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Abstract

We follow [51] keeping the core with smooth touch of the theory dealing with the characterization
of the Dirichlet problem, Perron solutions and boundary regularity for (1 + ¢€)-harmonic functions on
unbounded sets in Ahlfors regular metric spaces using the sphericalization method. We focus on the
boundary regularity for the point at infinity. In particular, we allow for several “approach directions”
towards infinity and take into account the massiveness of their complements. In 2005, [45] showed that
the (1 + €)-harmonic measure on the upper half space R3S, € = 0, is not subadditive on null sets when
€ # 1. Using their result and spherical inversion, we create similar bounded examples in the unit ball
B c R** showing that the (3 + €)-harmonic measure is not subadditive on null sets when € = 0, and
neither are the (1 + €)-harmonic measures in B generated by certain weights depending on € # 1 and
€ = 0.
Keywords: Ahlfors regular metric space, Boundary regularity, Muckenhoupt A;,_ weight, Perron
solutions of the Dirichlet problem, (1 + €)-harmonic functions and measures Sphericalization.
1. Introduction

We study Perron solutions and boundary regularity for (1 + €)-harmonic functions on unbounded
sets in metric measure spaces using the sphericalization. A (1 + €)-harmonic function in an open set
Q c R**¢ (a unweighted R®*%), is a continuous weak solution 1, of the (1 + €)-Laplace equation

Ayyetty = div(|Vug|s1Vu,) = 0.
Equivalently, U is a continuous minimizer of the (1 + €)-energy integral among functions with the same
boundary values, i.c.
f Z IV, |[Tedx _f Z V(s + @)|M*<dx forall ¢ € Lip,(0).
=0 s @z0 A

This latter inequality is suitable for generalization to metric spaces, using (1 + €)-weak upper gradients.
We considered here a complete metric space (X, d) equipped with an Ahlfors Q-regular measure p, Q >
1, supporting a g-Poincaré inequality. The relations between 1 + €, Q and g are given in (5.1) and (5.2)
and make 1t possible to "sphericalize” X into a new bounded metric space with suitable properties, where
the theory of (1 + €)-harmonic functions 1s well-developed.
Our study begin with the Dirichlet problem, which given f:90 — R asks for a (1 + €)-harmonic
function having f, as boundary values in some weak sense. We use the Perron method to solve this
problem, which always provides two solutions Pfi < Pf; of the Dirichlet problem. When they coincide
we denote the common solution by Pf; and f; is called resolutive. Under the given assumptions,
continuous functions are resolutive. A boundary point xg € 811 is regular if

DlimGPfs(x +€) = fi(x) forall f; € C(20).
15—
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Perron solutions for (1 + €)-harmonic functions on bounded open sets ) in metric spaces were first
studied in [12]. Boundary regularity for (1 + ¢€)-harmonic functions on bounded open sets in metric
spaces was studied even earlier in [18], [22] and [11]: and a rather extensive study was carried out in [7].
In [51] the authors proving resolutivity and boundary regularity in unbounded € by using
sphericalization. The sphericalization technique makes it possible to map the unbounded space X into a
bounded metric space, while preserving the (1 + €)-harmonic functions, in the spirit of the Kelvin
transform. We can then appeal to the earlier results for bounded sets and "map" them back to the original
unbounded situation. When  is unbounded we consider its boundary within the one-point
compactification of X, so @ is included in the boundary.

Perron solutions for (1 + €)-harmonie functions on unbounded open sets in metric spaces have been
studied by [28] who realized that there were substantial additional complications in the unbounded case
compared with the bounded case. Boundary regularity for (1 + €)-harmonic functions on unbounded
open sets in metric spaces has not been studied before, beyond weighted R2*%. However, regularity of the

boundary at oo for global (1 + €)-harmonic functions on certain Cartan-Hadamard manifolds and
Gromov hyperbolic spaces was considered in e.g. [32]. [33] and [34].
Our starting point in [44] who showed that (under suitable conditions) sphericalization preserves Ahlfors
regularity and Poincaré inequalities. The measure i, with which they equipped the sphericalization. does
however not preserve the (1 + €)-energy, and we are therefore forced to equip the sphericalization with a
different measure [i, generated by a suitable power weight. Using (a metric space version of) the theory of
Muckenhoupt 4, ., weights we can show that the sphericalization equipped with { supports a (1 + €)-
Poincaré inequality, provided the original space supports a g-Poincaré inequality, with g given by (5.2).
We see this latter.
We start our study of (1 + €)-harmonic functions and especially Perron solutions on unbounded sets. We
obtain several resolutivity and perturbation results, We also show that boundary regularity is a local
property, that it can be characterized using barriers, and that the Kellogg property holds, i.e. the set of
irregular boundary points has capacity zero.
Sinee regularity i1s a local property, many of the results on boundary regularity for bounded sets, such as
the Wiener criterion, carry over directly to finite boundary points of unbounded sets. The point at oo,
however, requires special attention and is studied in a moment.
In unweighted RZ*€, e = 0, with € > 0 (in particular in R? for any € > 0 ) we get a number of new
results. The resolutivity of continuous functions, the Kellogg property and the barrier characterization
have been known before in this setting, see [37]. The obtained resolutivity results for Newtonian (and
Dirichlet) functions are new when €/2 < € < 1 + €, while for € = 0 they were proved in [28] using
different methods. Theorem 6.6 is new for all € > 0, although [28] contains a weaker result for
unbounded (1 + €)-parabolic sets. We also obtain several new characterizations of boundary regularity in
unbounded sets, corresponding to the results in [7]; see also [29].
Sinee the (1 + €)-energy is preserved, also quasiminimizers are preserved in just the same way as (1 +
€)-harmonic functions. Hence, many earlier boundary regularity results for quasiminimizers generalize
from bounded to unbounded sets, will be seen. It also follows that sphericalization is a quasiconformal
mapping, by Theorem 3.4 in [41].
In unbounded domains. the point at infinity can often be approached from different directions, e.g. in an
infinite strip or cylinder. Also on bounded domains, rather than using the given metric boundary, there are
many situations where one would like to distinguish between different directions towards a boundary
point. For example, in the slit dise, where a horizontal ray is removed from the dise, it is natural to
consider different boundary values along the ray from above and from below. [13] carried out such a
study using the Mazurkiewicz metric on bounded domains in metric spaces. We are now able to transfer
these results to unbounded domains, and we explain in particular what happens at infinity latter. We also
provide an example where the point at @@ corresponds to uncountably many directions, i.e. boundary
points with respect to the Mazurkiewicz metrie, and yet behaves well for the Perron method, see Example
7.5.
In [45], the authors using a very sophisticated argument due to [50], showed that for any € = 1 and € = 0,
there are sets 4,, 4, < R such that

Wy (ALGRES) = wy, (A;RET) =0 < w,, (4, U A, R, (1.1)
where @y, (-; R%Z"9) denotes the (1 + €)-harmonic measure with respect to the upper half space R3¢,
Despite its name, w,..(-; R2*%) is evidently not a measure, but rather a nonlinear generalization of the
harmonic measure, and (1.1) shows that it 1s not even subadditive. Lastly we transfer the examples from
[45] to the unit ball in R2*< and thus create similar bounded examples with respect to a weighted measure
depending on 1 + € and 2 + €. In particular, the measure is the usual Lebesgue measure (without weight)
when € = 1, so we obtain an analogue of (1.1) for the usual (2 + €)-harmonic measure for the (2 + €)-
Laplacian in the unit ball.

DOI: 10.35629/0743-10102643 www.questjournals.org 27 | Page



Verification of (1 + €-Harmonic Functions on Unbounded Domains in Ahlfors Regular Spaces ..

