alpha O(G,\tau)$. A subset A of G is called α_{β} -open set [8] if for each point $x \in A$, there exists an α -open set U of G containing x such that $U^{\beta} \subseteq A$.

In this paper, we introduced the concept of Quasi generalized β - α -topological group and investigate the related concepts. Throughout this paper Quasi generalized β - α -topological group is denoted by quasi g- β - α -topological group.

II. Preliminaries

Definition: 2.1 [2] Let X be any set and let $G \subseteq P(X)$ be a subfamily of power set of X.

Then G is called a generalized topology if $\emptyset \in G$ and for any index set I, $U_{i \in I}$ $O_i \in G$, $O_i \in G$, $O_i \in G$, $O_i \in G$

Definition: 2.2 [3] The element of generalized are called G-open sets. Similarly, generalized closed set (or) G-closed, is defined as complement of a G-open set.

Definition: 2.3 [2] Let X and Y be two G-topological space. A mapping $f: X \to Y$ is called a G-continuous on X if for any G-open set in Y, $f^{-1}(0)$ is G-open in X.

Definition : 2.4 [16] A triple (G, *, G) is said to be an G-topological group if (G, *) is a group, (G, G) is a generalized topological space and,

- (i) The multiplication mapping m: $G \times G \to G$ defined by m(x, y) = x * y, $x, y \in G$ is G-continuous.
- (ii) The inverse mapping i: $G \to G$ defined by $i(x) = x^{-1}$, $x \in G$, is G continuous.

Definition: 2.5[10] Let (G, *) be a group and τ be a topology on G.

- (i). The inversion map is β - α -continuous if given $a \in G$ and $O \in \alpha O(G, \tau)$ such that $a^{-1} \in O$. then there is $U \in \alpha O(G, \tau)$ with $a \in U$ and $(U^{\beta})^{-1} \subseteq O^{\beta}$, where $(U^{\beta})^{-1} = \{x^{-1}: x \in U^{\beta}\}$
- (ii). The multiplication is jointly β - α -continuous in both variables if given a, $b \in G$ and $O \in \alpha O$ (G,τ) such that $a*b \in O$, then there exist $U, V \in \alpha O(G,\tau)$ with $a \in U, b \in V$ and $U^{\beta}*V^{\beta} \subset O^{\beta}$.
- (iii). A triple $(G, *, \tau)$ is called a β - α -topological group if the inversion is β - α -continuous and the multiplication map is jointly β - α -continuous in both variables.

Definition 2.6 [17] Let $(G, *, \tau)$ be a *G*-topological space. A triple $(G, *, \tau)$ is called a *G*-β-α-topological group if the inversion map is *G*-β-α-continuous and the multiplication map is jointly G-β-α-continuous in both variable.

Definition 2.7 [16] Let (G, *) is a group and given $x \in G$, $L_x: G \to G$ defined by $L_x(y) = x * y$ and $R_x: G \to G$ defined by $R_x(y) = y * x$, denoted left and right translation by x, respectively.

Definition 2.8 [1] A quasi topological group G, is a group which is also a topological space if the following conditions are satisfied,

- (i). Left translation $L_x: G \to G, x \in G$ and right translation $R_x: G \to G, x \in G$ are continous.
- (ii). The inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}$, $x \in G$ is continous.

Quasi Generalized β-α-Topological Groups

Definition: 3.1 A quasi G- β - α topological group G is a group which is also a G-topological space if the following conditions are satisfied,

- (i). Left translation $L_x: G \to G$, $x \in G$ and Right translation $R_x: G \to G$, $x \in G$ are G- β - α continuous and
- (ii). The inversion map is g- β - α -continuous if given $a \in G$ and $O \in g$ - $\alpha O(G, g)$ such that $a^{-1} \in O$, then there is $U \in g$ - $\alpha O(G, g)$ with $a \in U$ and $(U^{\beta})^{-1} \subseteq O^{\beta}$ where $(U^{\beta})^{-1} = \{x^{-1} : x \in U^{\beta}\}$.

Example: 3.2 Let $(Z_4, +_4)$ is a group under addition and $G = \{ Z_4, \emptyset, \{1,3\}, \{2,3\}, \{1,2\}, \{1,2,3\} \}$. Then $(Z_4, +_4, G)$ is the quasi G- β - α topological group.

Theorem: 3.3 Let (G, *, G) be a quasi G- β - α -topological group and \mathfrak{B}_e be the collection of all G- α open neighbourhood of identity e of G. Then

- (i). For every $0 \in \mathfrak{B}_e$, there is an element $U \in \mathfrak{B}_e$ such that $(U^{\beta})^{-1} \subseteq O^{\beta}$.
- (ii). For every $0 \in \mathfrak{B}_e$, there is an element $U \in \mathfrak{B}_e$ such that $U^{\beta} * x \subseteq O^{\beta}$ and $x * U^{\beta} \subseteq O^{\beta}$, for each $x \in G$.

Proof: (i) Let (G, *, G) be a quasi G- β - α -topological group.

Therefore, for every $0 \in \mathfrak{B}_e$ with $a^{-1} \in O$, there is $U \in \mathfrak{B}_e$ such that $a \in U$ and

 $(U^{\beta})^{-1} \subseteq O^{\beta}$, because the inverse mapping $i: G \to G$ is $G - \beta - \alpha$ continous.

(ii). Let ($G, *, \mathcal{G}$) be a quasi \mathcal{G} - β - α -topological group.

Then for any $x \in G$ and $O \in \mathfrak{B}_e$ containing x, there exist $U \in \mathfrak{B}_e$ such that $R_x(U) = U^{\beta} * x \subseteq O^{\beta}$. Similarly, $L_x(U) = x * U^{\beta} \subseteq O^{\beta}$.

Theorem: 3.4 Let (G, *, G) be a quasi g- β - α -topological group and g be any element of G. Then the right translation (R_g) and left translation (L_g) of G by g is a g- α homeomorphism of the space G onto itself.

Proof: Let (G, *, G) be a quasi G- β - α -topological group.

To prove that Right translation (R_g) is a g- α homeomorphism.

First we prove that R_g is a bijection.

We mapping $R_g: G \to G$ be defined by $R_g(x) = xg$.

Assume that $R_a(x) = R_a(y)$

$$\Rightarrow xg = yg$$

$$\Rightarrow x = y$$

Hence R_g is one-one. Assume that $y \in G$, then the element yg^{-1} maps to y.

Hence R_g is surjective. Since G is a quasi g- β - α -topological group,

 R_g is a g- α continuous, then R_g^{-1} is also g- α continuous.

Hence the Right translation (R_g) is a G- α homeomorphism.

Similarly we can prove that the Left translation (L_g) is a g- α homeomorphism.

Theorem: 3.5 Let (G, *, G) be a quasi G- β - α -topological group and U be any G- α open set in

G. Then (i). a * U and U * a is $G-\alpha$ open in G for all $\alpha \in G$.

(ii). For any subset A of G, the sets U * A and A * U are $G - \alpha$ open in G.

