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Abstract
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I.  Introduction and Basic definitions
This paper is a continuation of [26] by [34] in which he announced some results considered here. The
development of several research fields, such as geometric function theory, hyperbolic geometry, complex
dynamical systems, and theory of quasiconformal mappings have the origins in the Schwarz lemma. There is
numerous literature related to Schwarz lemma (see for example [1], [30], [4], [29], [3], [15], [16], [5], [22] and
the literature cited there). Recently, [12] (shortly KV-results) have found a version of Schwarz lemma for
harmonic functions if co-domains are strips; see also Remark 9 (in connection with works of [15], [16], [5]), and
[26], [27]. It seems that KV-results influenced further research by [6], [23], [14] and [28] (see also [8] and [13])
which used different methods. Using classical Schwarz lemma for holomorphic functions following [34], we give
a simple approach to KV-results and put it into a broader perspective.
Definition 1. (1) If f; is a function on a set X and x; € X sometimes we write f;x; instead of f;(x;). For
x; € R™ and u; € T, R", we denote by |u;| = [u;]. the Euclidean norm of u;. Let G be an open set in R".
For a mapping f;: G = R™ which is differentiable at x; € G by f}r[_‘cjj} (or d{:f}-)x}. = [:df:,—:]xj. we denote the

cotresponding linear mapping from the tangent space T,,_,J.R“ into the tangent space T, fj\,(,(jj]Rim and by

| ()| (or || (@ fj)xj.||: shortly | (df})x,

) its norm with respect to the given norms on G and f;(G).

(i1) Throughout this paper by $(a,a + €) we denote the set (g, a +€) X R, - =a<a+e€ =00, andin
particular we write $g for $(—1,1). Note that S{a,a + €) isastripif —o0 < a < a + € < o0 and $(a, +0)
is a half-plane if a is a real number, and S{—o0, +) = C.

(111) If w; 1s a complex number by u; = Re w; we denote the corresponding real part, and in a similar way
if f; is a complex-valued function defined on set G we usually write f; = u; + v}, where u; and v; are real
valued functions defined on G by u;(z,.5) = Re f;(z,.5) and v;(Z,45) = Im f;(2,.5). 2,45 € G. Wewrite
u; =Ref; and v; =Imf; and call it the corresponding real and imagmary part of the function f;

respectively: and by Vf;(z,42) = (( fide " )y j) we denote the complex gradient of f;. By this definition

2 2
+ |( E);;l . and therefore we find

of the gradient then it seems natural to define |Vf;(2,.,5)|* = |[j:|,:]“f,(‘f
|fj‘(zr+2)| = |Vfi(zps2)] = \.-"§|f]-'(2,.+2)|. In this paper if F; is a complex-valued function, we write F; in
the form F; = U; + iV}. where U; = Re F; and V; = Im F}.
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Definition 2. (distortion). For a complex valued function f; defined on a planar domain D, we use notation
[_f})xf and {_f}-)},j for partial derivatives with respect to x; and y;

1, o . - o
0f; =5 (Ui, —1F)5,) and 3fy =5 ((F)l, + iCF)S,):
and for the distortions
Ap(Zrs2) = 11 0f;(Z012)| = | 0f;(Zps2) || and Af,(2012) = |0f;(Zrs2)| + | 0f;(2r42)].
if partial derivatives (fj);q and (}i‘);’; exist,

For z,.2 € D, it is known that Afj(zﬁz:} is the norm of linear operator f]-r{:zr_z} = (df})z,,,- 50 by the
notation in Definition 1 , we have Afj(zrﬂj = |f]-’(zr+2)| = |(dfj)zr+z|* Z,.2 €D.

Let D be a domain in Z,;2 = X; + {y;-plane and ds a Riemannian metric on D which is conformal with
Euclidean metric. Then ds is given by the fundamental form ds = p|dz,,5|.p = 0. In this paper we
suppose that p is continuous function on the corresponding domain. In some situations it is conventent to
call p shortly metric density and denote by d, the corresponding metric.

A plane region D whose complement has at least two points we call a hyperbolic plane domain. It is an
mmportant result in the geometric function theory that on a hyperbolic plane domain there is a unique
complete hyperbolic density(metric) whose the Gaussian curvature is —1. For a hyperbolic plane domain
D, we also denote by pp (or Ap) the hyperbolic density(and by abusing notation the hyperbolic metric
occasionally), by dp the hyperbolic metric and by ¢ the pseudo-hyperbolic metric on D. If we wish to be
more specific we denote by Hypp (2,42) the hyperbolic density at 2,5, € D and by dyyyp p (or simple Hypp)

the hyperbolic metric. By a small abusing of notation we also often write Hypp (2, Zr41) for the hyperbolic
distance between z,, Z.,, € D. Occasionally by 1, and py we denote respectively hyperbolic metric on the
unit disk and on the strip Sq.

In this paper we choose that the hyperbolic density {metric) on the unit disk I is given by

. 2
Hypu(z,.2) = 1 Z. €W (1.1)

= 1Zrs2|?
This 1s motivated by the fact that then the Gaussian curvature of this metric is —1.
For convenience we first collect and stress the following simple properties (see [34]).

(A-1) If ¢; is a conformal mapping of a planar domain D onto U, we define the hyperbolic density on D by
Hypp(2,42) = H}pr{j(,ijZ,._zﬂr,‘b; (Zr42)|- Zrsz € D.

(A-2) If G and D are simply connected domains different from € and ¢; conformal mapping of D onto G,

then HYPG{:¢er+2)|¢j{(Zr+2)| = Hypp(Zr+2),Zr+2 € D.

In particular, using a conformal mapping from the unit disk T onto §;, one can define the hyperbolic density
Hypsg, of §y and get the following version of SchwarzPick lemma(see Section 2 for more details and more
general versions related to hyperbolic domains):

(D) If G 1s a simply connected domain different from € and w; a holomorphic mapping from U into G, then
[(dw)),, ., || = 1. for every z,., € U, where ||(dw)),,,,|| is defined with respect to the hyperbolic norms

on the corresponding tangent spaces T, C and T 2742 G-
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For a more general version of (I) (concerning the corresponding results related to hyperbolic domains) see
Proposition 2.1 and (ScAhl) for the geometric form below. In particular if G = ;. in the statement (I), the
following holds:

(I-1) (i) Suppose that w; is a holomorphic mapping from the unit disk U mto S,. a) Then
H}Tpgo(ij,.+2)|0er{:Z,—+2)| < Hypu(Zr42), Zrs2 € U, with the equality at some z.,, € U iff w; is a

conformal mapping of U onto S;.

b) If in addition to (1), we have w;(0) = 0, then |w]’ (0)| = iwirh the equality iff w; is a conformal mapping
of U onto §¢ with w;(0) = 0.

Note that by the definition given by the equation (1.1), Hypy(0) = 2. and it is well known that Hyps (0) =
/2 (see Example 2 below) and therefore b) follows from a).

We will use the following connection between harmonic and holomorphic functions:

(ID. If f; = w; + iv; 1s a complex valued harmonic and
such that Re f; = Re F; on D (in this setting we say that

F; = U; + 1V; holomorphic function on a region D
F; is associated to f;). then

l:ﬁ:] F; = [Uj}rj +1 ”{;)x} = (brj)tj =i (DT"I}}J, = (jujj).rj - i‘(jujj}y}- = V_H,J and vu’}' = ({juj:]le (uj)yj)'

(b) In particular, |F;| = |WL}| = |V

The following property of strip domains 1s erucial for our derivation of Schwarz lemma for harmonic and
pluritharmonic functions:

(II) - strip property in connection with harmonic functions:

(ITTa) the hyperbolic density HYDgq,q4e)(W;) on S(a,a +¢€), - < a < a + € = o, (in particular, for
Hyps, (w;) on Sy, see (2.4) below), depends only on Re(w;).

(IIIb) Suppose that D is a simply connected plane domain and f;: D — §(a,a + €) 1s a complex harmonie
function on D. Then it is known from the standard course of complex analysis that

(): there is an analytic function F; on D such that Re f; = Re F; on D, and it is clear that
(i1) F;: D = S(a,a + €).

A similar property to (1) holds for plurtharmonic functions.

We will see in Section 2 that the properties (I) b), (II) with (III) (see also Propositions 2.3, 2.1 and 2.2
below) immediately yield a harmonic version of Schwarz lemma, meluding KV-results (Theorem 1.8, 1.12
[12]) and [23].

Further here we will only mention the next property which is a germ for our investigation in section 2:

(I-3) Suppose that the following hypothesis, which we denote by (FH1), holds: (H1): f; is a complex valued
harmonic mapping from the unit disk U into itself with f;(0) = 0.