2. Metric Spaces and Power Weights
We assume that 0 < € < o0 and that X = (X, d, i) 1s a metric space equipped with a metrie d and
a positive complete Borel measure p such that 0 < p(B) < o for all balls B c X. Additional standing
assumptions will be given at the beginning. Proofs of the results can be found in [9] and [31].
The measure u is doubling if there exists € = 0 such that for all balls = B(xo, (14 2€)):={x € X :
d(x,xp) <1+ 2¢}in X,
0 < u(2B) = (1+€)u(B) < oo,

Here and elsewhere AB = B(xy, A(1 + 2¢€)). A metric space with a doubling measure is proper (i.e.
closed bounded subsets are compact) if and only if it is complete.

A curve is a continuous mapping from an interval, and a rectifiable curve is a curve with finite length.
Unless otherwise mentioned. we will only consider curves which are nonconstant, compact and
rectifiable. and thus each curve can be parameterized by its arc length dsg. For a family T of curves in X,
we define its (1 + €) — modulus

Mod,, () := inf f pltedy,
X
where the infimum is taken over all Borel functions p = 0 such that -[],- pdsy = 1 forall y € T. A property
is said to hold for (1 4+ €)-almost every curve if it fails only for a curve family I' with zero (1 + €)-
modulus. Following [30], we introduce upper gradients as follows (they called them very weak gradients).
Definition 2.1. A Borel function g;: X — [0, o] is an upper gradient of a function u;: X — R: = [—00, 0]

if for all curves y: [0, 3},] - X,
> @) =u (r@)] = [ D gsdso @1)
g ¥ g

where the left-hand side is interpreted as oo whenever at least one of the terms therein is infinite. If
g.: X — [0,90] 1s measurable and (2.1) holds for (1 + €)-almost every curve, then g, i1s a (1 + €)-weak
upper gradient of u,.

The (1 + €)-weak upper gradients were introduced in [42]. It was also shown therein that if g, € LiZ5(X)
is a (1 + €)-weak upper gradient of u,, then one can find a sequence {(g.);,.1:2, of upper gradients of

s such that Y5 0(gs)1se — gSIILHE(X.] — 0. If u has an upper gradient in L}25(X). then it has an a.c.

+e

unique minimal (1 + €)-weak upper gradient (g,),, € Lllcc (X) in the sense that (g;),, < g, ae. for

[ ranle - oradi l+er
every (1 + €)-weak upper gradient g, € L, ~°(X) of u,, see [48].
Together with the doubling property defined above, the following Poincaré inequality is often a standard
assumption on metric spaces.

Definition 2.2. We say that X (or g ) supports a g-Poincaré inequality, g = 1. if there exist constants
€= 0 and 1 = 1 such that for all balls B — X, all integrable functions u; on X and all ( g-weak) upper

gradients g, of u,
1
a
[ 2 = sldu = + e diam@ | [ D gfau ),
B~ AB TS

where (u.)g: = [ udp:= [ u.du/u(B).
As is customary, we say that 4 = B (and equivalently = A ), if there is a constant € = 0 (independent of
the variables that A and B are functions of) such that 4 < (1 + €)B. We alsowrite A  Bif A = B = A.
With this notation, u is Ahlfors Q-regular if
p(B(x, (1 + 26)) = (1 + 26)°.
Ahlfors regularity is a relatively strong assumption on the measure. At the same time, it is easily verified
that doubling measures in connected spaces satisfy the one-sided estimates
A+en® _ pu(B(x"1+e) _1+e\7
(1 + 25) Y u(B(x, (1 +26)) "~ (1 + 2(:')

forsome 0 < g =sp<o,allxe X, x" € B(x,1+2¢)andall0 < 1+ ¢ =1+ 2¢ < 2diam X.
The following proposition makes it possible to construct new well-behaved measures from old ones (see
[51]).
Proposition 2.3. Let X be a metric space equipped with a doubling measure y such that for some ¢ > 0,
cEXandall0<1+e <1+ 2e < 2diamX.

p(Ble,1+6)) _s1+€7\°

w(B(c,1+26) ~ (1 ¥ 26)
Let @ € R and w(x) = d(x,c)¥. Then the following are true for all balls B < X, with comparison
constants depending on the one in (2.2), as well as on @ and o:
(a)If € > 0and —o < a < g(€), then

(2.2)
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1 €
IZ wsd;{(J- Z ws_zd;u s 1L (2.3)
B 5 B =
[ Z wedl S ess inf Z Ws. (2.4)

If (2.3) holds, we say that w, is an A;,_ w ewht with respect to i, “1111-: if (2.4) holds then w; is an A,
weight. We also write w, € A,, (1), € = 0, in these cases.

Proof. We shall distinguish between three types of balls:

(i) Let B = B(c,1+ 2¢),0 < 1+ 2¢ < 2diam X. Then for all @ > —0,

f d(x,c)*duy = Z (270*(1 + 26)) ‘(219 \ 2727¢B)
B

e=0
o

< Z (270* (1 + 26))(270+) w(B) = (1 + 26)“u(B). (2.5)

=0
Replacing @ by a/(—€) > —0 in (2.5) we obtain

U z ws_%d,u) s(a+ 26)“:')6 — (1+26)C.

Together with (2.5), this yields (2.3) for B = B(c, 1 + 2¢€). To prove (2.4) for such B, it suffices to note
that for all @ = 0,

(b)If —o < @ < 0. then

essBinf d(x,c)® = (1 + 2e)=.
(ii) f B=B(x+2¢,1+2¢) and 1+ 2¢ > %d(x + 2¢,¢) then B © B(c,3(1+ 2¢)) and u(B)

u(B(c,3(1+ 2€))). by the doubling property of yt. We can therefore replace B by B(c,3(1 + 2¢€)) in
(2.3) and (2.4) as follows, using case 1,

1 € 1 €
f Z wdp ([ Z W, fdu) «,j Z w.dy (j Z w, Edu) =1
B = B = B(c,3(1+2€)) P B(c.3(1+2€)) =
wedi = Z wsdp = essinf W, < ess inf Z W,.
jz saHt Blea(1+2¢)) sait Blc.3(1+26)) - s s

(iif) f B=FB(x+26,1+26)and 0 <1+ 2¢ = a’["c+ 2€,¢) then we(x) = d(x, c‘)“ ~d(x + 2¢,¢)
for all x € B and hence

j Z wody = d(x + 2¢,¢)® and fz w, fdu dix + 2, (‘) €,

from which (2.3) follou s. Similarly,

fz wodp = d(x + 2€, cj“”essmfz w,.

Proposition 2.3 can be combmed with Theorem 4 in [17] (whose ploof works also in metric spaces) to
obtain the following result.
Corollary 2.4, Assume that y is doubling, satisfies (2.2) and supports a q-Poincaré inequality on X. Then
the measure dv = d(x, ¢)%du, with —g < @ < 0, is also doubling and supports a g-Poincaré inequality.
For @ > 0 it is doubling and supports a q'-Poincaré inequality for every ¢" > q(1 + a/a).
3. Sphericalization

From now on we assume that (X, d, i) 1s complete and unbounded.
Following [44] we will now define the sphericalization of X. Let X = X U {o} be the one-point
compactification of X. We also fix a base point a € X from now on. Define d_, d: £ x ¥ — [0, ) by

and
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d(x,x + €) ” N X
. . . , x,x+eelkX,
(1+dxa)(+dx+ea)
d(x,x+e)=dj(x+€x)= 1
ol ) al ) _—, ifxeXandx +€ = oo,
1+ d(x,a)
0, ifx=x+4+¢€=o0o,
and
1+€
d(x,x +€) = inf Z Ay (Xpae X2), (3.1)
(X=X g X2 e=H+E) )
=0

where the infimum is over all finite sequences (x = Xy, Xy, ..., X145 = X + €). This makes d into a metric
on X, and (X, d) 1s the sphericalization of (X, d). Moreover,