Proof: Let (G, *, G) be a quasi G- β - α -topological group.

(i). Let
$$x \in U * a$$
.

First we prove that x is a G- α interior point of $U * \alpha$.

Let x = U * a for some $u \in U$.

Take $U = U * a * a^{-1}$

$$= x * a^{-1}$$

$$\Rightarrow$$
 u = $x * a^{-1}$ for some $u \in U$.

Since $R_{a^{-1}}: G \to G$ is a g- β - α continuous, using the Right translation $(R_{a^{-1}})$, we get $R_{a^{-1}}(x) = x * a^{-1} = u$.

Then for every g- α open set containing u, there exists a g- α open set M_x containing x such that $R_{\alpha^{-1}}(M_x) \subseteq U$

$$\Rightarrow M_x * a^{-1} \subseteq U$$

$$\Rightarrow$$
 $M_x \subseteq U * a^{-1}$

$$\Rightarrow x$$
 is a g - α interior point of $U * \alpha$.

Hence U * a is G- α open in G.

Similarly we can prove that a * U is $G-\alpha$ open in G.

(ii).Let A be the subset of G. Using by above result, we get U * a is G-α open in G.

Then $U * A = U * \bigcup_{a \in A} a = \bigcup_{a \in A} (U * a)$.

Hence U * A is $G-\alpha$ open in G.

Similarly we can prove that A * U is $G-\alpha$ open in G.

Theorem: 3.6 Suppose that a subgroup H of a quasi g- β - α -topological group G contains a non-empty g-open subset of G. Then H is g- α open in G.

Proof: Let G be a quasi G- β - α -topological group.

Let H be a subgroup of G and U be a g-open non-empty subset of G with $U \subset H$.

Let $L_g(U) = U * g$ is $g-\alpha$ open in G for each $g \in H$, then $H = \bigcup_{g \in H} U * g$.

Hence H is $G-\alpha$ open in G.

Theorem: 3.7 Let (G, *, G) be a quasi G- β - α -topological group. Then for every subset A of G and every G- α_B -open neighbourhood O^{β} of the identity element of e, G- α_B $Cl(A) \subseteq AO^{\beta}$.

Proof: Let G be a quasi g- β - α -topological group and A be a subset of G.

Let $G - \alpha_{\beta}$ -open neighbourhood U^{β} containing e such that $(U^{\beta})^{-1} \subseteq O^{\beta}$.

Take $x \in G$ - $\alpha_B Cl(A)$.

Then xU^{β} is an G- α_{B} -open set containing x.

Now $a \in A \cap xU^{\beta}$, which implies a = xb for some $b \in U^{\beta}$,

then $x = ab^{-1} \in A(U^{\beta})^{-1} \subseteq AO^{\beta}$.

Hence $g - \alpha_{\beta} Cl(A) \subseteq AO^{\beta}$.

Theorem: 3.8 Let (G, *, G) be a quasi G- β - α -topological group and H be a subgroup of G. If H is G- α _B-open set then it is also G- α _B-closed in G.

Proof: Let $\mathfrak{B} = \{gh : g \in G\}$ be the family of all left coset of H in G.

This family is a disjoint G- α_{β} -open covering of G by left translation.

Therefore, every element of \mathfrak{B} is $G-\alpha_B$ closed in G.

In particular, H = eH is $G - \alpha_B c$ losed in G.

Theorem: 3.9 Let (G, *, G) be a quasi G- β - α -topological group and \mathfrak{B}_e be the collection of all G- α open of G. Then, for every $O \in \mathfrak{B}_e$, there is an element $U \in \mathfrak{B}_e$ such that

$$(U^{\beta})^2 \subseteq O^{\beta}$$
.

Proof: Let (G, *, G) be a quasi G- β - α -topological group.

Let \mathfrak{B}_{e} be the collection of all g- α open of G.

Then, for every $0 \in G$ - α open with $a * b \in O$, there is $U \in G$ - α open such that $a \in U$ and $(U^{\beta})^2 \subseteq O^{\beta}$.

Theorem: 3.10 Every quasi g- β - α -topological group G has g- α_{β} open neighbourhood at identity element e consisting of symmetric neighbourhood.

Proof: For an arbitrary G- α_B open neighbourhood U^B of the identity e in G.

If
$$V^{\beta} = U^{\beta} \cap (U^{\beta})^{-1}$$
, then $V^{\beta} = (V^{\beta})^{-1}$.

The set V^{β} is an G- α_{β} open neighbourhood e.

Therefore V^{β} is a symmetric neighbourhood and $V^{\beta} \subset U^{\beta}$.

Theorem: 3.11 Let G be a quasi G- β - α topological group. If N is a normal subgroup of G then \overline{N} also a normal subgroup of G.

Proof: Let G be a quasi G- β - α topological group.

To prove that $a\overline{N}a^{-1} \in \overline{N}$ for all $a \in G$.

Since N is a normal subgroup of G, $aNa^{-1} \in N$ for all $a \in G$.

- $\Rightarrow \overline{aNa^{-1}} \subset \overline{N} \text{ for all } a \in G.$
- $\Rightarrow a\overline{N}a^{-1} \subset \overline{N} \text{ for all } a \in G.$
- $\Rightarrow a\overline{N}a^{-1} \in \overline{N} \text{ for all } a \in G.$