(a) If f; satisfies the hypothesis (H1), then A¢ (0) < 2 (see [34 ).
] fi T

Proof. We only outline a proof. Using two rotations around 0 we can suppose that ||(djj)u|| = df;(e,) =
0. Since d(f;)o(e,) = (uj}:\.j{jOj} - i(vjj;}((}}. hence d(f;)o(e,) = {jujj);j(f]). Further if F; = U; +iV; is
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an analytic on U such that Re f; = Re F; on U with F;(0) = 0, we find by (I - 1), (1 ),\ (0) = (U; )AJ{O) =
|FjF ('0')| <2 Hence
T T

(A1) Az (0) < 2

T

In addition we have:
(A2) if w; 1s a conformal mapping of U onto So with @;(0) = 0 and 1; = Re w;, by (IIb). [V, (0)| = %.

Therefore (A1) and (A2) yield a partial answer to the extremal Problem 2.

For a complex Banach manifold we define Kobayashi-Finsler norm using analytic disks and get several
dimension analogy of (I). Namely, from simple property that composition of holomorphic mappings is
holomorphic we can derive:

(IV) Let X and ¥ be two complex Banach manifolds. If f; is a holomorphic mapping from X into ¥, a € X
and (a + €) = fj(a),y; € ToX and (u;). = f]-f(a) U;, then the Kobayashi-Finsler norm of (u;). in ¥ is not

greater than of u; in X,
We call the statement (IV) the geometric form of Kobayashi-Schwarz lemma. see Theorem 14 below.

For the Carathéodory, Kobayashi metrics and extremal dises see [19], [20]. [21]: see also [26]. We compute
the Kobayashi-Finsler norm using analytic disks, Pythagoras's theorem and biholomorphic authomorphisms
of the corresponding domains. In particular our considerations include domains on which we can compute
Kobayashi distance, as the unit ball, the polydise. the punctured disk and the strip. Henece we derive various
versions of Schwarz lemma (see [34]).

We consider versions of Schwarz lemma for real valued harmonie functions if codomain 1s an
interval and for harmonic complex valued mappings if codomain is $(a, a + €) with a Finsler type function
(Bj. We define so called the harmonic density on U and use it to prove Theorem 12 which is a version of

Schwarz lemma for harmonic complex valued mappings from the unit disk U into itself. We compute the
Kobayashi-Finsler norms for the unit ball, polydisk and the product of hyperbolic domains and derive the
corresponding inequalities related to holomorphic and pluriharmonie functions between these domains. For
an introduction to Riemann-Finsler geometry see [2]: see also [17].

2. Schwarz lemma for real harmonic functions

For planar domains D and G we denote by Hol(D, G) (respectively Har(D, G) ) the class of all
holomorphie (respectively harmonic) mappings from G into D. For complex Banach manifolds X and ¥ we
denote by O(X,Y) the class of all holomorphic mappings from X into V.

We write Z, .2 = (2, Zry1s -0 Zpgnaz) € €7 On C" we define the standard Hermitian inner product by

n
Zpt2: W =z Z r+k+2(W)k

=1

for z,42,w; € C" and by |2,12| = /(Zr+2, Zr42) We denote the norm of vector z,.4,. By B = B, we denote
the unit ball in C™. In particular we use also notation U and H for the unit disk and the upper half-plane in
the complex plane respectively.

The following statement is useful in applications (see [34]).
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Lemma 1. Let D and G be planar domains with metric density o and p respectively. If f; is a C* mapping
of D into G and

|J‘?(Zr+2)|p(ﬂ'{:zr—2):) = J(Zr+2)’ Zr+2 € D,
then
Ap(fiZrs2: [iWi) < do(Zrsa, W)), Zraz, Wy € D.

It seems that results of this type are well known and that proofs are straightforward. For example, in
particular if the densities are hyperbolic this result is used in [11] (see 3.A and 3.B there).

If G is an h-yperbol}c domain and Z?,_Iz € G, fora Wj'ector vj € T, C we define |Vj|gy, = Hyp(Z,42) |Vl
For convenience of the reader we outline some basic facts related to planar Schwarz lemma (see also [27]).
For z, € U, define

Zpyz — Iy
Te(Cr2) =7 =

rer+2
((pj)zr = —T, and 0 = oy by

Zr42 Iy
1-22,,,

0(Z0, Zp11) = [T (Zeas)| =

We call ¢ the pseudo-hyperbolic distance.

By Riemann mapping theorem simply connected domains different from € are conformally equivalent to
U. Using this important result one can transfer the concept of the pseudo-hyperbolic distance on simply
connected domains different from € and it is shown that the pseudo-hyperbolic distance ¢ and the
hyperbolic distance p are related by

o = tanh(p/2).

The following result, which we call the classical Schwarz Lemma 1-the unit disk, is a corollary of the
maximum modulus principle:

(Se) Suppose that w;: U — U is an analytic map and @;(0) = 0. Then
(i) |@;(Zr+2)| < |Zrs2| and (ii) |0{(0)] < 1.

Using conformal authomorphisms of T one can derive from (1) and (i1) the following results (Sc1) and
(SP1) below:

(Sel) If w;: U — U is an analytic map, then

1 — |w;Z,.5]°

|w;(2,+2j| = 2 Zpy2 € 1L (2.1)

1= |zps2l?
We can rewrite this inequality in the form:
(Se2) [Classical Schwarz Lemma 2-the unit disk].

Suppose that @w;: U — U is an analytic map and z,,, € U.
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Ifv; €T,,,,Cand v = d(wj),,,,(V;). then

Y

2o = |Vi|;{o'

(SP1) Classical Schwarz-Pick lemma. If w; € Hol(U, U), then

O (@2, WiZe1) < Og(Zps Zps1), Zps Zpsaq € UL

It 1s straightforward to derive from (SP1):

(SP2) If G and D are simply connected domains different from C and w; € Hol(G, D). then

r - g ! r
Pp (wjzr+24wjzr—2J = P6(Zri2: Zrs2). Zriz. Zrsn € G.

If D is a hyperbolic domain, using holomorphic covering m: U — D, one can define the pseudo-hyperbolic
and the hyperbolic metric on D: and use it to derive a generalized version of the classical planar Schwarz-
Pick lemma for the unit disk and of (SP2), which holds hyperbolic domains:

Propeosition 2.1. (ScAh). If G and D are hyperbolic domains and w; € Hol(G, D), then

. [ - g ' '
Hypo(@;Zrs2, W;Z)22) = HyPe(Zr12,2042), Zrs2,Ziss € G.

We will refer to this result shortly as the Schwarz-Ahlfors-Pick lemma. This result has useful geometric
form, which is an extension of (S¢2) and (I)a):

Proposition 2.2, (ScAhl).

a) If G and D are hyperbolic domains and w; a holomorphic mapping from D into G. then ||(dwj)z?,+zﬂ =
1, for every z,.,, € D, where the norm is defined with respect to the hyperbolic norms on the corresponding
tangent spaces Tz, ., and T, -, ... This property can be expressed in terms of hyperbolic densities:

b) Hypg{jwjz,,+2j)|w]-{(zr+2)| < Hypp(Zr+2), Zr+2 € D, or in the equivalent form:

)Ifz,,, €G.vj €T, Cand v = d(w)),,,,(Vj). then

=

Vy

= |V; .
Hyp | ]|H3rp

We also need the following result:

(A3) If G, and G, are planar hyperbolic domains such that G; c G,. then Hypg (Z; Zp4q) =
H}rpGJ (Zr'zr+1)1 ZpZryy € Gl'

In the following examples we give explicit formula for a conformal mapping of U onto §; and use it to
compute the hyperbolic density of a strip domain and a half-plane.