1 R
Zd‘“(x’ x+e)=d(x,x+e) =d,(x,x+¢€) (3.2)
see (3.2) in [24] and the proof of Lemma 2.2 in [23]. Note that d, is in general not a metric since the
triangle inequality may fail for it. We will denote balls in (X, d) by B(x, 1 + 2¢).
In [44], the sphericalization (X, d) is equipped with the measure i, defined by
: dp(x)
Jua,(‘il_) = Blal+dranz
Aoy H(B(a, 1 +d(x,a)))
Proposition 3.1 (see [51]). It is always true that (X)) < o.
Proof. Let b, ,. = u(B(a, 1+ ¢€)) (with by = 0). Then
e base—bie 1 e bae—bie 1 xo/ 1 1y 2
pa(R) = ) s ) S e ) (o) sy
1 ey 1+e™2+e 1 =0 1+e 2+e’ 1

emui1 2+e

1A

Now it will be more useful to equip (X, dA} with the measure [ defined by
|
: aygeoy (1 F d(x, @))%

In order to use the results from [44] we will need to carefully study the connections between the measures
1, and fi, which we do before. For the rest of this section we will only use the measure fi on X. Note that
[i depends on 1 + €, even though this is not made explicit in the notation.
The measure [i(X) can be either finite or infinite. Strictly speaking, as X is bounded, to fall within the
scope of the theory considered e.g. in [9] we would need to require that [i(X) < oo, but the results in the
rest of this section, as well as in the following, remain valid also in the case when ji(X) = w. Under the
assumptions at the beginning it follows from Proposition 5.1 that fi(X) < eo.
If y:[0,1] — X is a (not necessarily rectifiable) curve, then we can consider its length with respect to d
and with respect to d. It is quite easy (cf. [44]) to see that the arc lengths ds, and d(s,), with respect to d
and d, respectively, are related by

o~ dsg(x)
d(Sp)al(x) = ArdE o)’ (3.3)

As y([0,1]) 1s compact it follows that y is rectifiable with respect to d if and only if it is rectifiable with
respect to d.
Lemma 3.2 (see [51]). Let I be a collection of rectifiable curves on X. Then
Mod,, (T: X.d, 1) = Mod,, ([: X, d, ).
Proof. Let p be a nonnegative Borel function which is admissible in the definition of Mod, (T} X, d, i),

ie. f}rpdso =1forally € T.Let f(x) = p(x)(1 + d(x,a))% Then, by (3.3).
| o= [ pdsy= 1.

¥ Y.
and thus p is admissible in the definition of Mod,, .(T; X, d, [i). Moreover,
. . du(x)
Alte joa S 1+e 2(1+€) - — 1+e
L},O an L- P+ d(x.a)) (14 d(x,a))z1+e) J;_p dy.

Taking infimum over all such p shows that Mod,, ([;X,d, /i) < Mod,,.(T; X, d, ). The converse
mequality 1s shown similarly.
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Lemma 3.3 (see [51]). Let 0 © X be open, u,: 0 — R be a function, g.: 0 — [0, ] be measurable, and
Gs(x) = gs(x)(1 +d(x,a))? x € Q.

Then g, 1s a (1 + €)-weak upper gradient of u; in (Q with respect to (d, i) if and only if g; is a (1 + £)-

weak upper gradient of 1, in Q with respect to (d, [i).

Observe that measurability 1s the same with respect to u and .

Proof. Assume that g, 1s a (1 + €)-weak upper gradient of u_ with respect to (d, ). Let ' be the family

of exceptional curves i Q for which (2.1) fails. Then Mod, (I X, d, i) = 0. Let y: [U, 3},] — (1 be a

curve not in I'. Then, using (3.3),
< 2, 9= | 2, deloe

Z us(y(0)) — Z u, (v(1,))
g
As Mod,. (T; X, d i) =Mod,,(T; X,d, Ju) =0, by Lemma 2, we haw shown that g, is a (1 + €)-
weak upper gradient of 1, with respect to (d, [i). The converse implication is shown similarly.
4. Newtonian Spaces and Capacity
Following [47]. we define a version of Sobolev spaces on the metric space X.
Definition 4.1. For a measurable function us: X — R, let

1+E
Z I U, ”N;'J-"'E(X]: (J‘ Z |u |1+Edﬂ + ]IlfJ‘ Z g1+€dﬂ) )

=
where the infimum is taken over all upper gtadmms gs of ;. The New tom'm space on X is

11l+4e — . . -
_ NEFE(X) = {ug: | U lyaavegzy < ).
The space N31+¢(X)/~, where 1, ~ v if and only if || u, — v lyr2+e(xy= 0. is a Banach space and a
lattice, see [47]. We also define
DY*(X) = {u,: u, is measurable and has an upper gradient in L**<(X)}.

Now we assume that functions in N¥1*€(X) and D1*¢(X) are defined everywhere (with values in R), not
Just up to an equivalence class in the corresponding function space. This is important for upper gradients
to make sense.

For a measurable set E © X, the Newtonian space N217¢(E) is defined by considering (E, d|g, plg) as a
metric space in its own right. We say that u, € Nllo':JrE{:E ) if for every x € E there exists a ball B, 3 x
such that u; € N***¢(B, N E). The spaces D**¢(E) and D**(E) are defined similarly.
Definition 4.2. The (Sobolev) capacity of an arbitrary set E < X is

C..(E)= 1nf I ug A% WL .+sm,
where the infimum is taken over all u, € N* 1+E{X} such thatu, = lon E.

We say that a property holds quasieverywhere (q.e.) if the set of points for which the property fails has
capacity zero. The capacity is the correct gauge for distinguishing between two Newtonian functions. If

us € N¥17e(X), then u; ~ v if and only if uy = v q.e. Moreover, if U, v € DHE{X} and u; = U a.e..
then u; = v q.e.
Proposition 4.3 (see [51]). Let ) X be open and u,: Q0 — R be measurable. Then u, € DL25(Q, d, y) if
and only if u, € DLFE(0Q, d, fi). and in this case

(G5)us (%) = (9w, (V) (1 + d(x,0))* forac. X €0,
where (g,),,, and (g;),, are the minimal (1 + €)-weak upper gradients with respect to (d, i) and (d, ).

. 2. (o - J. 2. @iz (4.0

and thus D**¢(Q, d, u) = D**<(0, d i)
Proof. If u,€D'*°(Q,d,p) has a minimal (1+¢€)-weak upper gradient (g),,. then

joi = (05)y, (X)(1 + d(x,a))? is a (1 + €)-weak upper gradient of u, with respect to (d,1). by Lemma
3.3. Moreover,

jz Amd“_f Z (8200, (41 + d(x )49 +ddf(;)))2(1 _ [Z (g)edu

respectively. Moreover,
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Thus ug € D**¢(Q, d, i) and (gs)u; = gs a.e. The converse inequality is shown similarly, and hence

(:gs)us = (gs) a.<.

The local case follows since the minimal (1 + €)-weak upper gradient only depends on the function
locally, see [9].

For N11*¢ we have the following corresponding result (see [51]).

Proposition 4.4. Let O © X be open and 11,: Q — R be measurable. Then the following are true:

(@) I us lyratenam=I s lyratena and thus N*1+&(0,d, 1) © f\.’l'“f(ﬂ,&,ﬁ).

(b) If 0 is bounded, then NM*5(0,d,u) = N***(Q,d,[i). as sets but with comparable norms
(depending on ).