Which implies \overline{N} is a normal subgroup of G.

```
A \subseteq G and B \subseteq G the following statements are true:
 (i). G-\alpha Cl_{\beta}(A) * b = G-\alpha Cl_{\beta}(A*b) and G-\alpha Cl_{\beta}(A) * B \subseteq G-\alpha Cl_{\beta}(A*B).
 (ii). G-\alpha Int_{\mathcal{B}}(A)*b=G-\alpha Int_{\mathcal{B}}(A*b) and G-\alpha Int_{\mathcal{B}}(A)*B\subseteq G-\alpha Int_{\mathcal{B}}(A*B).
 Proof: (i) Consider y \in G - \alpha Cl_{\beta}(A) * b.
  Then y = x * b where x \in G - \alpha Cl_{\mathcal{B}}(A).
 Let O \in G-\alpha O(G, \tau) with x * b \in O.
 Since the right translation is G-\beta-\alpha-continuous, then there is a V \in G-\alpha O(G,\tau) with x \in V
 and V^{\beta} * b \subset O^{\beta}.
 Since x \in G\text{-}\alpha Cl_{\beta}(A), there is a \in A \cap V^{\beta}.
  So a * b \in V^{\beta} * b \subseteq O^{\beta}.
 Therefore a * b \in A \cap O^{\beta} * b, which implies y = x * b \in G - \alpha Cl_{\beta}(A * b).
 Hence g - \alpha Cl_{\beta}(A) * b \subseteq g - \alpha Cl_{\beta}(A * b).
 Conversely, let x * b \in G-\alpha Cl_{\beta}(A * b).
 Let O \in G-\alpha O(G, \tau) such that x \in O.
 Since x = x * b^{-1} * b \in O, there is a V \in G-\alpha O(G, \tau) with x * b \in V and V^{\beta} * b^{-1} \subset O^{\beta}.
Since x * b \in \mathcal{G}\text{-}\alpha Cl_{\beta}(A) \cap V, a * b \in A \cap V^{\beta} * b.
So (a * b) * b^{-1} \in V^{\beta} * b^{-1} \subseteq O^{\beta}.
Hence a \in A \cap O^{\beta} and x \in G\text{-}\alpha Cl_{\beta}(A).
Therefore x * b \in G\text{-}\alpha Cl_{B}(A) * b and G\text{-}\alpha Cl_{B}(A * b) \subseteq G\text{-}\alpha Cl_{B}(A) * b.
consequently G-\alpha Cl_{\beta}(A) * b = G-\alpha Cl_{\beta}(A * b).
Now, we take b \in B.
then G-\alpha Cl_{\beta}(A)*b=G-\alpha Cl_{\beta}(A*b)\subseteq G-\alpha Cl_{\beta}(A*B) as A*b\subseteq A*B.
Hence G - \alpha Cl_{\beta}(A) * B = \bigcup_{b \in B} G - \alpha Cl_{\beta}(A) * b = \bigcup_{b \in B} G - \alpha Cl_{\beta}(A * b) \subseteq G - \alpha Cl_{\beta}(A * B)
(ii). Consider x * b \in G \cap AInt_B(A) * b, then there exists an G \cap \alpha-open set O that contains x
such that O^{\beta} \subset B.
Since x = x * b^{-1} * b \in O, there exists an g-\alpha-open set V with x * b \in V and
V^{\beta} * b^{-1} \subseteq O^{\beta}, thus x * b \in V \subseteq V^{\beta} \subseteq O^{\beta} * b \subseteq A * b.
Therefore x * b \in G-\alpha Int_{\beta}(A) and G-\alpha Int_{\beta}(A) * b \subseteq G-\alpha Int_{\beta}(A * b).
Conversely, let x * b \in G-\alpha Int_{\mathcal{B}}(A * b),
then there is an G-\alpha-open set O such that x * b \in O and O^{\beta} \subseteq a * B.
There is a G-\alpha-open set V containing x with V^{\beta} * b \subseteq O^{\beta}.
Hence x \in V \subseteq V^{\beta} \subseteq O^{\beta} * b^{-1} \subseteq B.
Let x \in \mathcal{G}-\alpha Int_{\beta}(A).
Therefore, x * b \in G-\alpha Int_{\beta}(A) * b and G-\alpha Int_{\beta}(A * b) \subseteq G-\alpha Int_{\beta}(A) * b.
Consequently, G - \alpha Int_{\beta}(A) * b = G - \alpha Int_{\beta}(A * b).
Now, we take b \in B, then g-\alpha Int_{B}(A) * b = g-\alpha Int_{B}(A * b) \subseteq g-\alpha Int_{B}(A * B).
Hence G - \alpha Int_{\beta}(A) * B = \bigcup_{b \in B} G - \alpha Int_{\beta}(A) * b = \bigcup_{b \in B} G - \alpha Int_{\beta}(A * b) \subseteq G - \alpha Int_{\beta}(A * B).
```

Theorem 3.12 Let (G, *, G) be a quasi G- β - α topological group. Then for any $b \in G$,

Theorem: 3.13 Let (G, *, G) be a quasi G- β - α -topological group and $A \subseteq G$, $B \subseteq G$. If A is arbitrary and B is G- α - β -open, then A * B and B * A are G- α -open

Proof: Let (G, *, G) be a quasi G- β - α -topological group.

Let B be g- α_{β} open. Then g- $\alpha_{\beta}Int(B) = B$.

Consider $a \in A$, then $a * B = a * G - \alpha_B Int(B)$

$$= G - \alpha_{\beta} Int(a * B).$$

Hence,
$$A * B = A * G - \alpha_{\beta} Int(B)$$

$$= \bigcup_{\alpha \in A} a * G - \alpha Int_{\beta}(B)$$

$$= \bigcup_{\alpha \in A} G - \alpha Int_{\beta}(a * B).$$

Then A * B is the union of G- α -open sets. Hence A * B is G- α -open.

Let $a \in A$ and then by theorem 3.12, we have $B * a = G - \alpha Int_B(B) * a = G - \alpha Int_B(B * a)$.

Hence
$$B * A = G - \alpha Int_{\beta}(B) * A$$

$$= G - \alpha Int_{\beta}(B) * \cup_{\alpha \in A} \alpha$$

$$= \bigcup_{a \in A} G - \alpha Int_{\beta}(B * a).$$

Then B * A is the union of G- α open sets. Hence B * A is G- α -open.

Theorem: 3.14 Let G be a quasi G- β - α topological group and \mathcal{B}_e a base of the space G at the identity element e_G . Then for every subset A of G- α open,

$$g - \alpha_{\beta} Cl(A) = \bigcap \{AO^{\beta} : O \in \mathcal{B}_{\beta}\}.$$

Proof: Let G be a quasi G- β - α topological group and for every subset A of G- α open.

By theorem 3.13, assume $x \notin G$ - $\alpha_B Cl(A)$.

Then there exists $0 \in \mathcal{B}_{\varrho}$, such that $x \notin AO^{\beta}$.

Since $x \notin G - \alpha_B Cl(A)$, then there exists a $G - \alpha$ open U of e_G such that $(xU) \cap A = \emptyset$.

Take $0 \in \mathcal{B}_{e}$, satisfying the condition $(0^{\beta})^{-1} \subseteq U$.

Then $(x(0^{\beta})^{-1}) \cap A = \emptyset$. Clearly that $x \notin A0^{\beta}$.

Theorem 3.15 Let (G, *, G) be a quasi G- β - α topological group then

- (i) If β is $g-\alpha$ -open, then $g-\alpha Cl_{\beta}(A) * g-\alpha Cl_{\beta}(B) \subseteq g-\alpha Cl_{\beta}(A * B)$ for all $A,B \subseteq G$.
- (ii) $G \alpha Int_{\beta}(A) * G \alpha Int_{\beta}(B) \subseteq A * G \alpha Int_{\beta}(B) \cap G \alpha Int_{\beta}(A) * B \subseteq A * G \alpha Int_{\beta}(B)$ $\cup G - \alpha Int_{\beta}(A) * B \subseteq G - \alpha Int_{\beta}(A * B).$
- (iii) If A is arbitrary and B is G- α_B -open, then A * B and B * A are G- α -open.

Proof:

(i) By Theorem 3.7 , A * $g-\alpha Cl_{\beta}(B) \subseteq g-\alpha Cl_{\beta}(A*B)$ which implies $g-\alpha Cl_{\beta}(A*g-\alpha Cl_{\beta}(B)) \subseteq g-\alpha Cl_{\beta}(A*B)$. By Theorem 3.23(1), we have $g-\alpha Cl_{\beta}(A)*g-\alpha Cl_{\beta}(B) \subseteq g-\alpha Cl_{\beta}(A*B)$.