Example 1. Let §; = {w;: [Rew;| < m/4]}. It is easy to check that tan maps §; onto U. Let B(w;) = EWI
and (f;)o = tan e B, ie., (f;)o(W;) = tan (E(WJ)) Then (f})o maps S, onto U. Further set

1+ Zry2

2
, dlet ¢, =i—InA,;
1=z, and let ¢, p 0

Ag(Zrsz) =
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thatis @; = (¢;) © Ag. where (¢;), = i 2. Let ¢; be defined by $;(z,.5) = —@;(iz,+,). Note that ¢;
o
maps I, = (—1,1) onto y-axis and ¢ ; maps [y onto itself, and that (,5]- = %al‘ctan 1s the inverse function of
(f;)o- Hence (il): :;B]’{Uj —%and if f; is a conformal map of U onto Sg with f;(0) = 0, then (i2): |f]'{0)| =
T
%. Ifi; = Re cﬁj. then

2 1+iz
i, = —arg (7”) (2.2)
T 1—-1iz,,,
and 11, maps Iy = (—1,1) onto itself.
Example 2. If [T = {w;: Rew; > 0}, then using 4, defined in Example 1. we can compute
H )=—
yPn(W;) = oo W
Hence if G = $(a, o0) and p 1s hyperbolic density on &, we find
p(w;) = (2.3)

Rew}- -a

If we denote by pg hyperbolic density on Sy, then using (f;),, defined in Example 1, we can check that for
w; = u; + iv; € Sy,
i 1
o)) = Hyps, () = 2———
Cos (i Ll'.j )

2[\&-‘}')—[2{(1+E:]:I
€

(2.4)

Ifa,a+e € R e >0, the linear map L defined by L(w;) = ., maps $(a, a + €) conformally

. . - . L2
onto Sy and using it we find p(w;) = po(L(W;)) -

Hence for w; € S(a,a + €), we get

i 1
1) = HyPs(gares(W;) = (2.5
PO = Bstes ) = ) con (Flcau, - 2+ /@)

Now we can rewrite (I-1)a) in more explicit form:

(I-2) If F; is holomorphic map from U into Sg, then by a very special case of Schwarz-Ahlfors-Pick
lemma(see also the property (1)),

PUE:F}(sz)ﬂF}f (Zpa)| € 201 = |2,2) 7Y 2,00 €T, (2.6)
where pg 1s given by (2.4). Thus we have
Proposition 2.3. (Sc-Ah.0). a) If F; is holomorphic map from U into Sy, then
L i b N e £ :
|F}I(zr+2.)| = —:— = ;C[’S EUj (Zrs2) | (1= 120427, 22 €T, (2.7)
Po (Fj{_zr—z})

where U; = ReF;.
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b)If G = §(a, =) and F; is holomorphic map from U into G, then
|F (2r+2)| = 201 = 127227 /p(Fj(2r42)) = 2(Rew; — @) (1 = |Z42]*) 7, 242 € U, (2.8)
where p 1s the hyperbolic density on G.
Sinee pg(0) = m/2 and A5(0) = 2, (I — 1)b) is a corollary of this proposition.
Definition 3. (HO0). In this paper we frequently use the hypothesis:
(HO) Let f;(f; = w; + ivy) be a complex-valued harmonic map from U into S,.

By Har, we denote the family of all complex valued harmonics maps f; from U into the strip S; (that is
the family of mappings which satisfy (H0)).

Set My (u;) = min {1&(1 + |u}-|)}. Hence

Proposition 2.4. If 1; is a harmonic map from U into J; = (—1,1), then

. 4 T B
|vu}'{.zr+2_)| = ECDS (E u_j (Zr+2)) (1 - |Zr+2|2) 1! Zr42 € U. (29)

41- |uj(zr'+2)|2
Vu;(z <"
| j( ?"+2)| i 1 _ |Zr+2|2
1= |u;(Zpso)|

1- |Zr—2|2

) Zpys € T, (2.10)

[V (Zps2)| = 2Mo () v Zpir €1 (2.11)

For the function 1;, defined in Example 1 by (2.2), holds equality in the first inequality.

Note that we do not suppose that 1;(0) = 0. By definition of Hgo, we have that if ¢; is a conformal map
of U onto §g, then

i 4 T . ) S
|#](zr42)]| = —cos (FRe b (7r42)) (1 = |2rs2l) ™, 2p42 € .
Hence by the property (II), the function 1, from Example 1 shows that the first inequality is sharp.

Since f; satisties (HO), by (IIIb) there is a holomorphie function F; = (Fj)¢; associated to f;. If u; = Re F;,
then by (IIb), |Vi;(z,42)| = |F]f(zr+2:)|,zr+2 € U. Now an application of Proposition 2.3 (Se-Ah.0)

(SchwarzAhlfors-Pick estimate (2.7)) yields (2.9). Using that 1 — cos Glj) = 2sin? (%Yj) and the

1 1 4 < M aj g < E 7 O E 3 < — 32 L= o o -

mequahry;t <42sint,0<t < 4> We prove cos (2 )ljj < 1—-x7,[%| < 1, and therefore we get
-1 :

(AN Z(1-w) " < po(wy).

Using cos G u}-) = sin G(l - |u}-|j).) = g(:l — J), we get

(AS) (1 — ;D™ < po(wy).

By (A4), (2.10) follows from (2.9) and now by (AS5) we get (2.11).

Coneerning the proof of Propesition 2.4, note that by (A3), Hyps = Hypy and by (A4). we find
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(a8) Hypu ()1 (%9),) = ZHyps, (%), (49),)- (%) - (%), € (-1,

If F; is holomorphic map from U into S, which satisfies (IIIb) (recall u; = ReF;), then
Hyps, (U;Zr, 4;Zp+1) < Hyps, (Fizy, FiZy+1) = Hypu(Zy, Zys1). Hence by (A6). we get

(A7) Hypy (1 (20), 4 (Zee1) ) < ZHYPy (20, Zeen).

Theorem 4 (see [34]). Suppose that D is a hyperbolic plans domain and v;: D — (—1,1) is a real harmonie
on D. Then Hypy (1.-‘}- (z:), v (:Zﬂ.l:)) = %HYPD{:ZD Zrs1).

Proof. If D is the unit disk T this result is reduced to (A7). It also follows from (2.10) and it has been
proved by [12].

N

In general case one can use a holomorphic cover P: U — D and define ¥, = v; o P. For z,,,, w; € D, let

Zyaz € PTH(Z,4), (W;)' € PTH(w;). By the definition of #; it is clear that ¥;(z.,) = v;(2,.,) and

D; ({:wj)“] = v;(w;). Since D;: U — (—1,1), then by (A7)

Hypm(iﬁj (Z,’-+z),1.“-‘j[i(wj)’)) < iHypU(Z;.”, [iu})’). Since we can choose Zy,, (W;)' €U such that
Hypm(z;ﬂ, (w}-)’) = Hypp (2,42, W;). hence we get a proof of Theorem 4 .

For a complex number p; by e, = e,(p;) € Tp,C we denote the vector with origin at p and coordinates

(1,0) with respect to p;.
There is an analogy of the classical Schwarz lemma (stated above as (Sc)) for harmonic maps:

Lemma 2. (see for example [7]). Let h;: U — S be a complex harmonic mapping with h;(0) = 0. Then

4
|Re h;(z,42)] = Etan“ 12742

and this inequality is sharp for each point z,.,, € T.

If u; 1s a harmonic function from U into /o and v; an arbitrary harmonic real valued on U, then f; = 1; +
iv; belongs to Harg. The following example yields concrete examples which show that we can not control
the distortion of functions in Har,,.

Example 3 [34] Let (f:ﬁ)a(:zr—z) = (JS'J{Z‘.P+2) + an_; and (gj)a(zr+2:) = (I'Bj(zr+2:] + ialm (ﬁj(z‘r+2:)-
where cﬁj is defined in Example 1. For a € R, (f;), and (gj)a are harmonic maps of U into §; and

(7)al0) = (gj)a[j[]:} = 0. Since Hyps, ((ﬁ)a(zr”)) = Hypg, (Re gﬁj(zﬁz)) does not depend on a and
|{f})'a[0}| = |a| and Agg)) (0) = |a] g. there is no reasonable estimate of type described in the property (I)

for the distortion of harmonic functions which maps the unit disk into the strip.

It is interesting to note that Lemma 2 shows that we can control the growth of the real part of a harmonic
mapping which maps U into §, and keeps the origin fixed. However, using the Finsler type norm (F :] _on
—j

S(a,a + €), see Definition 6 below, we can get Theorem 7, which we consider as an appropriate version
of the propery (I) for harmonic mappings. Theorem 7 is a version of the following result (announced in

[26]).
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Theorem 5 (see [34]). Suppose that D is a hyperbolic plane domainand ¢ = S(a,a +€),—owo <a<a+
€< o, and f;:D — G is a complex valued harmonic function on the domain D. Let 2,5, € D, Iy €

T;,..C || =1, and h]-r = d(f})z,..(hy) = Av;, where 4 = |h;| = 0,p; = fi(Zp42) and v; € Tp,C. [vile =
1. If the measure of the convex angle between v; and e; = e,(p;) € Tp}_-iﬂ(el(pj:) can be identified with

vector (1,0) with origin at p;) is @ = a(v;) = a(p;, vj), then

(i) |h}’| |cos a|Hyps(fi(Zy+2)) = HyPp(Zy42). Zr 4z € D, where Hypg is given by formulas (2.3) and (2.5)
(see also (2.4)) if G 1s a half plane or a strip respectively.