() Nige ™“(0,d. 1) = Nige™* (0, d, o),

Proof. Clearly, (c) follows directly from (b). To prove (b), we note that because of Proposition 4.3, U, €

DY™¢(Q,d, 1) if and only if u, € D*(Q, d, fi). with equal seminorms (4.1). Since Q is bounded, we also
hawve that 1 + d(x,a) = 1 forall x € Q, which implies that

LZ s [+<dp = fnz s [+<dg

with comparison constants depending on . Thus u, € N32*¢(Q,d, u) if and only if u, € N11+e(Q, d, i)
with comparable norms.
Finally, (a) follows immediately from (4.1) and the fact that dfi < dpu.
We shall write Ci,e and Ci.. for the capacitics associated with the spaces (X,d,f) and (X,d, ).
respectively.
Lemma 4.5 (see [51]). Let E = X. Then C;..(E) = 0 if and only if C1.(E) = 0.
Proof. The inequality €, .(E) S Cy..(E) follows directly from Proposition 4.4 (a).
Conversely, assume that C,, (E) = 0. By Proposition 4.4 (b). the N**“-norms are comparable in
B(a,2(1+€)), € = 0, from which it follows that C;..(ENB(a,1+¢€)) =0, see e.g. Lemma 2.24 in
[9]- The countable subadditivity of the capacity then shows that C;, (E) = 0.
5. Poincareé Inequalities Under Sphericalization

From now on we assume that (X, d, i) is complete and unbounded, and that p is Ahlfors Q-regular
with @ > 1. We also assume that

1{l+6{%, ifl <@ < 2,
0 ¢ (5.1)
1+E>E’ ifQ =2,

and that (X, d, it) supports a g-Poincaré inequality, where
1+¢, f@/2<1+e=Q,
1~{u s oeearo-0. iirese 52
These assumptions are satisfied e.g. if X = R**%,¢ = 0, equipped with the Lebesgue measure, and
1+ € > 2+ €/2. In particular, all € > 0 are allowed in R?.
Note that to show the Alfors (1 + €)-reqular with € > 0 we assume that

1+e¢
l<l4+e< , if 0<e<1
1—¢

2+e¢
1+e< T, if e=0
And hence the supports of g-Poincaré inequality follows.
For every @ > 1, [43] constructed a complete bounded Ahlfors Q-regular metric space supporting a 1-
Poincaré inequality. Sinece it 1s bounded it does not fall within our scope here, but its flattening is an
unbounded complete Ahlfors Q-regular metric space supporting a 1-Poincaré inequality, see Proposition
3.4 and Theorem 4.4 in [44] and Theorem 3.3 in [40].
Since X is complete and u is doubling and supports a Poincaré inequality, it follows that (X,d) is
quasiconvex, i.c. there is a constant € = 0 such that cach pair of points ¥ and x + € in the space can be
joined by a curve ¥ with length
L=(@+e)dxx+e),
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see e.g. Theorem 4.32 in [9]. Moreover, 1 < g = @ and thus Theorem 3.3 in [40] implies that X is also
annularly quasiconvex, i.e. there is a constant A = 1 such that whenever B € X is a ball and x +¢,x +

26 €B \%B, there is a curve y © AB \ (2A)7'B connecting x + € to x + 2¢ and such that [, < Ad(x +
€,X + 2€).

It follows from Theorem 6.5 in [24] that also the sphericalization (X, a}) is both quasiconvex and
annularly quasiconvex. By Proposition 3.1 and Theorem 3.6 in [44], ()? ,dA,gAQJ is Ahlfors Q-regular and
supports a g-Poinecaré inequality.

Proposition 5.1 (see [51]). The space (X, d, /i) supports a (1 + €)-Poincaré inequality and /i is doubling

on (X,d).
Proof. Since i is Ahlfors Q-regular, we have by (3.2),
du(x) : du(x)
dji = > (14 d(x, a))2@—-(1+e)
A0 =T ram aymae - A Hdxa) W(B(a,1+d(x,a)z
= (1+d(x,@))2@ O+, (x) = d(x, )20+, (x). (5.3)

We have already observed that g, is Ahlfors Q-regular and supports a g-Poincaré inequality on (£, d).
Proposition 2.3 with @ = 2(1 4+ € — Q) and ¢ = Q now implies that the weight d(x, )23+~ @) belongs
to
o A (ptg) when —Q < 2(1 + ¢ — Q) < 0 (which is equivalent to Q/2 << 1 + € < (),
e A;(ug) with 7>1 when 0<2(14+e—-Q)<Q(r—1), ie. for 1+€>Q and 7> 2(1+
€)/Q— 1.
By Corollary 2.4, /i is doubling on (X, d).
Since lig supports a g-Poincaré inequality on (X, d). Corollary 2.4 also implies that /i supports a (1 + €)-
Poinearé mequality when @/2 < 1+ € < Q.
For 1+ € = ., we first need to use Theorem 1.0.1 in [36] to see that i, supports a ¢'-Poincaré inequality
on (X,d) for some ¢' < g = (1 +€)Q/(2(1 + €) — Q). From this it follows, by Corollary 2.4, that fi
supports a g'T-Poincaré inequality on (X, d) whenever T > 2(1 + €)/Q — 1, and thus a (1 + €)-Poincaré
inequality, as 1 + € > q'(2(1 + €)/Q — 1).
Remark 5.2. The proof of Proposition 5.1 also shows that if (X, d, i) supports a g¢'-Poincaré inequality
for some specific ¢’ < 14+ ¢ < @, then also (X, d, i) supports a q'-Poincaré inequality. For 1 + € > Q
and q < (1+€)Q/(2(1+€) — Q),(X,d,[i)also supports a G-Poincaré inequality for some § < 1 + €
(in fact for any § > q'(2(1 + ¢€) — @)/Q, but not necessarily with § = q’). Such assumptions of better
Poincaré inequalities are often used in the subsequent theory of (1 + €)-harmonic functions. At the same
time, since we assume that X (and thus X) is complete, the self-improvement result in [36, Theorem1.0.1]
shows that the (1 + €)-Poincaré inequality implies a better g'-Poincaré inequality for some ¢' < 1+ €
(but with no good explicit control on g").
We are now ready to refine Lemma 4.5.
Lemma 5.3 (see [51]). Let E C X.
(a) If oo € E. then 1, (E) = 0 if and only if C1,.(E) = 0.
(b)If o € E, then €,..(E) = 0 ifand only if ;. .(E\ {=}) = 0and 1 + € = Q.
()If1+€e>Q.thenC,,.(E) =0ifand only if E = @ or E = {e0}.
Proof. (a) This follows directly from Lemma 4.5.
(b) We need to determine when €, _({o}) = 0. for which we will use results from [10]. As p, is Ahlfors
@-regular, it 1s also reverse-doubling, i.e. there are constants 8, T > 1 such that
Ha(B(x, (1 + 2€))) = 8u, (B(x,1 + 2€)) wheneverx € X and 0 < 1+ 2¢ < diam X /27.
Thus we get the following estimates, using (5.3) and denoting balls with respect to X by B,

(B(01+26) = D ((1+26)m @)y (B(e, (1+26)T0+9) \ B(oo, (1 +26)77279))

e=—1

|

D (1 +26)T PO (14 26)7717)9 = (1 4+ 26)%0+9C,

e=—1
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since 2(1 4+ €) — Q > 0. by (5.1). In the notation of [10]. this means that the dimension sets of (X, d, /i)
at oo satisfy i A
Sg'(e) = (02(1 +€) = Q] and Sg() = [2(1 +€) = Q, ).

Thus Ciye({0}) =0 if and only if 1+€<2(1+€)—Q (which is equivalent to 1+ € = Q), by
Proposition 1.3 in [10].
(¢) Let x € X. Then. following the notation in [10], we have S5 (x) = [Q, ) since X is Ahlfors Q-
regular. It thus follows from Proposition 1.3 in [10], or Corollary 5.39 1in [9], that C;4.({x}) > 0. Hence,
(¢) follows from (a) and (b).
6. (1 + €)-Harmonic Functions on Unbounded Domains

Recall the assumptions (5.1) and (5.2) on 1 + £ and X. From now on we also assume that Q € ¥
is a nonempty open set and we regard O simultaneously as a subset of (X, d, i) and of (X, d, ji).
We apply sphericalization and the results from the earlier sections to obtain results about (1 + €)-
harmonic functions and the Dirichlet problem on unbounded sets. Let Lip (1) denote the space of
Lipschitz functions with compact support in 0.
Definition 6.1. A function u, € Nli'c“e(ﬂ d, i) 1s a (super)minimizer in ) (with respect to (d, i) ) if

J‘ Z (goiedp < f z (9s)unspdu for all (nonnegative) @ € Lip, (1),
@0 P

where (g,),,, and l[‘g‘rs)uﬁ{‘rj are the 1111mma1 (1 + €)-weak upper gradients of u, and U, + ¢ with respect

*0

to (d, i). (Super)minimizers with respect to (d, /i) are defined analogously. A (1 + €)-harmonic function
is a continuous minimizer.
For various characterizations of (super)minimizers see [9] or [3]. It was shown in [39] that under the
assumptions of doubling and a (1 + ¢€)-Poincaré inequality, a minimizer can be modified on a set of zero
capacity to obtamn a (1 + €)-harmonic function. For a superminimizer u_, it was shown by [38] that its
lsc-regularization

uz(x):= ess leil}{]i inf u,(x +¢) = 1m1 ess inf u,

€=z B(x,1+2€)

is also a superminimizer and U = U; q.¢.