- (ii) Since $G au Int_{\beta}(A) \subseteq A$, thus $G au Int_{\beta}(A) * G au Int_{\beta}(B) \subseteq A * G au Int_{\beta}(B)$. Similarly $G au Int_{\beta}(A) * G au Int_{\beta}(B) \subseteq G au Int_{\beta}(A) * B$. Thus $G au Int_{\beta}(A) * G au Int_{\beta}(B) \subseteq A$ * $G au Int_{\beta}(B) \cap G au Int_{\beta}(A) * B \subseteq A * G au Int_{\beta}(B) \cup G au Int_{\beta}(A) * B$. By Theorem 3.23(ii), $A * G au Int_{\beta}(B) \subseteq G au Int_{\beta}(A * B)$. By the definition, we get $G au Int_{\beta}(A) * B \subseteq G au Int_{\beta}(A) * B \subseteq G au Int_{\beta}(A) * B$. Therefore, $G au Int_{\beta}(A) au Int_{\beta}(A) au Int_{\beta}(A) * B \subseteq G au Int_{\beta}(A) * B$.
- (iii) By Theorem 3.7, A*B is G- α -open. Let $a \in A$. By the definition then by Theorem 3.23(ii), we have B*a = G- $\alpha Int_{\beta}(B)*a = G$ - $\alpha Int_{\beta}(B*a)$. Hence B*A = G- $\alpha Int_{\beta}(B)*A = G$ - $\alpha Int_{\beta}(B)*A$ is the union of G- α -open sets and therefore, B*A is G- α -open.

Theorem 3.16 Suppose that G, M and L are quasi G- β - α topological group and that $\pi: G \to M$ and $\mu: G \to L$ are homomorphism such that $\mu(G) = L$ and $\ker \mu \subset \ker \pi$.

Then there exists homomorphism $g: L \to M$ such that $\pi = g \circ \mu$. In addition, for each G-neighbourhood U of the identity element e_M in M, there exists a G-neighbourhood V of the identity element e_L in L such that $\mu^{-1}(V) \subset \pi^{-1}(U)$, then g is G- β - α -continuous.

Proof:

Let U be G-neighbourhood of e_M in M.

Consider that G-neighbourhood V of the identity element e_L in L such that,

$$\begin{aligned} \mathbf{W} &= \mu^{-1}(V) \subset \pi^{-1}(U). \\ \pi(\mathbf{W}) &= \pi(\mu^{-1}(V)) \subset \pi(\pi^{-1}(U)) \\ \pi(\mathbf{W}) &= g(V) \subset U \\ g(V) &\subset U. \end{aligned}$$

We have g is $G-\beta-\alpha$ -continuous at the identity element of L.

Hence g is G- β - α -continuous.

Corollary: 3.17 Let $\phi: G \to H$ and $\psi: G \to K$ be a quasi g- β - α -continuous homomorphism of a quasi g- β - α topological group G, H and K such that $\psi(G) = K$ and $\ker \psi \subset \ker \phi$. If the homomorphism ψ is g- α -open, then there exists a g- β - α -continuous homomorphism, $f: K \to H$ such that $\phi = f \circ \psi$.

Proof:

consider the homomorphism $f: K \to H$ such that $\phi = f \circ \psi$. Take an arbitrary G- α -open set V in H. Then $f^{-1}(V) = \psi(\varphi^{-1}(V))$. Since ϕ is G- β - α -continuous and ψ is an G- α -open map, $f^{-1}(V)$ is G- α -open in K. Hence f is G- β - α -continuous

Proposition 3.18:

Let G be a quasi G- β - α -topological group. Every neighbourhood U of e contain an G- α -open symmetric neighbourhood V of e such that $VV \subset U$.

Proof:

Consider that U' be the G- α -interior of U.

Take the multiplication mapping $\pi: U' \times U' \to G$.

since π is G- β - α -continuous, $\pi^{-1}(U')$ is G- α -open and contain (e,e).

Hence there are G- α -open sets $V_1, V_2 \subset U$ such that $(e,e) \in V_1 \times V_2$, and $V_1 V_2 \subset U$.

Let $V_3 = V_1 \cap V_2$, then $V_3V_3 \subset U$ and V_3 is an G- α -open neighbourhood of e.

Let $V = V_3 \cap V_3^{-1}$, which is G- α -open, contain e and V is symmetric and satisfies $VV \subset U$.

Theorem 3.19:

Let $p: G \to H$ be a G- β - α -continuous homomorphism of a quasi G- β - α -topological groups. Suppose that the image p(U) contains a non-empty G- α -open set in H, for each G- α -open neighbourhood U of the neutral element e_G in G. Then the homomorphism p is G- α -open.

Proof

We prove that the neutral element e_H of H is in the g- α -interior of p(U), for each g- α -open neighbourhood U of e_G in G. Choose an g- α -open neighbourhood V of e_G such that $V^{-1}V \subset U$. Consider that p(V) contains a non-empty g- α -open set $W \in H$.

Then $W^{-1}W$ is an G- α -open neighbourhood of e_H and we have that $W^{-1}W \subset p(V)^{-1}p(V) = p(V^{-1}V) \subset p(U)$. Consider an arbitrary element $y \in p(U)$, where U is an arbitrary non-empty G- α -open set in G.We can determine $x \in U$ with p(x) = y and G- α -open neighbourhood V of e_G in G such that $xV \subset U$. Take W be an G- α -open neighbourhood of e_H with $W \subset p(V)$. Then the set yW contains y, it is G- α -open in H and, $yW \subset p(xV) \subset p(U)$. Hence p(U) is G- α -open in H.

Definition 3.20

Let (G,*) be a group and τ be a G -topology on G. A mapping G: $G - \alpha O(G, G) \rightarrow P(G)$ is called $G - \alpha$ -left operation if for any $G \in G$ and whenever G: G = G

In the result we denote the collection of all g- α open set containing the identity e by Ω

Theorem 3.21

Let (G, *) be a group $, \tau$ be a G -topology on G, (G, G) be $G - \alpha_{\beta}$ -regular and β be an G - α -left operation, then for any subset A of G, G - $\alpha Cl_{\beta}(A) = \bigcap_{V \in \Omega} A * V^{\beta} = \bigcap_{V \in \Omega} V^{\beta} * A$.

Proof.

Let $x \in \mathcal{G} - \alpha Cl_{\beta}(A)$ and $V \in \Omega$, then $e \in V$ implies that $e \in V^{-1}$ which is $\mathcal{G} - \alpha$ -open. Since $e = x^{-1} * x$, there is an $\mathcal{G} - \alpha$ -open set U containing x with $x^{-1} * U^{\beta} \subseteq V^{-1^{\beta}}$. There is $a \in A \cap U^{\beta}$, thus $x^{-1} * a \in V^{-1^{\beta}}$ and $a^{-1} * x \in V^{\beta}$. Therefore $x = a * (a^{-1} * x) \in A * V^{\beta}$. Hence $\mathcal{G} - \alpha Cl_{\beta}(A) \subseteq \bigcap_{v \in \Omega} A * V^{\beta}$.