,and

(i) There is (hy)o € T%,,,C,

{:h]-:]o| = 1. such that |f]-'(:zr_2)| = |d(f}-)zr+z({:hi:)o)

(ii1) [cos r:r{,||f].’(jzr_2)|Hyp5(jj-{jz,,+zj)) < HyDPp(Zys2) Zryz € D. where {jhj):} = d(ﬂ)zrﬂ([hjj}c) and
Uy = tg(Zpy2) = “(ij (hi):})-

(iv) In particular, 4 = |h}’| = |f}'{:z,._2)

\Zp4o €D, and
(v)if D =T and G = S,

41— |Re f;(z,42)?
hi||cosa] = — - , Zpao € 1.
| j|| | T 1_|Zr—2|2 r+2

(vi)if D = Uand G =11,

Ref.(z, .
|hf||cos a| = 2}37"2; Zp., € UL
1- Izr+2|
(vi)if D = Uand G =1II.
Re f.(z,.
|hj||cos | < ZM Z., €L

1—|zp4al®
(vi1) If f; 1s a real valued function. then

a) |ﬁf(zr-+2)|HYPG(ﬁ'Zr+2) < Hypp(Zrs2). Zrsz € D.

b) HyP (£,(Z0), £y (7e41) ) < HYP (0 Zr0), 21 Zras € D.

In the case D = U, (vii) is proved for ¢ = $(—1,1) in [12], and for G = $(0, @) in [23]. Concerning the
proof of Theorem 5 . if D = U we can use the procedure as in the proof of Proposition 2.4 and in general

case as in the proof of Theorem 4 , but for convenience of the reader we outline an argument below.

Proof. We prove the result (1)-(iv) in the case D = U. In general case one can use a cover P: U — D as in
the proof of Theorem 4. Write f; in the form f; = w; + iv;, where u; and v; are real valued functions and

let F; = U; + iV} be analytic function such that Re f; = Re F; on U.

(1) Let z,,, € D,h € T, __C, and |by| = 1. Consider first the case G = §. Note that Re(df;), , (1) =

(A1) gy, (hy) and |d(u)z,., (B)] < |F(2p2)|. Since (dup)s,.,(h;) = Re(df;).,., (k) = Re(Av;) =
Acos a, hence by an application of Proposition 2.4 to u;, we find

41— [Ref(zr42)”
T 1zl

Acosa| = |(d(w)) ., (h)] <

Since  Hypg(Fjzr+2)|Fj (Zrs2)| < Hypu(zre2)  and  Hyps(fj(Zrs2)) = Hyps(Fj(2re2)) =
Hypg(Re f;(2,,2)), henee, we have (i). If ¢ = S(a, o) we apply Proposition 2.3 b).
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(i) Since d(f})z,,, can be identified by d(fj)z . (h;) = psh; + qjﬁj. where p; = df;(2r42) and q; =
éfj-{:z,urz:). one can show (it 1s well known) that there is (1) € T, ., C, (:Flj)ol = 1. such that j”j'r(z?.+2:)| =
Af;.{ﬁzr_z) = |d(fj:}zr+z((:hj:]ﬂ)| and Af}-(:zr+2) = |p;| + 1q;|. Hence. we get (cos “o)|fjJ(zr+2)| =
|F (zr+2)|.

(iii) follows from (i), and (iv) follows from the definition of |fj’(zr+2) |
In particular from (i) we get (v) and (vi).

(vii) Let (hy)g € T, C be defined by (ii) and (h;)g = d(}j—)z?,ﬂ({:hi)ﬁ). Since f; is real valued, then (h;)g
can be identified by a real number and therefore &, equals 0 or 7, so that |cos @y| = 1. Now an application
the part (111) yields (vii)a). In a standard way, by Lemma 1. a) implies b).

Definition 6. The Finsler type norm @)I onS(a,a+¢€),—w<a<a+e =< om,is defined for all tangent
vectors v € T, W; € S(a,a + €), by
. Wi . -
(BJ‘{-VI') = (.E)-J J‘l:-"iri-} = Hyp@fﬂ-ﬂ+€](wi')|(vi’ el{-wj})l'
In particular,

(v e2(wp)|

S(a, o).
Rewj—a on §( )

(F) j{:"j) =

Using the Finsler type norm (E)}_ on S(a, a + €), the part (111) of Theorem 5 can be stated as

Theorem 7 (see [34]). Suppose that D is a hyperbolic plane domain, G = S(a,a +€) = (a,a +€) X R,
—w<a<a+eé=<w and f;:D — G is a complex valued harmonic on D. If ., € D. hj € T, C and

r+z
hj = d(f})z.. (0y). then (£) (h7) < Byl .
Proof. Since by the definition of the Finsler type norm (E)j: (E)J (h;) = |h; | |cos ], the result follows by
(1).

Although the following result is contained in Theorem 5. it 1s interesting enough to be stated as a separate
theorem:

Theorem 8. Suppose that f;: U — G is a harmonie function and @y = @g(Z,,) is defined as in the part (ii1)
of Theorem 5.

(DIf G = S(—1,1), then

. 4 (1-|Ref;(242)]%)
leos aol|ff (zre2)| < 77,

Zre2 €T, (2.12)

and 1 particular,
():if f;: U — (—1,1), then (2.12) holds with |cos @] = 1.
(I) If ¢ = S(0, o2), then

2Refi(Z.2)
cos ay||f (2r42)| = ﬁﬂzﬂz €, (2.13)
r+2
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and in particular, if f;: U — (=0, ), then (2.13) holds with |cos ag| = 1.

Remark 9. In [15], the author found the sharp constant K (x;) in the inequality for the radial derivative of
a harmonic function u in the 3-dimensional unit ball and in particular observed that a version of the part (1)
of Theorem 8 (which is stated as the inequality (2.10) in Proposition 2.4) holds for the radial derivative of
the function f;; see also [5]. For further results of this type see [16]. Chapter 6, Sharp Pointwise Estimates
for Directional Derivatives and Khavinson’s Type Extremal Problems for Harmonic Functions. In
particular in Comments to Chapter 6, they observed that some inequalities for the first derivative of an
analytic function can be restated as estimates for the gradient of a harmonic function; see for example,
Lindeldf’s inequality (6.6.4), and (6.6.12) in the above mentioned book [16].

Definition 10. (qr). Let f; be a Euclidean harmonic complex valued mapping from a domain D. If there is
0 <k < 1lsuch Afj(er) = H.?{fj (Z,42), 2,22 € D, where K = g € [1,0), wesay f; is a K-quasiregular

mapping(shortly K-qr). An injective k-quasiregular mapping, we call a K-quasiconformal (shortly K-qc).
F

Now for a K-qr mapping f; which satisfies (HO). we consider same estimate for the norm of the linear
operator fj' (we only outline arguments and leave the reader to fill details).

(A8) Note first if f; is conformal at z,.,, then f;'(z,,,) = {juj-);j(zﬁzj + i(vj);f(zr.uj = {juj:];j(zwzj —

i(1})y;(2r42) and therefore |f]-r(:z},_2}| = |Vu;(2r42)|-
The following is easy:

(I11) Suppose that z,_, € C,V; is a neighborhood of z,_, in C and that a complex valued mapping f; =
u; +1v; 1s defined on V. Then

(c) If f; is K-qr at a point z,_,, then |}‘}' (z._y)| = H|Vuj(zr_1)|.

(d) If in addition there is an associated holomorphic function F; = (Fj)y; to f; on V; and f; is conformal at

Ze_y, then |f (22| =1 F/ (z.-1)) |-
Now an application of Proposition 2.3 (Sc-Ah.0)(the formula (2.4) and the part (¢) of (II1), yield the result:

Propesition 2.5. Suppose that f; = u; + iv; satisfies (HO). If f; is conformal at z,_, € U, then

fi (Ze-)| = %COS (g Re f;’(zr—l)) (1= |z, )7
Propesition 2.6. a) Suppose that f; satisfies (HO) and that it is K-qr at a point 2, ., € T, then

|f (Z42)| = K%cos (GRef(2122)) (A = Iz sal) < K%(l — 1) (Zp22) 1P) (1 = |24 2
b) If fj 1s a K-qc harmonic mapping of the unit disk into S, then

Po(ﬂZHZrﬁZ;—zJ = KAo(Zrs2Z12), Zry2 Zryz E U (2.14)

Outline of the proof. If f; is k-qr at z,, 5, then |f]-'{:z?,+2:} = K|Vu;(2,.,,)|- Since the inequality (2.9) can be
written in the form po (U2 42) |V (Zr42)| = Ao (Zra2) and po(U;Zr32) = Po(fiZri2), We obtain

(i) pO(:f:ﬁ(zr+2)}|fif(zr—2)| = KAg(2Zp42), 240 € UL
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Hence, using the inequality cos (%1),) =1- sz, || = 1, we get a). By (i) and Lemma 1, we get b).
Coneerning the part b) the following is a natural question:
Problem 1. For given K = 1. find

Xx(Zrs2):=sup {Refj(z,.2)}, respectively ¥g(Z.,2):=sup {po(f;(Z,4+2).0)}

where the supremum is taken over all K-qc harmonic mappings f; of the unit disk into itself (respectively
Sp ) with f;(0) = 0, where pg 1s the hyperbolic distance on S,.