We are primarily interested in the Dirichlet (boundary value) problem for (1 + €)-harmonic functions,
and the associated boundary regularity. The most general way of treating the Dirichlet problem is to
consider Perron solutions, and in order to define them we need superharmonic functions.

Definition 6.2. A function u;: Q) = (—o, @], which is not identically o m any component of 1, is
superharmonie if it 1s lse-regularized (i.e. u, = ul ) and min{u,, 1 + €} is a superminimizer for every
1+eel

This 1s not the traditional definition of superharmonic functions, but it is one of several equivalent
characterizations used in various places of the nonlinear literature, cf. [38], [2], or [9].

Our choice of the sphericalization measure i leads to the following invariance result which will be
important for applications.

Theorem 6.3 (see [51]). A function u (! — R is a (super)minimizer in ( with respect to (d, 1) if and
only if it is a (super)minimizer in Q0 with respect to (d, ).

Similarly. (1 + €)-harmonicity and superharmonicity are the same in the two situations.

Proof. Proposition 4.4 shows that the spaces N22*€(Q, d, p) and N2**€(Q, d, i), appearing in Definition

loc loc

6.1, coincide. Moreover, since () © X, @ € Lip,(Q,d) if and only if ¢ € Lip_(Q,d), i.e. the sets of test
functions for both notions of superﬂlinimizcrs coincide. Pr oposirion 43 implies that

IS el 3 s
LUZ (9:)ust @du—f Z (9s)irs oA

® @0
where (gs)u, and (gs)u,+e are the minimal (1 + €)-weak upper gradients of us and ug + ¢ in Q with

and

respect to d, respectively. Taking all this into account shows the equivalence of the two notions of
Superminimizers.
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It now follows directly from the definitions that also the two notions of (1 + €)-harmonicity and
superharmonicity (with respect to (d, i) and (d, i) are equivalent.
We are now define the Perron solutions. We consider the Dirichlet problem with respect to the boundary
90 corresponding to X, i.c. for unbounded O © X we set 90 = dQ U {00}, This is in accordance with the
definitions used in [29] and [28].
Definition 6.4. Given f,: 00 — R, let Uy, be the set of all superharmonic functions ug on (. bounded
from below, such that

liminfu;(x + €) =2 fi(x) (6.1)

N3e—0
for all x € 90. The upper Perron solution of f; is then defined to be

Pf.(x) = inf u,(x), x €0,
ugElly,

while the lower Perron solution of f, is defined by Pf, = —P(—f.). If Pf, = Pf, and it is real-valued,
then we let Pf,: = Pf, and [, is said to be resolutive with respect to 0.
Note that in (6.1) the limit can be equivalently taken with respect to dg, d or d. where in the last case
X + € — o is interpreted in the obvious way. Thus, by Theorem 6.3, Perron solutions with respect to
(d, ) and (d, i) are the same.
As Q is always bounded as a subset of the sphericalization X, we can now use all the results about (1 +
€)-harmonic functions on bounded sets for it and they will automatically transfer to (1 + €)-harmonic
functions and Perron solutions on Q C X even for unbounded 0 (with boundary 0 ).
For the Perron method on X we need to require that €, (X \ Q) > 0, which by Lemma 5.3 happens if
and only if €3, (X\ Q) >0orl+e < @.If 1+ € > (Q this amounts exactly to requiring that (1 = X, by
Lemma 5.3.
So from now on we assume that

1 c X is unbounded, and that €, (X \ Q) > 0orl +¢€ < Q. (6.2)
In this case we get. using the correspondence above, a rich theory also on 0 seen as an unbounded open
subset of the original space X. (When €, (X \ Q) = 0, the Perron method gets somewhat pathological.
but this is not the right place to dwell upon that.)
First we observe that Theorem 3.4 in [12] (or [9]) shows that the Perron solutions are either identically
+00 or (1+ €)-harmonic in each component of (0, and thus in the latter case provide reasonable
candidates for solutions of the Dirichlet problem. Moreover, by Theorem 7.2 in [38] (or [9]). Pf, < Pf,
forall £;:99 — R.
More importantly, various resolutivity results for bounded domains from [12], [13], [28] and [15]
transform directly into results for unbounded Q. In unweighted and weighted R%*¢, € = 0, some of these
consequences recover old results by [37] resp. [29], but we also obtain many new results.
Some of the results below were obtained by different methods in [28] when the space X is (1 + €)-
parabolic (1.e. 1 + € = Q. see [10])., or more generally when Q is (1 + €)-parabolic (see Definition 3.4 in
[28] or Definition 7.10 below). which is satisfied for many unbounded sets also when 1 + ¢ < Q. The
Dirichlet problem on unbounded domains with respect to prime end boundaries has been considered in
[27].
Some of the obtained consequences are somewhat technical to describe, and in order to keep the
exposition limited we will not go into full generality. To avoid misunderstanding and to make the results
accessible in the sphericalization X, we formulate them using the capacity and other notions on X. It
should be fairly straightforward to transform also other results from the above mentioned papers, e.g.
those involving a better capacity and generalized boundaries.
Theorem 6.5 (see [51]). Assume that (5.1), (5.2) and (6.2) are satisfied. Let f, € (1 + €)(0) and assume
that h: 30 — R vanishes C, , .-g.c. on Q. Then the following hold:
(a)If 14 € < Q and h(ee) = 0 then both f; and f; + h are resolutive and Pf; = P(f; + h).
(b) If 1 + € = Q then both f, and f. + I are resolutive and Pf, = P(f, + h). Moreover, the requirement
(6.1) in the definition of Pf, and Pf, only needs to be satisfied at finite boundary points x € d0.
Note that for 1 + € > @ the funetion h in Theorem 6.5 is allowed to be nonzero only at o, since finite
points have positive capacity.
In unweighted R2¥F with € > 0, € = 1, this result (as well as the uniqueness result in Theorem 6.6 below)
is new, although the resolutivity of f, was shown already by [37].
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Proof. Resolutivity and invariance under the perturbation h follow from [12]] (or [9]) and the above
discussion. We also need to appeal to Lemma 5.3, which shows that {oo} has zero capacity if and only if
1+ € = @, and can therefore be disregarded in this case.
To conclude the proof, let 1 + ¢ = @ and u, be a superharmonie function on () bounded from below and
such that (6.1) holds for all x € Q. Then u, € U , . where h= —©9¥(cy, and hence the already proved
invariance part shows that
u. = P(f. + h) = Pf..
Taking infimum over all such u_ shows that the infimum in the definition of Perron solutions does not get
smaller by relaxing (6.1). That it cannot get larger is trivial, since it is taken over a larger class of
functions.
The following theorem provides us with a unique solution of the Dirichlet problem on unbounded
domains. Note, however, that the point at infinity is regarded as a boundary point even if the usual
boundary d0) is bounded. This additional requirement is necessary if 1 + € << (.
Theorem 6.6 (see [51]). Assume that (5.1), (5.2) and (6.2) are satisfied. Let f; € (1 + €)(0Q). Then
u_ = Pf, is the unique bounded (1 + €)-harmonic function 1, on 0 such that
lim u.(x+¢) = fi(x) forC;,.-q.e. x €30
N3e=0
and also for x = o when 1 + € < .
Proof. This follows directly from [9], together with Lemma 5.3 and the above discussion.
For Newtonian functions, and more generally Dirichlet funetions, we obtain the following resolutivity and
uniqueness results corresponding to Theorems 6.5 and 6.6.
Theorem 6.7 (see [51]). Assume that (5.1). (5.2) and (6.2) are satisfied. Let f; € D**¢(X,d, i) and
assume that h : 90 — R vanishes C;. -q.e. on 0. Then the following hold:
(a)If14+e < Qh(®) =0 and liMyse_o fo(Xx + €) =: fi(o) exists ( in R), then both fi and f; + h are
resolutive and Pf, = P(f; + h).
(b) If 1 + € = @, then both f; and f; + h are resolutive and Pf; = P(f; + h). Moreover, the requirement
(6.1) in the definition of Pf; and Pf. only needs to be satisfied at finite boundary points x € 3.
Proof. The resolutivity and invariance follow from the sphericalization process together with (the
bounded case of) Theorem 7.6 in [28]. if we can show that f; € D'*¢(X, d, ji). To this end, note that f €
DY*€(X,d, [i). by Proposition 4.3. Let d. € L**<(X, /i) be an upper gradient of f, in X with respect to d.
and let g, (o) be arbitrary.
If1+4+€=Q then CAl+E({°°}:) = 0. by Lemma 5.3, and hence (1 + €)-almost every curve in X avoids o
(by [9]). which immediately implies that g, is a (1 + €)-weak upper gradient of f, in X, and thus
f. € DY (X, d. ).
For 1+ € < Q. let ¥y X be a rectifiable curve. If ¥ C X, there is nothing to prove. So, by splitting y into
parts and reversing the orientation, if necessary, we can assume that =1 ({oo}) = {0}. The continuity of f;