Conversely, let $x \in \cap_{V \in \Omega} A * V^{\beta}$ and $O \in \mathcal{G} - \alpha - O(G, \mathcal{G})$ such that $x = x * e \in \mathcal{O}$. then there is $V \in \Omega$ with $x * V^{\beta} \subseteq \mathcal{O}^{\beta}$. Since $e \in V$ and V is $\mathcal{G} - \alpha$ -open, implies $e \in V^{-1}$ and V^{-1} is also $\mathcal{G} - \alpha$ -open, we have $V^{-1} \in \Omega$ and $x \in A * V^{-1\beta}$. For some $a \in A$, $a^{-1} * x \in V^{-1\beta}$, then $x^{-1} * a \in V^{\beta}$. Since $a = x * (x^{-1} * a) \subseteq x * V^{\beta} \subseteq \mathcal{O}^{\beta}$, $a \in A \cap \mathcal{O}^{\beta}$, implies $x \in \mathcal{G} - \alpha \mathcal{C}l_{\beta}(A)$.

Therefore, $\bigcap_{V \in \Omega} A * V^{\beta} \subseteq \mathcal{G} - \alpha \mathcal{C}l_{\beta}(A)$. and $\bigcap_{V \in \Omega} A * V^{\beta} = \bigcap_{V \in \Omega} V^{\beta} * A$. Hence $\bigcap_{V \in \Omega} A * V^{\beta} = \bigcap_{V \in \Omega} A * V^{\beta} = \bigcap_{V \in \Omega} V^{\beta} * A$.

Theorem 3.22

Let (G, *) be a group and (G, G) be a G- α_{β} -regular space, then the following statements are true:.

- (i). For any $\in G$, the left translation $l_a: G \to G$ defined by $l_a(x) = a * x$, is an $G \alpha (\beta, \beta)$ -homeomorphism of G onto G.
- (ii) For two elements x and y in G, there exists an g- α - (β,β) -homeomorphism f of G onto itself such that f(x) = y.

Proof.

(i) Let $a, x, y \in G$ and $l_a(x) = l_a(y)$, then a * x = a * y and x = y. Therefore, l_a is one-to-one. Since G is a group, for every $x \in G$, $a^{-1} * x \in G$, thus $l_a(a^{-1} * x) = a * (a^{-1} * x) = x$. Hence l_a is onto. Let O be an $G - \alpha_{\beta}$ -open set, then $l_a(O) = a * O$. By Theorem 3.13, so $a * O \in G - \alpha O(G, \tau)_{\beta}$. Hence l_a is $\alpha_{(\beta,\beta)}$ -open. Let O be an $G - \alpha_{\beta}$ -open set, then $l_a^{-1}(O) = a^{-1} * O$. By Theorem 3.13 and since G is $G - \alpha_{\beta}$ -regular, So $G - \alpha = \alpha O(G, \tau)_{\beta}$. Hence, $g = \alpha O(G, \tau)_{\beta}$.

(ii). Let $x, y \in G$ and $y * x^{-1} \in G$. Define $f = l_{y*x^{-1}}$: $G \rightarrow G$ as above, then $l_{y*x^{-1}}$ is $G - \alpha - (\beta, \beta)$ -homeomorphism, and $l_{v*x^{-1}}(x) = y * x^{-1} * x = y$.

Theorem 3.23:

Suppose that G is a quasi g- β - α topological group. Then, for each g- α -compact subset F of G such that $e \notin F$, there exists an g- α_{β} -open neighbourhood O(F) of F and an g- α_{β} -open neighbourhood O(F) of e such that $O(F) \cap O(F)^{-1} = \emptyset$.

Proof:

Let $\gamma = \{ V_x x : x \in F \}$. Choose the G- α_β -open neighbourhood V_x of e such that $x^{-1} \notin V_x^2$. Then $V_x x \cap V_x^{-1} = \emptyset$. Therefore $\gamma = \{ V_x x : x \in F \}$ is a family of G- α_β -open sets in G of G- α -covering the G- α -compact set F, there exists a finite subset F of G such that $F \subset \bigcup_{x \in K} V_x x$. Put $G(e) = \bigcup_{x \in K} V_x$ and $G(F) = \bigcup_{x \in K} V_x x$. Then G(e) is an G- α_β -open neighbourhood of G, and $G(F) \cap G(e)^{-1} = \emptyset$.

Theorem 3.24.

Let A and B be non-empty subsets of a quasi G- β - α -topological group (G, *, G) and β be identity, then

- (i). If A and B are G- α_{β} -connected, then A * B is G- α_{β} -connected
- (ii). If B is $g-\alpha_{\beta}$ -connected, and A * b is $g-\alpha_{\beta}$ -connected for some $b \in B$, then A * B is $g-\alpha_{\beta}$ -connected.
- (iii). If B is $G-\alpha_{\beta}$ -connected and $A \subseteq B^{-1}$, then $e \in A * B$ and A* B is $G-\alpha_{\beta}$ -connected.
- (iv). If A is $G \alpha_B$ -connected, then $A^{-1} * A$ and $A * A^{-1}$ are $G \alpha_B$ -connected.

Proof.

- 1. Let $f: (G, \mathcal{G}) \times (G, \mathcal{G}) \to (G, \mathcal{G})$ defined by f(a,b) = a * b for all $a, b \in G$, so f is \mathcal{G} - $\alpha \beta$ -continuous implies f is \mathcal{G} - $\alpha_{(\beta,\beta)}$ -continuous. Since A and B are \mathcal{G} - α_{β} -connected in G, we have $A \times B$ is \mathcal{G} - α_{β} -connected in $G \times G$. Since the \mathcal{G} - $\alpha_{(\beta,\beta)}$ continuous image of an \mathcal{G} - α_{β} -connected set is \mathcal{G} - α_{β} -connected. Hence $f(A \times B) = A * B$ and A * B is \mathcal{G} - α_{β} -connected.
- 2. Suppose A is not $G-\alpha_{\beta}$ -connected, then there exist $G-\alpha_{\beta}$ -separated sets U and V such that $A = U \cup V$, implies that $A * b = U * b \cup V * b$. If $x \in U * b \cap V * b$, then x = u * b and x = v * b for some $u \in U$ and $v \in V$, x = u * b = v * b implies u = v. This is contradiction ,since U and V are disjoint, therefore $U * b \cap V * b = \emptyset$. Since $G-\alpha Cl_{\beta}(U * b) = G \alpha Cl_{\beta}(U) * b$ and $G-\alpha Cl_{\beta}(V * b) = G-\alpha Cl_{\beta}(V) * b$, using by (i) we get $G-\alpha Cl_{\beta}(U * b) \cap V * b = \emptyset$ and $G-\alpha Cl_{\beta}(V * b) = \emptyset$. Then $G-\alpha Cl_{\beta}(V * b) = \emptyset$. Therefore $G-\alpha Cl_{\beta}(V * b) = \emptyset$. Therefore $G-\alpha Cl_{\beta}(V * b) = \emptyset$. Then $G-\alpha Cl_{\beta}(V * b) = \emptyset$.
- 3. Let $x \in A$, then $x^{-1} \in B$ implies $e = x * x^{-1} \in A * B$. Let $x, y \in A$, then $\{x\}$, $\{y\}$ and B are G- αCl_{β} -connected, thus $\{x\} * B = x * B$ and $\{y\} * B = y * B$ are G- αCl_{β} -connected by (i). Since $x, y \in A$, $x^{-1}, y^{-1} \in B$ $e = x * x^{-1} = y * y^{-1} \in x * B \cap y * B$. Thus x * B and y * B are not G- αCl_{β} -separated for every $x, y \in A$. Hence $\{x * B : x \in A\}$ is a collection of G- αCl_{β} -connected subsets of G such that no two members are G- αCl_{β} -separated. Therefore $U_{x \in A}x * B = A * B$ is G- αCl_{β} -connected.
- 4. Since inversion is G- $\alpha_{(\beta,\beta)}$ -continuous and A is G- αCl_{β} -connected, so A^{-1} is G- αCl_{β} -connected. By (i) A and A^{-1} G- αCl_{β} -connected implies A^{-1} * A and A * A^{-1} are G- αCl_{β} -connected.