2.1. ‘-&n application of ﬂl.E Parseval fliﬂ‘ll’lllla. Iff, = (f;)1 + (f))2. where (f;), and [fj)g are an.alyrlc
function on a planar domain V;, then f; 1s harmonic on V; and every complex valued harmonic function f;
on a simply connected domain D is of this form. In particular, if f; is harmonic on the unit disk U we can
write f; in the form

W fy = (1 + ()2, where (J‘j‘jl(zru) =X, ajzf,, and (f}-)Z(ZHg) =X 7 bizF,, are analytic on U
and suppose that (f;),(0) = 0 and f;(0) = p;.

Forp; € U setF(p;) = 1 — |pj|2,ﬁ’(:pj) = /1 — |p;|? (in section 3 the notation s, is used if p; is in the

unit ball B, : in the complex dimension n = 1,5, 1s reduced to R(pj)} and al = ((1 bj)

Now suppose that f; is a complex harmonic mapping from the unit disk into itself written in the form (1).
By the Pythagorean theorem,

2
1 7 12 1= . 412 .
I::Ej_ﬁz |jj—(e”)| dt =Zl I;, where [;:= E[_RZ | (f;): (B”l , =12
j i= j

Next by the Parseval formula,

L= D el +Ip and =D > bl +Ip1%
J k=1 J

k=1

Since |f;| = L on U, it is clear that I = 1 and and therefore in particular we have
|al]? + |p;|* < 1. (2.15)
Using Af,(0) = |a‘lr| + |bf| < V2|al|, we find
B —
Ap;(0) = V2R(p)) = \-"2\}'1 - Ip,|2. (2.16)
If f; is conformal at 0 and orientation preserving, then bjl =0, and Afj(ﬂ) = |a’|. Now, by (2.15), we find

2 ) . L |'7
‘Aﬁ({))‘ 19yl = @12 + |p,|? < 1 and therefore A7, (0) < R(p)) = [1-Ip,2

We summarize the above consideration in the following:
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Proposition 2.7. (i1) Suppose that f} is a complex harmonic mapping from the unit disk into itself and p; =

f;(0). Then
| e [ |
A7,(0) = VZR(p)) =2 |1 - Ip, 2. (2.17)

If in addition to (i1) we suppose that f; is conformal at 0, then

» |
8,(0) < R(py) = [1= Iyl (218)

Example 4 [34]. For |p;| < 1. letus consider (f)o(0) = p; + i}-}.ﬁ'{:pj). Itis easy to check that (f}),(0) =
p; and (f;)o maps U into itself and it has the distortion Ao = Fﬂc‘{:pj).

Note if ¢; is a conformal mapping from the unit disk into itself{respectively onto itself), p; = ¢;(0). then
f(0)| < #(p;) =1 — |p;|? (respectively [@{(0)| = 1 — |p;|? ). Now, in connection with Proposition 2.7,
i Pj Pj P ve;( p; P

we will consider an extremal problem for harmonics maps of the unit disk into itself, ef. also [33]. We need

first a few definitions.

Definition 11. (Har(p;), Har.(p;) ). For p; € U, let Har(p,)(respectively Har.(p;)) denote the family
of all complex valued harmonics maps f; from U into itself with f;(0) = p; (which are conformal at 0
respectively). Set

_ . . . L(p;
Luar(8;) = sup {|fj'(0)]:f; € Har(p)} and Kinar()) = 7%
A ]
_ , . ) _ Lc{:pj)
Lepy) = sup {|ff'(O)]:/; € Hare(p))} and Ko(p)) = 7= -
i

For planar domains D and G and given points Z,. € D and p; € G denote by

L].1ar (Zr+2* p}) = J]:‘har [jzr+21 pj; DJ G) = Sllp {|f]'f(zr‘+2)|}-

where the supremum is taken over all f; € Har(D,G) with f;(z,,,) = p;. If I © R is an interval, and
(u;)o € I, we define Lyar(Zrs2, py; D, 1) in a similar way.

If D = U we write Har(G) instead of Har(U, ¢) and if in addition z, ;5 = 0, we write simply Ly, (p;, G)
(or shortly Lp;(p;, G) ) and if in addition G = U, we write Lpar(p;).

The following is an immediate corollary of Theorem 5.

Corollary 1. Let A(w;) =d(w;) +e, where d,e €C and 6 = A(S(a,a+¢€)),—w<a< a+e<
o : . d. .
n,p; = (2(a +€))/2 and ; = A(py). Then Ly, (0;,6) = 22(e).

Problem 2 (Extremal). For given p; € U find Ky, (p;) and K. (p;).

Note that it G © Gy. then Ly, (p;, G) = Lyg, (pj, Gl). Itly = (—11),2,4, € Uand (u;)q € Iy, then

4 m :
Liae(Zrs2: (4703 Io) = —€08 (5 (100 ) (1 = 22172, (2.19)
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Proposition 2.8 (see [34]). Let p; € U and let f; be complex valued harmonies maps from U into itself with
f;(0) = p;. Then

() 7 < Kuae () < V2, 1 S Ko(p)) < 7 and
(11] a) Khar([]) = Lhar(o) = g b) KC(O) = LC(O} =1

The part (ii) can be restated in the form al): if f; is a complex valued harmonic map from U into itself with
: .4 . . . . e . .
f;(0) = 0. then Afj (0) = - and this estimate is optimal, and b1 ): if in addition f; is conformal at

0, Afj. (0) = 1 and this estimate 1s also optimal.

Note that by Example 4, we have 1 = Ky, (p;) = V2.

In connection with [15] and [5] papers, it seems natural to formulate a several-dimension version of Problem
2 and generalize Proposition 2.8.

Proof. By Corollary 1, we have the first inequality of (1) and by Proposition 2.6, we have the second
inequality of (1). By (I-3). we have the first inequality of (i1). It is interesting that for p; = 0, using Parseval's
formula (see Proposition 2.7) we get the second inequality of (i1).

Define the harmonic density Har on U by

1

= 2.20
R(w;) 0

1
Har(w;) = —
V2
and denote by dy,, the corresponding distance.

If f; 1s a harmonic mapping from the unit disk U into ifself then a modification of the above proof shows
: o r -
that (i) Har(w;)|£;'(0)] < 1.

Ifz.,, € U, the application of (i) to F; = fj o T, __ (where T, _is the corresponding authomorfizam of U)
yields Hal‘(ﬂ-zr,+2)|fj"(zr+2)| < Hyp(z,,). Hence an application of Lemma 1 yields

Theorem 12.If f; is a harmonic mapping from the unit disk U into itself, then

par (f;fz?‘+21f:r'z;+2J = dh}'p [er+ZJZ;-+2)r Z;-+2,Z;+2 e 1.

For the Kobayashi metric. extremal discs. and biholomorphic mappings see for example [19]. [20] and for
Schwarz's lemma and the Kobayashi and Carathéodory pseudometrics on complex Banach manifolds see

[91.
Definition 13. Let G be a bounded connected open subset of complex Banach space, p; € G and vj € Ty, G-

We define ke(pj, vj) = inf{|by|}. where infimum is taking over all hy € ToC for which there exists a
holomorphic function ¢;: U — G such that ¢;(0) = p; and d(¢;)e(hy) = ;.

We also use the notation Kobg instead of kg. We call Kobg Kobayashi-Finsler norm on the corresponding
tangent bundle. For some particular domains, we can explieitly compute Kobayashi norm of a tangent

vector by means of the corresponding angle (see for example Proposition 3.2 below).

We define the distance function on G by integrating the pseudometric k¢ : for Z,,2, Z; € G, we set
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1
Kobyg (Zys2,2;) = inf j ke (r (D), p(0))dt, (3.1)
¥ oJa

where the infimum 1s taken over all piecewise paths y:[0,1] = G with y(0) = 2,5 and y(1) = z,.

It is convenient to introduce k; = 2k;. By (1.1). Kobayashi pseudometric k;; and the Poincaré metric
coincide on .