at oo then yields
2. b= £ ()| =tm D £0@) -3 £ (W) < [ 3 dudse

Since ¥ was arbitrary. we conclude that g is an upper gradient of £, in X, and thus f, € D'*¢(X, d, i).
The last part in (b) is proved in the same way as the similar statement in Theorem 6.5.
Proposition 6.8 (see [51]). Assume that (5.1), (5.2) and (6.2) are satisfied. Let f, € D¥5(X,d, u) be
bounded and assume that 1, is a bounded (1 + €)-harmonic function in {1 such that

nlaiy—l.ouS(x +€) = f.(x) for Cy,.-q.e. x € 0L (6.3)
If1+ e < @, assume in addition that limpsys e Us(X + €) = liMyy co fo(x + €). Then u; = Pf.
Note that, unlike in Theorem 6.6, the existence of a function satisfying (6.3) for noncontinuous boundary
data is not guaranteed by the Kellogg property (Theorem 6.9 below).
Proof. By the proof of Theorem 6.7, f, € D**(X,d, i) and hence f, € NY1*¢(X,d, i) since it is
bounded. Thus, the statement follows directly from [9], together with the sphericalization process and
Lemma 5.3.

= lim
t—=0
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Also boundary regularity results carry over to unbounded domains, the most important is maybe the
Kellogg property. which we obtain using [11]. together with Lemma 5.3. Recall that x € 00Q is called
regular if
ﬂlal'gr_l)on;(.lc +€) = f,(x) forall f, € C(3Q). (6.4)

Theorem 6.9 (Kellogg property). Assume that (5.1), (5.2) and (6.2) are satisfied. The set of irregular
boundary points in 40 has C,, -capacity zero. Moreover, o is always regular if 1 + € < Q.
Useful properties of boundary regularity are its locality and the barrier characterization, which transfer to
unbounded domains in the following way. A superharmonic function u; in Q is a barrier at x, € 00 if

lim us(x+¢€)=0 and lfilI;]éLr}}flis(h' +¢€)>0 forevery x € GIy) \ {xol.

Nax+e—xg
Theorem 6.10 (see [51]). Assume that (5.1), (5.2) and (6.2) are satisfied. A point xo € 00 is regular if
and only if there exists a barrier at Xp. (Equivalently., the barrier can be chosen positive and continuous.)
In this case, (6.4) holds for all bounded f.: 30 — R which are continuous at x,.
Moreover, regularity is local in the following sense:
(a) A finite boundary point x; € 90 is regular with respect to Q1 if and only if it is regular with respect to
QN G for some (or equivalently all) open G 3 x,.
(b) The point © € 80 is regular with respect to Q if and only if it is regular with respect to 0\ K for
some (or equivalently all) compact K.
Proof. This follows directly from the sphericalization process, together with Theorems 4.2 and 6.1 in [7]
(or [9]).
Some of the above results are new also for unweighted R2*¢, ¢ = 0, with € > 0, but the Kellogg property
and the barrier characterization appeared already in [37], in this setting. We also obtain several new
characterizations of boundary regularity in unbounded sets corresponding to the results in [7], (or [9]), see
also [29].
A direct consequence of Theorem 6.10 (a) 1s that the Wiener type criterion from [22] and [20], [21] can
be applied also to finite boundary points in unbounded domains. Regularity of the point at oo will be

discussed in the next.
Other boundary regularity results that generalize from bounded to unbounded sets are the trichotomy

classification into regular, semiregular and strongly irregular boundary points from [4] (or [9]). These
results can be applied to finite boundary points as well as to oo, Moreover, the results on approximation
by regular sets and on so-called Wiener solutions of the Dirichlet problem from [8] (or [9]) generalize in a
similar way.

Furthermore, since the (1 + €)-energy is preserved under sphericalization, also quasiminimizers are
preserved in just the same way as (1 + €)-harmonic functions. We can thus generalize many earlier
boundary regularity results for quasiminimizers from bounded to unbounded sets (provided that X
satisfies our standing assumptions). These meclude results in [3]. [4]. [5]. [8]. [16], [18], and [21].

7. Resolutivity and Regularity at o

For unbounded 0. what happens at @ is of particular interest. Recall that by Theorem 6.9, @ is always
regular if 1 + ¢ << Q. Theorem 6.10( b), combined with Theorem 7.5 in [5] (or [9]). immediately implies
the following result.

Proposition 7.1. Assume that (5.1), (5.2) and (6.2) are satisfied. Let € = 0. Then oo € 90 is regular with
respect to 0 if and only if it is regular with respect to every unbounded component G of O\ B(a, 1 + €).
This in particular guarantees regularity of the point at o if there are no such unbounded components.

A simple application of the last part of Proposition 7.1 is demonstrated in the following example (see
[51]).

Example 7.2. The point o» € () is regular with respect to

o
0= (011)2 U U (2‘—1—15J 21—1—6) X {0, 21+€),
=0
since 0\ B(0,2) consists only of bounded components.
The capacity C,, . (or rather its variational analogue capy._ ) near o plays an important role here through
Wiener type criteria. Using (4.1), cap¥, _ can be described by means of functions on X. This makes it
possible to rewrite the Wiener type integrals at 00, appearing in [20], [21] and [22], in terms of Q and X.
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For a more hands-on result we use the fact that porosity is sufficient for boundary regularity and
formulate the following practical condition.
Theorem 7.3 (see [S1]). Assume that (5.1), (5.2) and (6.2) are satisfied. Assume that for some € = 0 and
for each unbounded component G of QY B(a,1+¢€) there exist 8 >0 and x;,. € X such that
d(xy3e0) 2 @asl+e— oand

B(X1+e,8d(X12e,@)) NG =0 forall 1+ e=12,.... (7.1)
Then o € 00 is regular.
Proof. Simple geometrical considerations show that (7.1) implies the existence of 8’ > 0 so that for
sufficiently large 1 + € (and with B denoting balls with respect to X ).