4 Quotients on quasi generalized β-α-topological group

```
Definition 4.1. Let (G, *, \mathcal{G}) be a quasi \mathcal{G}-β-α-toplogical group and S be a normal subgroup of a group G and the mapping \pi: G \to G/S be defined by \pi(g) = g * S, for each g \in G. In the set G/S, we define a family G' and G-αO(G/S, G') of subset as follows: G' = \{O \subseteq G/S : \pi^{-1}(O) \in G\} and G-αO(G/S, G') = \{O \subseteq G/S : \pi^{-1}(O) \in G\} and G-αO(G/S, G') = \{O \subseteq G/S : \pi^{-1}(O) \in G\} and G-αO(G/S, G), we defined the operation G-αO(G/S, G) by G-αO(G/S, G) as follows: (\pi(U))^{\beta_{G/S}} = \pi(U^{\beta}) for every G-αO(G/S, G) and G-αO(G/S, G).

Example: 4.2 Let G-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G/S-αO(G
```

$$\begin{split} \{1+S,2+S\}^{\beta_{Z_2/S}} &= \pi(\{1,2,0,3\})^{\beta_{Z_2/S}} = \pi(\{1,2,0,3\}^{\beta}) = \pi(Z_3) = Z_3/S, \\ \{S,1+S\}^{\beta_{Z_2/S}} &= \pi(\{1,0,3\})^{\beta_{Z_2/S}} = \pi(\{1,2,0,3\}^{\beta}) = \pi(Z_3) = Z_3/S, \\ \{S,2+S\}^{\beta_{Z_2/S}} &= \pi(\{1,2,0,3\})^{\beta_{Z_2/S}} = \pi(\{1,2,0,3\}^{\beta}) = \pi(Z_3) = Z_3/S, \\ \text{Therefore, } (Z_3/S,+_3,\mathcal{G}') \text{ is a quasi } \mathcal{G} - \beta_{Z_2/S} - \alpha \text{-topological group.} \end{split}$$

Theorem 4.3. Let (G, *, G) be a quasi G- β - α -topological group and let S be normal subgroup of G. If (G, G) is G- α -regular, then (G/S, *, G') is a quasi G- β -G- α -topological group.

Therefore $\pi^{-1}(\pi(U)) = \bigcup_{g \in U} g * S = U * S$.

By theorem 3.13, we have $U * S \in G-S_{\alpha}O(G, \mathcal{G})$ with $U \in G-S_{\alpha}O(G, \mathcal{G})$. Since (G, \mathcal{G}) is $G-S_{\alpha\beta}$ -regular, $U \in G-S_{\alpha}O(G, \mathcal{G}) = G-S_{\alpha\beta}O(G, \mathcal{G})$. Since $\pi(U) \in G-S_{\alpha}O(G/S, \mathcal{G}')$ for every $U \in G-S_{\alpha}O(G, \mathcal{G})$, therefore $\pi^{-1}(\pi(U)) \in G-S_{\alpha}O(G, \mathcal{G})$.

Next we show that the multiplication mapping $(a,b) \to a * b$ is jointly $G - \beta_{G/S} - \alpha$ -continuous in both variables $(G/S, G') \times (G/S, G') \to (G/S, G')$.

Let $O \in G - \alpha O(G/S, G')$ and let $a, b \in G/S$ such that $a * b \in O$. Let $x, y \in G$ satisfy $a = \pi(x)$ and $b = \pi(y)$. Since π is a homomorphism, so $\pi(x * y) = \pi(x) * \pi(y) = a * b \in O$ and thus $x * y \in \pi^{-1}(0)$. Since $O \in G - \alpha O(G/S, G')$, we have $\pi^{-1}(O) \in G - \alpha O(G, G)$. Since $G = G - \alpha O(G, G)$ is a $G - \alpha O(G, G)$ such that $G = G - \alpha O(G, G)$ such that $G = G - \alpha O(G, G)$ such that $G = G - \alpha O(G, G)$ such that $G = G - \alpha O(G, G)$ and $G = G - \alpha O(G, G)$. Again since $G = G - \alpha O(G, G)$ such that $G = G - \alpha O(G, G)$ such

since $U^{\beta} * V^{\beta} \subseteq \pi^{-1}(O)^{\beta}$, we have $\pi(U^{\beta} * V^{\beta}) \subseteq \pi((\pi^{-1}(O)^{\beta}))$ and therefore $\pi(U^{\beta}) * \pi(V^{\beta}) \subseteq \pi((\pi^{-1}(O)^{\beta}))$ implies $(\pi(U))^{\beta G/S} * \pi(V)^{\beta G/S} \subseteq \pi(\pi^{-1}(O)))^{\beta G/S} = O^{\beta G/S}$. Hence, we have that $\pi(U) \in G$ - $\alpha O(G/S, G')$ an $\pi(V) \in G$ - $\alpha O(G/S, G')$. Since $\alpha = \pi(x) \in \pi(U)$ and $\beta = \pi(y) \in \pi(V)$, we have shown that the multiplication mapping is jointly G- $\beta_{G/S}$ - α --continuous in both variables.