For complex Banach manifolds X and ¥ we denote by (X, V) the class of all holomorphic mappings from
Xinto Y. If ¢; € O(U,X) and f; € O(X,Y), then f; o ¢; € O(U,Y). Using this simple fact one can express
Kobayashi-Schwarz lemma in the geometric form:

Theorem 14.Ifa € X anda + € = f;(a),u; € T,X and (), = fj’{:a)u}-. then
Koby(a + €, (1).) = Kobg(a, u;). (3.2)
Hence one can derive the following well known result:

Theorem 15. (Kobayashi-Schwarz lemma). Suppose that G and G, are bounded connected open subsets
of complex Banach space and f;: G — G, is holomorphic. Then

Kobg, (fjzr+2. fi2r) < Kobg (222, 2:) (3.3)
tor all 45,2, € G.
Definition 16. (i) Let G be a bounded connected open subset of complex Banach space, p; € G and v; €
T,,G.
(11) We define

Ls(p;v;) = sup {|A]:¢;(0) = p;,d(;)o(1) = dv;, A € C},

where the supremum is taken over all maps ¢;: U — G which are analytic in U with ¢;(0) = p;. Note that
Ls(pj, v;)ke(p;. v;) = 1, and therefore by Definition 13,

Kobg(p;. ;) = (34)

Lo(pyvy)’

(12) For our purposes it is convenient to restate the definition in (i1). Denote by H(p;, v;) the family of all
analytic maps ¢;: U — G, for which ¢;(0) = p;. and d(¢;)o maps ToC into [v;]. For ¢; € H(p;, 1;), we

define Lgp;(p;, v;) = [(d;)o|/|;l,- Then Lg(p), v;) = sup{Lg;(p;, v)):¢; € H(p,,v)}. If G is the
unit ball, we write Ly (p;, vy) nstead of Lgp;(p;, 15).

(13) If for (pj, ;) there a (,?5]0 € H(p;,v;) such that Lg(p;, v;) = Le@;(p;, v;). we say that Qbf 1s extremal
(for Kobayashi norm at (p;, v;)).

(i1) Foru; € TpJ.C we denote by |1, the Euclidean norm and by 1y = u;/|u;|, (we also use 1, instead of

uj‘] if u; is different from 0.

3.1. A new version of Schwarz lemma for the unit ball. Using classical Schwarz lemma for the unit disk in
C, one can derive (see [34]):

DOI: 10.35629/0743-10100125 www.questjournals.org 16 | Page



A Survey on Schwarz Lemma and Kobayashi Metrics for Harmonic and Holomorphic Functions

Proposition 3.1. (Schwarz Lemma 1. -the unit ball). Suppose that (i) f; € 0(B,, B,,) and f;(0) = 0.
Then

@[] =1
(b) fu; € ToC™ and (1;), = f (0)uy, t11c11| :u_,-)*l = [yl
Proof. Take an arbitrary point a@ € B,, and set a + € = f;(a).

For z,45 € U define g;(2,42) = (f), (Zy42a"), (a + E)"). Since g; € Hol(U, ), then by the unit disk
version of Schwarz lemma, we find

@) 195(Zrs2)| < |Zps2l. 242 €U

If we choose z,._; such that @ = z,_;a’, then an application of (1) to z._;. yields

(11) |[f;(@)] = |a|. Now using (11), it is straightforward to show that (a) and (b) hold.

We need some properties of biholomorphic automorphisms of the unit ball (see [31] for more details).

Definition 17. As in [26]. for a € B,,. we define 5, = (1 — |a|?)*/? and for a fixed z,., € B, we define
the set B, , as the intersection of the complex (n — 1) - dimensional plane Q%+ throughout z,.,
orthogonal on z,.; and the ball B,,. It is straightforward to check that B, is a ball, which 1s given by
B,... {w (W) = Zyi2 Zpen) = 0, Wy |2 < 1]. and by Pytagorian's theorem that the radius of the ball
B, ., which we denote by R(z,.,;) equals s, __. For a € C", denote by F,(Z,.) the orthogonal projection
with respect to the standard Hermitaian complex mner product onto the complex subspace [a] = {da: 4 €
C} generated by a and let @, = I — E,. It is clear that

(z?"+ 2r a’}

Pa(Zrs2) =
a( T +2) (fl, a}
and that Q, is the projection on the orthogonal complement of [a]. For 2,5, a € B™ we define

— Pz =502,

1- (Zr"+2J i'l)

Zrr = (9)a(Zp42) = (3.5)

'

where Pz,.,; = B, (Z4,) and Q2,5 = Qu(2,+3). Set U = [a] N B, and

PZ}+2

(Zr+21 a’}

—Sa QZ:’—Z

2
and (@}.)a(_zr_z) = m.

((Pj) Zyip) =

By the notations described in Definition 17, it is clear that ((pj)a = (@}')i + ((pj)i, (rp}.)a = ((pj)i on U/
and ((,oj-)a = (qa J)i on B, and it is readable that(we leave the interested reader to fill details), using the

properties of authomorphisms ((pj)a (see also Theorem 2.2.2 [31]). to check that:
(B1) a)The restriction of ((p f)a onto Uja 15 automorphisam of Uj"‘ and

b) the restriction of (qt) J')a onto B,,., maps it bi-holomorphically onto B;_,,, for every z,., € U}-a. where

1+2 = ((p;) {Zr+2)

Zrtz’
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3.2. A new version of Schwarz lemma for the unit ball.

Definition 18. Let u; €T, C" and p; €B,. If 4= (d((pj)pj)pj. then Au; € ToC™. Set |Aw|, =
M°(pjup) ., ie.
[A(u;)]e

M°(p;u;) =
_— |“’j|s

(3.6)

In general, if p; €EQ = C* and u; € ij.C”. we define M(p;,1;) = Mq(p;, ;) (Kobayashi density at p; in

the direction 1; ) by
Kob(p;, u;) = Ma(p; ;) |,

We show below that on B, Kob(0,v;) = |v;|,,v; € T,C" and therefore since Kob(0,A(y;)) =
Kob(p;,u;) = [A(1;)|. (by the part (1) of (VO) below), we find that on B, M(p;, u;) = Mo(p}-, ), u; €
TpJ.CC” (see Theorem 21 below).

Note that:

(VO)Ifg; € Aut(Q),a € Q,a+e=g;(a)y € ijlﬂ" and (u;), = qol-‘(a:}uj. then
(i) Kob(a + €, (1), ) = Kob(a,u;) = Ma(a,u;)|ujle.

(V1) M(a,u;) = M(a,1,).

(V2) In particular, if Q0 is a planar hyperbolic domain then Hypq (p;) = 2Mqp(p;, ;). p; € Q.

Note here that if £) is the ball or the polydisk then one can first compute Kobayashi-Finsler norm at the
origin 0 using a simple version of Schwarz lemma; and then use it together with (V0) and properties of
Aut(()) to compute KobayashiFinsler norm at an arbitrary point a € (1 in these cases.

Proposition 3.2 (see [34]). If the measure of the angle between 1; € Ty, C" and p; € B =B, is a =
a(p;y, i), then

r

: [1 1
M°(p;uy) = Mg (pj.w;) = |—cos*a+—sina. (3.7)
\ P %2
It is clear from equation (3.7) that
1 1
— =M [_ij uj) = - (3.8)
Sp; S5,

. . . . . . ww \ I3 _ . vk _
Proof. Here we use the notation described in Definition 17. Set A = (d('(pj'}pf)pj and u; = (1;)y + (U;)2,

where (U4;), € ijU}.pj and (uj)z S TpJ‘.QI’J". and (uj);{ = A ((uj)k-),k = 1,2. By the classical Schwarz

Lemma 2-the unit disk, Proposition 3.1 (Schwarz Lemma 1-the unit ball) and (B1),

(ORI (O (VR IR (CORIE
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Then u]-’ =A(y) = (u}-]; + (uj); and (uj); and (uj); are orthogonal.

Hence, since |(IL}-)1L =Cosa |u e

(3.7).

_F) | Slna)lu |, and | \|| j) ‘ ‘(u L. we find

Suppose that (i) f; € O(B,, Bim).a € By and a + € = fi(a),u; € T,,C" and (4;). = fil ().

Set 4= d((ﬂj)a,B = d(@j)a+fjgj = ((ﬂj)a+e o f_} o (@J]a,vj = A(HJ) ﬁlld (Tﬁj)“ = B{ujj* We iiI'St
conclude (dg;)o =B 2 (df;)° A and therefore (v;). = (dg;)o(v;). Then by Definition 18, we have
|A(u)]e = M°(a, up)|lo and |B(w;).| = M°(a+ e, (u).

|{_1.-‘- . L= |A(u;)].. Hence

|, Finally, by Schwarz l-unit ball,
= |vgle. L. |B{jujj),,

Theorem 19. Suppose that f; € O(B,,B,,),a € B, and a + € = f;(a), y; € T,,C" and (). = fi' (@)u;.
Then

MO(

A, = M°(a, up) |uyl,. (3.9

Hence, by (3.8), we find sg|(u;

+| . = Sarelly]e and in particular, we have
a

Theorem 20. (Schwarz Lemma 2. -unit ball, see [13], ¢f.[25]). Suppose that f; € O(E,,, B,,), a € By, and
a+e€ = fi(a). Then

S
s2|f (@)] = Sare thatis, (1 [a[P)|ff(a)| < N|'1 —|fi(a)]2.