B (10 0'dx11e, ) € B (00,2411, @) )\ 6,
i.c. that G is porous at oo with respect to d. The sphericalization argument together with [9]. then implies
that o € 0G is regular with respect to the component G. Since this is true for every unbounded
component of O\ B(a, 1 + €), Proposition 7.1 concludes the proof.
Remark 7.4. The proof of Theorem 7.3 shows that if (7.1) holds for one particular unbounded component
of 2 \B(a,1 + ¢€) then o is regular with respect to that component.
In order to capture the behavior of functions from different directions at oo, we will consider the
Mazurkiewicz metric dyy on (), generated by d, cf. [13]. [14]. For simplicity we will restrict ourselves to
the case when (1 1s connected and satisfies (6.2). For x,x + £ € (, let
dy(X,x +€) = ilbgfdiam& E,

where the infimum is taken over all connected sets E < () containing both x and x + €, and the diameter
is taken with respect to d. It also gives rise to the Mazurkiewicz boundary 0,,0 with respect to d,, in the
usual way through completion. The Mazurkiewicz metric dy, on Q) generated by d. and the corresponding
boundary 9,0, are defined similarly.
It was shown in [13] that upper gradients, Newtonian spaces and (1 + €)-(superjharmonic functions

within () are the same with respect to the Mazurkiewicz metric and the original metric generating it. The
only change needed in the definition of Perron solutions with respect to the Mazurkiewicz boundary is

that the lim inf in (6.1) is with respect to dj and is required on Q. To be able to use the results from
[13] we assume that ) is finitely connected at the boundary with respect to d, cf. [46], [49]. as well as
[13] and [14]. This is equivalent to requiring the following two conditions:

(1) 0 1s finitely connected at every finite x € 91, i.e. for every € > —% and every x € d1 there is an open

neighborhood U < B(x,1 + 2¢) of x such that 01 N U consists of only finitely many components;

(ii) for every € = 0 there is a compact set K D B(a, 1+ €) such that 0\ K has only finitely many
components.

By Proposition 2.5 in [14], the conditions (i) and (i1) can equivalently be stated as follows. For x € dQ)
and € > —%. let N(1 + 2¢,x) be the number of components V of B(x, 1+ 2€) N Q such that x € V. and

let H(1+ 2¢,x) be the union of all the other components of B(x,1 + 2¢) N . Similarly, let N(1 +
2€,) be the number of unbounded components of 1Y B(a, 1 + 2¢), and let H(1 + 2¢, @) be the union
of all the bounded components of 0\ B(a,1 + 2¢). Then (i) and (i1) are equivalent to the following two
conditions, respectively:

((YN(1+ex)<candx € H(1—¢€,x), foreveryx €dQand 0 < e < 1;

(ii') N(1 + ¢,0) < oo and H(1 + €, o) is bounded for every € > 0.

The condition (ii). or equivalently (ii'), means that the Mazurkiewicz metric d,, distinguishes between
different copies of oo, each corresponding to a decreasing sequence of unbounded components of
O\ B(a,1+¢€). e=0,1,2,.... For unbounded O < R%* with sufficiently smooth boundary it is only
this requirement at oo that takes effect since finite conmnectedness at finite boundary points is
automatically satisfied for such smooth domains.

When discussing the Dirichlet problem with respect to the Mazurkiewicz boundary d,,Q we will restrict
owselvesto f, € C (é MQ). which is in fact equivalent to f. € €(d,,01) together with the requirement that

5 xllim fo(x) exists and is finite along each decreasing sequence {0, 22, (7.2)
Mil3x—oo
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of unbounded components Q;,.. = O\ B(a,1+¢),e =0,1,2,... Here we say that X 3 X5, — o, as
2 + € — o, along such a sequence (1; 2 ), 2 - if for every 1 + € there exists N, such that all x,, _
with 2 + € = N, . belong to the dy-closure of ;... Note that the limit is allowed to be different for
different directions towards oo, 1.e. for different sequences {Q,, }22,.
Under the assumption of finite connectedness at the boundary. it can be verified that 0,0 equals 0.
together with all the copies of oo from different directions. Finiteness at the boundary 1s equivalent to the
compactness of the d,,-closure of (), see [14]. or [35]. In the terminology of [1] and [27]. the sequence
{0, .}, can be identified with a so-called prime end at oo, see [1].
The following example shows that there can be uncountably many such directional sequences towards oo
(see [S1]).
Example 7.5, Let

A={a=0a;..05.€(0,1):a,.€{01},2+e=12,..}
be the set of all @ € (0,1) with finite binary expansions. Let || @ || denote the last nonzero position. For
each @ € A, consider the ray

Fo={x+2e=(1+e€e " eCl+ez|al}

and let O be the upper half-plane with all these rays F,, @ € A, removed. Then ( is finitely connected at
the boundary and there are uncountably many directions towards oo within ), corresponding to each
a € (0,1)\ A. Theorem 7.3 implies that the point at oo is regular with respect to 0.
The following result is a direct consequence of the sphericalization process and Theorem 8.2 in [13].
Theorem 7.6. Assume that (0 satisfies (1) and (i1), and that (5.1), (5.2) and (6.2) are satisfied. Let f, €
C(8301) be such that limy o2, fi(x) exists and is finite along each decreasing sequence of unbounded

components of 0% B(a,1+€),e =0,1,2, ..., in the sense of (7.2). Then f; is resolutive with respect to
the Mazurkiewicz boundary.

Here, and in Theorem 7.7, it is assumed that f; takes the value at a boundary point at infinity given by the
above limit, which may depend on the direction towards oo.

Boundary regularity with respect to the Mazurkiewicz boundary in bounded domains that are finitely
connected at the boundary was studied in [6]. The results therein can therefore be reformulated using
sphericalization for unbounded domains as well. We restrict ourselves to the following special case which
can be combined with the conditions in Proposition 7.1, Theorem 7.3 and Remark 7.4.

Theorem 7.7 (see [S1]). Let (0 and f; be as in Theorem 7.6. Assume that

lim f;(x) = 4 € R along a decreasing sequence {Q;,.122, (7.3)
dp13x—oo = =

of unbounded components ;.. < O\ B(a, 1+ ¢€),e = 0. If @ is regular with respect to Q,,_ for some
1 + €. then the Perron solution P3'f, in Q with respect to the Mazurkiewicz boundary satisfies

lim PYf.(x) = A along {Q,,.}2,,
. . e . D5x—e .
i.e. the point at infinity in the direction of {014, .}22 is regular.
Proof. Let £ == 0. Tt is easily verified using (7.3) that there exists 1 + € > j such that |f, — 4| < £ on
00 Qy+e N 3y Q. By Theorem 7.6, f; is resolutive with respect to the Mazurkiewicz boundary. It then
follows from the definition of Perron solutions with respect to d,,Q and @0, . that

Pf“f 5= Pf"fue{fs)ue in Qy4e, where (fo)14e = {‘:Z}ffs ZE g:gi:: 2 f{fﬂj
cf. Lemma 3.3 in [19]. Let
. A+e ondly, NaoL,
(Fedsse = {Pﬁfg on d0Q,,_NAQO.
Then it is easy to see that Pﬂtﬂ(fs:}lﬁ = .F'_nl_'_gl[ﬁjlpﬂE in 4. By Corollary 4.4 in [7] (or [9]). o is
regular with respect to 0y, © £);. Since 30y, N Q c dB(a, 1+ €), we see that (f-)1+e is continuous at

© € 30, .. and thus we obtain using [7], (or [9]) that

R M K . s = = . = y

limsup Py’ fi(x) < limsupPq . (fs)1:+.(x) = A+ ¢ along {Q,..}Z,.
Nax—co Nzx—oo

Letting ¢ — 0 and applying the same argument to —f; concludes the proof.