Now, we have to show that the inversion mapping $a \to a^{-1}$ is $g - \beta_{G/S} - \alpha$ -continuous $(G/S, G') \to (G/S, G')$. Let $a \in G/S$ and $O \in \alpha O(G/S, G')$ such that $a^{-1} \in O$. let $x \in G$ such that $a^{-1} = \pi(x^{-1})$ and $a = \pi(x)$. Then $\pi(x^{-1}) = a^{-1} \in O$ and thus $x^{-1} \in \pi^{-1}(O)$. Since $\pi^{-1}(O) \in G - \alpha O(G, G)$, there is an $G - \alpha$ -open set U such that $x \in U$ and $(U^{\beta})^{-1} \subseteq (\pi^{-1}(O))^{\beta}$. Now $\pi(x) = a \in \pi(U)$, and $\pi(U) \in G - \alpha O(G/S, G')$. Since π is homomorphism, so $\pi(U^{\beta^{-1}}) \subseteq (\pi^{-1}(O))^{\beta}$ implies $\pi(U^{\beta})^{-1} \subseteq \pi(\pi^{-1}(O))^{\beta}$ and hence $(\pi(U)^{\beta_{G/S}})^{-1} \subseteq \pi(\pi^{-1}(O))^{\beta_{G/S}} = O^{\beta_{G/S}}$. Therefore the inversion is $G - \beta_{G/S} - \alpha$ -continuous and hence (G/S, *, G') is quasi $G - \beta_{G/S} - \alpha$ -topological group.

Theorem 4.4 Let (G, *, G) be a quasi G- β - α -topological group. If A is an G- α_{β} -closed subset of G, then the normalizer of A is G- α_{β} -closed subgroups of G.

Proof. Let $N = \{ : x * A = A * x \}$ denote the normalizer of A and let $y \in N$,

then y * A = A * y implies $y^{-1} * A = A * y^{-1}$, thus $y^{-1} \in N$. If $x, y \in N$,

then
$$(x * y^{-1}) * A = x * (y^{-1} * A)$$

= $x * (A * y^{-1})$
= $(x * A) * y^{-1}$
= $A * (x * y^{-1}).$

Hence $x*y^{-1} \in \mathbb{N}$ and \mathbb{N} is a subgroup. Let $r \in \mathcal{G} - \alpha Cl_{\beta}(\mathbb{N})$ and $r*a \in r*A$ for $a \in A$. Let $O \in \mathcal{G} - \alpha O(G, \mathcal{G})$ such that $r*a*r^{-1} \in O$, then there are $\mathcal{G} - \alpha$ -open sets \mathbb{U} and \mathbb{V} such that $r \in \mathcal{U}$, $a \in \mathcal{V}$ and $\mathcal{U}^{\beta} *\mathcal{V}^{\beta} *\mathcal{U}^{\beta^{-1}} \subseteq O^{\beta}$. There is $n \in \mathcal{U}^{\beta} \cap \mathbb{N}$, thus $n*a*n^{-1} \in O^{\beta}$. Since n*A = A*n, so $n*a*n^{-1} \in A \cap O^{\beta}$. Thus $r*a*r^{-1} \in \mathcal{G} - \alpha Cl_{\beta}(A) = A$, hence $r*a*r^{-1} \in A$. Then $(r*a*r^{-1})*r=r*a \in A*r$ and $r*A \subseteq A*r$. Similarly $A*r \subseteq r*A$ and so r*A = A*r. Hence $r \in \mathbb{N}$ and \mathbb{N} is $\mathcal{G} - \alpha_{\beta}$ -closed.

Proof.

Let any $x \in G$ and $\pi(x) \in G$ - $\alpha_{\beta_{G/S}}Cl(\pi(V))$. Since V * x is an G- α -open set containing x and the mapping $\pi : G \to G/S$ be defined by $\pi(V) = V * x$ is G- $\alpha_{\beta_{G/S}}$ -open, then $\pi(V * x)$ is an G- $\alpha_{\beta_{G/S}}$ -open set containing $\pi(x)$. Here $\pi(V * x) \cap \pi(V) \neq \emptyset$, we have $\pi(a * x) = \pi(b)$ for some $a \in V$ and $b \in V$, ie) a * x = b * h, for some $h \in S$, which implies $x = (a^{-1} * b) * h \in U * S$, since $a^{-1} * b \in V^{-1} * V \subseteq U$. Therefore, $\pi(x) \in \pi(U * S) = \pi(U)$. Hence G- $\alpha_{G/S}Cl(\pi(V)) \subseteq \pi(U)$.

Theorem 4.6 Let $(G, *, \mathcal{G})$ be an iresolute \mathcal{G} - β - α -topological group, (G, \mathcal{G}) be \mathcal{G} - α_{β} -regular and S be a normal subgroup of G, the quotient space G/S is \mathcal{G} - $\alpha_{\beta_{G/S}}$ -regular.

Proof.

Let the mapping $\pi: G \to G/S$ be defined by $\pi(V) = V * x$.

Let W be a G- α -open set of $\pi(e)$ in G/H, where e is the neutral element of G.

By the continuity of π , we can find an G- α -open set U of e in G such that $\pi(U) \subset W$.

Since G is a quasi g- β - α -topological group, we can choose an g- α -open set V of e such that $V^{-1} * V \subseteq U$. Then, by theorem 4.5, $\overline{\pi(V)} \subset \pi(U) \subset W$.

Since $\pi(V)$ is a G- $\alpha_{\beta_{G/S}}$ -open neighbourhood of $\pi(e)$, the G- $\alpha_{\beta_{G/S}}$ -regular of G/S at the point $\pi(e)$ is satisfy. Hence the space G/S is G- $\alpha_{\beta_{G/S}}$ -regular

Theorem 4.7 Let (G, *, G) be a G- β - α -topological group and β be identity.

If G_e is $g-\alpha_{\beta}$ -component subset of G such that $e \in G_e$, then G_e is $g-\alpha_{\beta}$ -closed normal subgroup.

Proof.

Let $a \in G_e$ and $a * G_e$ is $g - \alpha_{\beta}$ -connected. Since G_e is $g - \alpha_{\beta}$ -closed as it is an $g - \alpha_{\beta}$ -component. Thus there is an $g - \alpha_{\beta}$ -component C of G such that $a \in G_e \subseteq C$. If $C \neq G_e$, then C and G_e are separated, but $a \in C \cap G_e$. Therefore $C = G_e$ and $a \in G_e \subseteq G_e$. Let $b \in G_e$, since $a^{-1} * G_e$ is $g - \alpha_{\beta}$ -connected and $e \in a^{-1} * G_e$, so $a^{-1} * G_e \subseteq G_e$. Thus $a^{-1} * b \in G_e$ and $b \in a * G_e$. Hence $G_e \subseteq a * G_e$ and $G_e = a * G_e$. Therefore G_e is a subgroup.

If $x \in G$, then $x * G_e * x^{-1}$ is $G - \alpha_{\beta}$ -connected and $e \in x * G_e * x^{-1}$ implies $x * G_e * x^{-1} \subseteq G_e$. Similarly $x^{-1} * G_e * x \subseteq G_e$, thus $G_e \subseteq x * G_e * x^{-1}$. Therefore $G_e = x * G_e * x^{-1}$ and G_e is normal.

Theorem 4.8 Let (G, *, G) be a G- β - α -topological group and A be a subset of G. If G is G- α - β - T_2 , then the centralizer of A is G- α -closed subgroups of G.