Theorem 21 (see [34]). Let a € By, and v; € T, C". For By, Kob(a, v;) = M°(a, v;)|v|e. In particular,
M(a,v;) = M%(a, ;).

Proof. Let ¢; be a holomorphic map of U into B, ¢;(0) = a,v; € T,C" [v;], = 1, (d;)o(1) = Av; =
vi}Az=0.
!

17, Consider first the case a = 0.

Let P be the projection on [v;] and set (¢;); = P o¢;. Then P is the indety Id on [vy] andl there

(dP)o(u;) = Id(u;) = wy, u; € To[vy]. Next (¢;); is a holomorphic map of U into E;Tj.v‘r and

( ((ij) ) 1) = (dP)a(v-) = v{ = Av,. By the classical Schwarz lemma(one complex variable), || =
1/g "7 J ] A

|{¢J)’1(0)| <1 and therefore since (d(;bj?:]o(lj= v;, where (il]o({) = v_,—{,(;ﬁf is extremal. Hence
Kob(0,v;) = L.

2’ Leta=04=(d(g;) ) and (v)), = A(v)). Then by 1°,Kob(a, v;) = Kob(0, (v;).) =
MO(a, )|,

3.3. Polydisk. For the polydisk, see ([17], p.47), the following result is well known
Kobyn(2ps2,w;) = max {Kob(zyigsz, (W))i) k= 1,-,n}.

. . 2 e gy — _ Y . .
Definition 22. For u; € T, .C by a = y; = au}.(p}-.} we denote the measure of the angle between u; €

Ty I.(Cz and z,-plane.
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Our computation of the Kobayashi-Finsler norm on U? is based on (see [34]):
(B2) If v; = ((v))1. (v))2) € ToC? and |(v;)4| = |(vj)2|. then Kob(0, v;) = ‘(13}-)1| = (cosa,_.}.) V5]

Proof. Suppose that v; = ((1;}-)1J (vjjg) € T,C? and |(vj)1| = |(TF}-)2|. Let ¢; = (q‘.!}l, qﬁf) be an analytic
function from U into W2, ¢;(0) = (0,0), and d(¢;)omapTyC into [v;]. Then d(¢;)q(h;) = Av; =
(ﬂ (vj)1, H(v_,-)g). for h; € ToC. where A= A(h;) € C. Siince c,‘bJ,l and :;e’J]-Zmap U into itself, then
|ﬂ.(hj)||(vj)1| =1 for all |hy|, = 1. Hence (1): |d(¢j)0| = |i3'j|g/|(1!j)1|g. Now consider the map ().’)f
defined by Z45 = (202 (V)1 Zrs2(¥,)2) /| (¥)a], Zrsz € U. Note that (if) :\(d¢f)0| = [v1o/] (W], <
V2. By (i) and (ii) we conclude that qf)f is extremal and therefore that Ly;2(0,v;) = 1/ | (V)1 | By equation
(3.4). Kob(0,v,) = [(v)),] = (cos avj) AR

Let p; = (c,d) € U Set T = (gaj)c,rz = (qu)d,T = (T',T?). and A = dT, . Note that T(Z,,5) =
(T'(2r42), T?(Zr22)), Zpyz € UL and A = (AL, A%), where A' = (dT'), and A% = (dT?)4. Letu; € ij.(Cz
and @ = @y; = @y;(p;) (recall that « 1s the measure of the angle between 1; € T, J.CC2 and z,-plane). If ui' =
A(u;), one can check that(see below) |'IL;|Q = M'(p;. u;)|u;]., where

1 1
M'(pju;) = My=(pjy;) = ||S—4{:c:s2 a +S—‘1_sin2 a. (3.10)
\ e d

Now we check that
(c1) |(”;')'1|9 = cos au;|,/s2, |(uj)’2|e = (sina)|u;|,/s2. and

(C2) k(pjw) =M(pjw)lyle, where M(pj,u;) = Myz(p; u;) = max{cos a/s? sine/si}. I
particular, if s3/s2 = tana. then k(p;, ;) = |(v;);| = (cosa)|u;|./s2.
e

=1

Proof. Recall that T(p;) =0 and A=(A1,A2)=dTp}.. It is straightforward to check w; =

((uj)l, l:uj:lzj = (%—)191(13;) + (uj)zez('pj),uj' = AQyy) = (uj);el(ﬂ) + (uj);eg(O). where (uf);: =
4k ((uj.)k),k =12 smce (¢;)(c)=1/s7 and (g,), (@) =1/s3, |(uj)'1L = \(uj)lt /s2 and

|(uj);‘g =

Pythagorean theorem |'IL;|Q = \“(uj);‘z + |(uj);|2. we find (C1), (C2) and (3.10).
e e

(uj)z‘gjsd. Hence. since |(u}-)1|e = (cos @) ‘uj-|9, (ui')zL = (sina)‘uﬂg and by

Thus we get

Proposition 3.3. Let p; = (¢,d) € U? and @ = ay, = a(p;. ;). Then

cosa sina
Kyz(pj, ;) = max >3 ¢ | Yle-
sz 53

Using a similar procedure as in the proof of Proposition 3.3 one can derive:

Proposition 3.4 (see [34]). Let D and G be planar hyperbolic domains, @ = D X G,p; = (¢, d) € Q,u; =
((uj)l, (Uj)z) € ij.(Cz and o = Uy, = a(pj ).

DOI: 10.35629/0743-10100125 www.questjournals.org 20 | Page



A Survey on Schwarz Lemma and Kobayashi Metrics for Harmonic and Holomorphic Functions

Then
M(p;, ;) = Mo(p;, u;) = max {Hypp(c)cos a, Hyps(d)sina},
and
Kob(p;, u;) = Mo (p;. ;) |y,
We can restate this result in the form:
(a) If Hyp (c)cos® @ = Hypz (d)sin® a. then Kob(p;, ;) = |(v}),|: = (cos @) [u;| Hypp (c).
(b) If Hyp} (c)cos? @ < Hypz (d)sin? a. then Kob(p;,1;) = |(zﬂj)2|: = (sin )|y | Hyps(d).

Proof. Let 1)° and ® be conformal mappings of D and G onto U such that ¥°(c) = Y(d) =0
respectively, If T = (P, %), 4 = dTF’;‘ and v; = A(y;) = ((vjjl, (v"j:}z) € T,C2, one can check that

Koba(p;,1;) = Kobyz(0, v;), 2|(ja:t,-)1|g = AD(C)|{ju‘,—)1|g and 2|(vj)2|Q = A (d)|(u;)4]

o

Hence

|
lv;le = M'(p; ;) = Mg (pp ) = \J'Hypg(c) cos? @ + HypZ(d)sin?e.  (3.11)

If |{T/"j:]1| = |{T'}}2| then Kobn{p-:, H,J:l = ’:LD(C)|{H_F:]1|Q

Using Theorem 14, Propositions (5.2.34) and (5.2.40), we have

Theorem 23. Let () be as in Proposition 3.4. Suppose that f; € O(B,,0),a € By and a + € = f(a),u; €
ij.([:z and (), = f'(@)y;. Then

Kobg(a + € (1,).) = Mg(a + €, (u,).)

(). .= Mg, (a,u;)|u;,, (3.12)

where Kobg, 1s deseribed in Proposition 3.4 and the formula for Mg, (a, 1) 1s given in Proposition 3.2.

3.4. Schwarz lemma for pluriharmonic functions. Recall by Theorem 21, M (a, 1) = M°(a,u;) on B,,
and that we use the notation §(a,a +€) = (a,a+¢€) xR, —oo < a < a + € = o, and note that

HypS{a..a+e](Wj:} = HypE[a,a+e](Re Wj), wj € S(a, a+ 'E)'

Zr4z—0

Ha+e<wm A(Z.,,) = .

conformally S(a, o) onto §(0, =).

maps conformally $(a, a + €) onto $(0,1) and B(z,,5) = Z,,, — a maps

For a wvector al= (ﬂ{,aé, a‘;) € C® we define Real = (Re a{,Re a’;, Re a‘;) and Imal =
(Im a‘i, Im ﬂ:’zr, Im aé] and we can use similar definition fora' € C*%, n = 1.

Suppose that p; = (c,d) € S(a,a + €)? and u; € T_,,J.-ICZ. We leave the reader to check that
(D1) kggasez @ ty) = Kgigase2(Rep) ).