Example 7.8 ([51]). For 1 + € = 0,1,2, ..., let
Fi..={x=(x.,x;) € R:x, = 217y, = 21%°}
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and 0 = (0,00)%\ UZ_,F,,.. Then Q is finitely connected at the boundary and the "fingers" of 0 (each
between Fy.. and Fa,. ) determine countably many directions towards o0, aceumulating towards the strip
(0,1) x (0,2) < R2, which also determines one direction towards o, By Theorem 7.3, % € 00 is regular
with respect to . and so are all the d,,Q-boundary points at infinity, by Theorem 7.7.
Example 7.9 ([S51]). For 1 + e =0,1,2, ..., let

Floe={x=(x,x;) €R%x; =2"°x; = 1}
and ' = (0,00)%\ UZ_, F{,.. The "fingers" of O (each between F],, and F;,. ) determine countably
many directions towards oo, accumulating towards the positive xp-axis. This sequence of "fingers" also
determines one direction towards oo even though there 1s no single finger corresponding to it.
Since (1 is not finitely connected at the boundary, Theorems 7.6, 7.7 and 7.11 are not applicable.
Nevertheless, Theorem 7.3 shows that the point at o0 is regular with respect to 0.
The influence of each of the directions to infinity on the Dirichlet problem is determined by the capacity
CM _. which is adapted to ) and the Mazurkiewicz metric. as in [13]. To keep the exposition simple, we
will restrict ourselves to the following sufficient condition guarantecing that a point at infinity is
negligible along a decreasing sequence (1; D 0, O -+ of unbounded components of O\ B(a,1+€),e =
0,1,2, .., ef Definition 3.4 in [28].
Definition 7.10. We say that a decreasing sequence {{,,_}2, of unbounded components of 04
B(a,1+€).€=0,1,2,.., is (1 + €)-parabolic towards oo if there exist (u,);,. € N**+(0) satisfying
(Us)iee = 0in O N B(a, 1+ €),

[ Y @otsau=0 asj-e (7.4)
Di4e 3

and lim infin, .. (u;);(x) = 1 along {Q,, . }2Z, foreach j = 0,1,2,.

Theorem 7.11 (see [41]) Let () and f; be as in Theorem 7.6. If{ﬂHE} ~o 18 (1 + g)-parabolic towards oo
then the point at oo is negligible for the Perron solution Pf; along {Q,,.}iL,. i.c. the requirement

limp_,ootg(x) = f,(e) in the definition of Pf, does not need to be satisfied when x — o along

{rll+€}gD

Proof. This follows from Theorem 8.2 in [13] and the fact that (7.4), together with (4.1), implies that the
corresponding point in the Mazurkiewicz boundary 0, has zero C}_-capacity. See the proof of
Theorem 6.5 for further details.
Note that if, as in Example 7.5, there are uncountably many directions towards o0, it may happen that
CM _(E, Q) = 0. even if each dnecnon towards o 1s (1 + €)-parabolic, where E 1s the set consisting of all
the (1 + €)-parabolic directions towards co. Thus we cannot conclude that all of E can be ignored in the
definition of Perron solutions, at least not using the technique here.

8. (1 + €)-Harmonic Measure is Nonadditive on Null Sets

The (1 + €)-harmonic measure of a set E € 80 is w,, (E;0):= Pyg. where yy is the characteristic
tunction of E. When € = 1 it becomes the usual (upper) harmonic measure.
For the upper half plane R3 = {(x,x + €) € R%:x + € > 0}, equipped with the Lebesgue measure m.
[45] showed that for any € = 1 there are sets Ey, ..., E;, . such that UZSE, .. = R, but w,..(E,,.;R%) =
m(R\ E;..)=01+4+€e=1,..,1+e. Since w,,.(R;R2) = 1. it follows that there are two sets 4,,4, C
R such that

Wi+e(A1RE) = w1.c(42;RY) = 0 < wy..(4; U A3 RY),

showing that the (1 + €)-harmonic measure is not finitely subadditive on zero sets. As in Definition 6.4
and [29], the (1 + €)-harmonic measure in [45] is taken with respect to the compactified boundary
OR2 = RU {»}. The equality w,.. (R;R2) = m1+e(3i:R§r) =1 then follows from [29], and the
following lemma. The lemma was mentioned in [45]. but we provide a proof.

Lemma 8.1 (see [51]). Let X = R?*%, ¢ = 0, equipped with the Lebesgue measure, and let € > 0. Then
@1 ({ohRTF) =0

Proof. Let f; = ¥(e). Consider first the case when —1 < e <1+ €. Let

x—(0,..0-2—¢
(4)zsct) = 1 - (F O 022N e

Then (), € Uy, and thus for each x = (X, ..., X5,.) € RI*S
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L _ _ ) Xope T2+ €
W1+({2LEREF)(0) = (Us)1ee(¥) =1 — JrEZT‘ -0, ase — o
For e = 0 and x € RZ*¢, we instead let

o Ix]. ife >0,
) N €
{.us)Z+f{.xJ - |1 _ {0, ,O,—{jZ + E])| .

log ' , ife=0.

2+¢€

These are estimated similarly.
The proof in [45] uses an idea of [50] which involves intricate use of scaling and translation mwvariance,
and is thus not applicable to bounded domains. Now we are able to construet similar bounded examples
using sphericalization. As mentioned in [45], by adding dummy variables one directly obtains similar
examples also on R3%¢,e = 0. Using the sphericalization technique hence we obtain the following
example on the sphere §3*¢,
Example 8.2. Let X = R2*¢ and ¥ = S2*¢ be its sphericalization, € = 0,0 < € < o0,¢ = 1,0 = R2*e,
and A, and A, be as above. When () is seen as a bounded subdomain of X, we have that

W14e(A;0) = w1, (45;0) = 0 < @y, (A; U Ay Q)
showing that also in this situation the (1 + €)-harmonic measure is not finitely subadditive on zero sets.
The sets E,, . transfer similarly.

Note that the metric d from (3.1). that we equip the sphere X
T — 52+E

= §2%¢ with, is not the usual spherical

(inner) metric, nor the metric induced by R3*¢. Moreover, X is equipped with a measure which
dependson 1 + €.
Tust as sphericalization can be used to map an unbounded space into a bounded space, flattening can be
used in the converse direction, see [44] and [25], [26]. Thus we can flatten the sphere in Example 8.2,
mapping a point ¢ € Q to infinity, e.g. ¢ = (0, ...,0,—1). This would produce an example of a bounded
domain in R%* in the spirit of the example by [45], where R**¢ necessarily needs to be equipped with
some weighted measure, if € = 1.
In this particular case, we can obtain the same result by using spherical inversion as follows: Let X =
R?*¢, equipped with the Lebesgue measure dx, and let ¥ be another copy of R**<. Let @: X \ {0} = ¥\
{0} be given by

X X+e€

®(x) = W, and thus ®~1(x + ¢€) =m_
X xte

We extend @ so that @(o0) = 0 and ©(0) = co. As we shall see, to preserve the (1 + €)-energy we need
to equip ¥ with the measure dji(x + €) = |x + €]*°d(x + €).

Let 0 © X be open and consider a function u,: 0 — R. Let § = ®(Q) and fi, = u, o ®*:0 - R. As in
Proposition 4.3 we see that

S Gu+ O =Py 0000 = 2D e te - 0o

[x+ €]’

(8.1)

5

g
provided that u; € DEY(Q) and @1, € DEEE(Q). It then follows that

loc

[ﬂz (g 7dACx +€) = LZ (150200, (0) el 212259 = [ 3 (g)izvax

g
i.e. the (1 + €)-energy is indeed preserved (and u, € Dlt;re(ﬂ) if and only if i1, € Dllogf(ﬂ:}].
Example 8.3 ([51]). To get a bounded example in the spirit of [45], we first shift their example and let

0= [[jxl, S U IS S %} (Their sets E;, . and A, should also be shifted using the map x = x +

(O, -0, %)} After performing the inversion (8.1), we directly get a bounded example, with Q being the
unit ball in RZ*¢ centered at (0, ...,0,1). The sets E,,_ and A, ,_ transfer as described above into E,,, =
D(Ey ) Arye = P(Ay,) © 00

To fit within the standard framework as e.g. in [29], we need [i to be a (1 + €)-admissible measure. By
[29]. this happens if and only if € > —1/3. recovering a condition that we have encountered earlier. (If

S : . . .
£ < —= then the weight is not locally integrable around the origin and thus cannot be (1 + €)-

admissible.)
When € = 0 the weight is 1 and thus (R2¥%, d 1) is the unweighted R27*,
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