Proof. Let $C = \{ x : x * a = a * x \text{ for all } a \in A \}$ denote the centralizer of A. Let $y \in C$, then y * a = a * y for every $a \in A$. Therefore $a * y^{-1} = y^{-1} * a$ for every $a \in A$, thus $y^{-1} \in C$. Let $x, y \in C$ and $a \in A$, then $(x * y^{-1}) * a = x * (y^{-1} * a)$ $= x * (a * y^{-1})$ $= (x * a) * y^{-1}$ $= a * (x * y^{-1})$.

Hence $x * y^{-1} \in C$ and C is a subgroup.

Let $p \in G - \alpha Cl_{\beta}(C)$. Let $a \in A$ and $O \in G - \alpha O(G, G)$ such that $p * a * p^{-1} \in O$, then there are $G - \alpha$ -open sets U and V such that $p \in U$, $a \in V$ and $U^{\beta} * V^{\beta} * U^{\beta^{-1}} \subseteq O^{\beta}$. Since there is $x \in U^{\beta} \cap C$, $x * a * x^{-1} \in O^{\beta}$, but x * a = a * x, thus $a = x * a * x^{-1} \in O^{\beta}$. Therefore for every $O \in G - \alpha O(G, G)$ such that $p * a * p^{-1} \in O$, then $a \in O^{\beta}$. Suppose $p * a * p^{-1} \neq a$. Since G is $G - \alpha - \beta - T_2$, then there are $G - \alpha - O(G + \alpha) = C + C = C$. This is a contradiction and thus, G = C + C = C = C = C = C. This is a contradiction and thus, G = C + C = C = C = C = C. Hence C is $G - \alpha_{\beta} - C = C = C = C$.

Proposition 4.9:

The map π is a quasi G- β - α -continuous and G- α -open, the space (G/S, G') is G- α -homogeneous. Moreover, if the Subgroup S is normal than the multiplication xSyS = xyS in G/S is G-G- α -continuous and G/S, G-G- α -topological group.

Proof:

Let the map π be the G- β - α -continuous. If $U \subset G$ is an G- α_{β} -open set then $\pi^{-1}\pi(U) = US$ and we have $\pi(U)$ is G- α_{β} -open. The space G/S is G- α -homogeneous, because the translation $l_a : xS \to axS$ are G- α -homeomorphism. Assume S be a normal subgroup of the group G. Let U' is a neighbourhood of the point c' = a'b' then c = ab for some representatives a, b, c from the classes a', b', c' respectively. For a neighbourhood $U = \pi^{-1}(U') \ni c$ there exist neighbourhoods $V_1(a)$ and $V_2(b)$ such that $V_1(a)V_2(b) \subset U$. Hence $\pi(V_1(a))\pi(V_2(b)) \subset U'$ and G/S is a para G- β - α -topological group.

Proposition 4.10:

If S is g- β - α -compact then the map π is g- α -closed. If the space (G, g) is Hausdorff then the space (G/S, g') is Hausdorff. If the space (G, g) is g- α -regular then the space (G/S, g') is g- α -regular.

Proof

Let F be a G- α -closed subset of the group G and $\alpha' \in G/S \setminus \pi(K)$. Consider an arbitrary point $\alpha \in \pi^{-1}(\alpha')$. Then $\alpha S \cap K = \emptyset$.

By Proposition 3.18 there exists an G- α -open neighbourhood U of the unit such that $UxS \cap K = \emptyset$. Then $x' \in \pi(Ux)$ and $\pi(Ux) \cap \pi(F) = \emptyset$ thus the map π is G- α -closed. Consider that G be Hausdorff and $x'_1, x'_2 \in G/S$. To prove that the space G/S is Hausdorff. Choose an arbitrary points $x_i \in \pi^{-1}(x'_i)$. Then $x_1S \cap x_2S = \emptyset$.

By Proposition 3.18 there exists an G- α -open neighbourhood U of the unit such that $Ux_1S \cap Ux_2S = \emptyset$. Then $x' \in \pi(Ux_i)$ and $\pi(Ux_1) \cap \pi(Ux_2) = \emptyset$ thus the space G/S is Hausdorff. Let G be G- α -regular. K' be a G- α -closed subset of G/S and $X' \in G/S \setminus K'$.

To prove that the space G/S is G- α -regular. Choose an arbitrary points $x \in \pi^{-1}(x')$. Then $x \notin \pi^{-1}(K')$. By Proposition 3.18 and uniformity of G imply that there exists an G- α -open neighbourhood G of the unit such that $\overline{U}x \cap \pi^{-1}(K')=\emptyset$.

Then $x' \in \pi(Ux)$ and $\overline{\pi(Ux)} \cap K' = \emptyset$, so the space G/S is G- α -regular.

REFERENCES

- A.V.Arhangelskii ,M.Tkachenko , Topological Groups and Related structures. Atlantis Studies in Mathematics, Atlantis Press/ Word Scientific, AmsterdamParis, 1(2008).https://doi.org/10.2991/978-94-91216-35-0.
- A.Csaszar, generalized topology,generalized continuity; Acta Math. Hungar. 96 (2002) 351-357.
- Csaszar, A.Generalized open sets in generalized topologies, Acta Mathematice Hungaria.106,2005,53-66.
- 4. A.Csaszar, Product of generalized topologies, Acta Math. Hungar, 123 (2009), 127132.
- A.Csaszar, Separation axioms for generalized topologies, Acta Math. Hungar, 104 (2004), 63-69.
- A.Csaszar, γ connected sets, Acta Math. Hunger, 101(2003), 273-279.
- Dylan spivak. Introduction on topological groups, Math (4301).
- 8. H.Z.Ibrahim, On a class of α_{γ} -open sets in a topological space, Act Scientiarum. Technology, 35 (3) (2013),539-545.
- 9. Joseph A.Gallian, Contemporary Abstract Algebra, Narosa (Fourth Edition).
- A.B.Khalaf and H.Z.Ibrahim. Topological Group Via Operation defined on α-Open Sets.
- A.B.Khalaf and H.Z.Ibrahim, α-γ -convergence, α-γ-accumulation and α-γ-compactness, Commun, Fac. Sci. Univ. Ank. Sr. A1 Math. Stat., 66 (1) (2017), 43-50.
- A.B.Khalaf and H.Z.Ibrahim, α_γ-connectedness and some properties of α_(γ,β)continuous functions, Accepted in The First International conference of Natural
 Science (ICNS) from 11-12 July 2016, Charmo University.
- 13. A.B.Khalaf and H.Z.Ibrahim, Weakly α_{γ} -regular and Weakly α_{γ} -normal spaces. FACTA UNIVERSITATIS Ser. Math. Inform., (2017).
- A.B.Khalaf and H.Z.Ibrahim, Some new functions via operations defined on α-open sets, Journal of Garmian University.no.12 (2017).
- A.B.Khalaf. S. Jafari and H. Z. Ibrahim. Bioperations on α-Open sets in topological spaces. International Journal of Pure and Applied Mathematics. 103(4) (2015). 653-666.

- 16. Muard Hussain, Moiz Ud Din Khan, Cenap Ozel, On generalized topological groups, Filomat 27:4(2013), 567-575.
- 17. R.Rama vani and R.Selvi, On Generalized β-α-topological Group.