(D2) ksta,a+e)9(Re pj,Req;) = kﬁ[a.a—sjz(jpj*(?‘jl p;.q; € S(a,a+ €)%
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Theorem 24 (see [34]). Let u;: B, = (a,a + €)2 be a pluriharmonie function. Then
KDbS(a,a+E)2 {E] (zr+2ja E] (H":i)) = KObBE (Zr+2a LV}':): Zr+2, “’1_;' € ]BZ- (313)

Proof. Under the hypothesis, there is an analytic function f;: B, = S(a,a + ¢ )? such that Re fi=u; on
B,. By Theorem 15 (Kobayashi-Schwarz lemma) and (D2) we have (3.13).

IfIy = (—1,1) and J = (0, @) we can consider I, ]? and Iy X J. In a similar way, we can extend Theorem
24 to plurtharmonic functions u;: B, — (a,a + €)™

3.5. Invariant gradient and Schwarz lemma. We prove a version of Schwarz lemma for analytic
mappings of B, into a hyperbolic planar plane domain G. But first we introduce the hyperbolic density on
the punetured disk and define complex gradient (see [34]).

Using that the mapping w; = e iZr+2 maps H onto the punctured disk, one can show that the Poincare metric
on the upper half-plane induces a metric on the punctured disk U’ which is given by

4
ds?=————— —dq,dq;, q; e U
2 HS e
|q;12(log |q;12)
Hence

d(z,.2)| = |d(z12). 2,02 € U

Hypy (z,.,) =

|zy+2](log |Zr42]?) [zy421(loglz,y+21)

. . af; ar; - . . .
HGcCand f;:G—=Cis € function, by 7 and —2L e denote the firstorder partial derivatives

8(xfjo 8o
with respect (x;) 5, and (V;) ;.. where z, ;> = (¥;) 5, + [(¥}) .- Further we define
1/of; . 9f; _ _ :
Difi == =——1 : , Dfi(z,5) = (Dyfi(2,25), ... Do fi(21
/=35 50 D Eres) = (O o) Dafi )

and

1/2

n !
. . 2
1D (Zrs2)l = 1Dy (zrs2)le = | D D1 fy(Ere2)]
Jo=1 .
We put here subscript e to emphsize that |Df;(Z,,,)|, 1s the Euclidean norm and to avoid possible
confusion with the notation |d{fj) 2 +2| which denotes the norm of the linear operator d(f}).,.,,-

ffiisal ! complex valued function, which is defined on B,,. we introduce

bfi(@) =D (f; (¢;)_ ) (0).a € By
where (@J’)a is the corresponding authomorphizm of B,. Here, note that if h; € T,C", and u; =

(d((pj)a)o (h;), then (d (J‘; 0 (‘ﬂj)ﬂ))o (h;) = d(fpa(uy).

For the convinience of the reader we first recall:
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(i) Suppose that D and G are hyperbolic planar domains and f; is an analytic mapping of D into G. Then
Hypg (fjZzr12) Jﬁ"(zwz_}l < Hypp(Zr42).2rs2 € D.

(i) For h; € ToC"™, setu; = (d(@j)a)o (hj), 4= (d((pj)a)a and B = (d((pj)a)o. Then the operator A and
B are the inverse operators, i; = A(u;) and by (3.8), we find

s2|hy] < | = |(D(go}-)a)0(hj)‘ < sa|lyl. (3.14)

Now, we are going to give some estimate for |D fi(2r+2)| including (3.15) below and finally we prove
Theorem 25 below.

(iii) For a/ = (ai, ) a;;) € C", define R({) = R_;({) = (a{c_f, e a;;g’),{ € C, and for a point {, € C set
Zy_y = R({p). Further suppose that a complex valued function f; is defined on a neighboorhod V; of z,_, €
C™. Then the function g;({) = (g;)7({) = }‘}(ai{ s ﬂ,;rl{] is defined on a neighboorhod W of .

a) If f; is analytic on Vj. then g;({o) = EE:le;ﬂ'({Oaj)aL = d(f;)s,_,(a’) and by Cauchy-Shwarz
inequality

(D) [9;(%0)] = |Df(ze)] @ ..
(b) If f; is an analytic complex-valued mapping defined in neighboorhod of z, ., € C", then

(b1) |f]-’(z,,+2j| = |Df;(Zr12)| and in particular if 2., = 0,

£ (0)| = IDf; (0)].

We have only to prove (b). It is clear that using the translation the proof is reduced to the case z,.,, = 0.
By al) |f]-f[:0:) = |Df;(0)|. If [Df;(0)] = 0. then d(f;)o = 0 and 1t is clear that (b) holds. If [Df;(0)] = 0
set.ai, = Dkﬁ[:(]:)ﬂﬂf}(:Uij = 1,2, ..., n. Hence it is readable that |a’|, = 1 and |g]’{{])| = |Df;(0)], =
|d(f;)o(a’)

, and therefore (b) follows.

(iv) Suppose that (b1): f; 1s an analytic complex-valued mapping on B,,.

(a) Then

S;r+z|Dﬂ'{:Zr+2:}|e = Iﬁfj(zr+2)|s: Zrs2 € Bn- (A)

(b) Then
|ﬁfj(jzr+2)|s‘ = Szr+2|DJf:r'(zr+2)|e» Zry2 S Bn- (B)
Proof of (a). There is 1, € T, C" suchthat |Df; (Z,.2)lo = |d(f)s,., ()| v, = (d(g))_ ) (w).
- 2z,

then (d (£ (qoj)zﬂz)) (1) = d(f})zy. (). Hence

1D Zra2)lo = |4 a4 = |(d (0 (%)ZHZ)) @)| = 1B5;zraa)leltyle

Since by the left inequality in (3.14) |v;], = 1/sZ.,,. we find (A).
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Proof of (b). For z,,; € B,. st F; = fjo (qojjzm. By the definition we know that ﬁ}‘}-(sz) =

D (f)I ° ((pj)z )(:U:} = DF;(0) and therefor by the part (bl) of (iii). there is (Vj)o € ToC" such that
r+z

IDF(0)]e = [d(F)o((v)o)|. If we set set (w)o=(d(@;))o((vj)o) we get d(F)o((v))o) =

A(f7)zyss ((“}')0)' Since by the right inequality in (3.14) |(uj)0| e = 5,

|d(jf}jzr'+: ((u}')o)| = |d(jf_i"jzr+: |(uj)0| = Szr+z|d(f.f)2r'+z
[Dfi(2y42)] (by the part (b1) of (ii1)), therefore we get (B).

... hence we find

and  since |f}’(zr+2)| = |d{jf}-)z?.+2| =

Hence (from (A) and (B)), we get that if f; satisfies (bl), then
52 Dfi(Zrsz)|e < |Dfi(Zrs2)| < Sz, |Dfi(Zrs2)]es Zrsz € B (3.15)

If fi(2r42) = Zr42.Zrp2 € By, then |Df(2,42)]. = V. This example shows that that the correspoding
version of (3.15) below does not hold if codomain of f; is, for example, B,,.

Using Theorem 14, Propositions (5.2.34) (see also Theorem 23), one can prove:

Theorem 25 (see [34]). Let G be a hyperbolic planar plane domain and let f; be an analytic mapping of B,
into G,a € By, a + € = fi(a), u; € Ty, C" and (4;). = fj’(a) u;. Then

Hype(a + €)|().| < Mz, (@ u;) [yl (3.16)

e

In particular,

() Hype (fiZr2) | ff (Zr42)| < 1/52,,.,
(11] H}rpG{ffzr+zj}|ﬁfj(jzr'—2)|9 = ]-er—z S ]Bn'
Proof of (i). By a version of Schwarz lemma, (i) holds.

Proof of (ii). Set F; = f]jz?‘” =fjo ((pj-)z . By the definition of flf}(:z,u,g). we have flf}(ZHg) =
r+z

D(f;)z,.,(0). Since |ﬁf} (0)]. = |f;'{0)| an application of (1) at 0, shows that (i1) holds for z,,, = 0. Again

an application of (i) to the function jj.z”z at 0 , and the definition of f)j}- (Z,4>). show that (ii) holds in

general.
If G is the punctured disk from Theorem 25, we get a Dyakonov result [8] :

Proposition 3.5. Suppose that f; € O(B,, U'),a € B,,a + €= f;j(a) and p = Hypy. Then p(a+
olff (@] = 2/s2. ie.

1
a 2| £ < -
(1—[a])|f; {.a)|_2|a+e|1n|a+g|.

3.6. Further comments. The Schwarz theory in connection with plurtharmonic functions is studied for
example in [32] and in [14]. For the subject see also [33]. On the quasi-isometries of harmonic
quasiconformal mappings see [11].
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