

Review Paper

www.questjournals.org

A Review on the Fuglede $(1 + \epsilon)$ – modulus

Elniwairy Elamin (1) and Shawgy Hussein (2)

(1) Sudan University of Science and Technology.
(2) Sudan University of Science and Technology, College of Science, Department of Mathematics, Sudan. shawgy2020@gmail.com

Abstract

In the same analogous behavior we follow [16] showing the properties of extremal functions for the Fuglede's $(1 + \epsilon)$ -modulus of a measure family Σ . Based on the recent result concerning $(1 + \epsilon)$ -modulus showing the existence of certain Borel measure n_{Σ} on Σ , we give an interpretation of n_{Σ} in some simple cases. We consider the case of disjoint supports and a natural family of measures associated with a double fibration.

Keywords: $(1 + \epsilon)$ -modulus, Extremal function, Optimal plan, Double fibration

Received 04 Oct., 2024; Revised 14 Oct., 2024; Accepted 16 Oct., 2024 © The author(s) 2024. Published with open access at www.questjournas.org

I. Introduction

B. Fuglede in [8] introduced the $(1 + \epsilon)$ -modulus of a family of measures, which plays a central role in many aspects of analysis on metric measure spaces. And recently recognized by many authors. The crucial fact noticed by Fuglede is that families of $(1 + \epsilon)$ -modulus equal to zero, called $(1 + \epsilon)$ -exceptional, may play the same role as equivalence of functions on sets of measure zero in $L^{1+\epsilon}$ spaces. The second remarkable observation is named the Fuglede lemma, which states that convergence in $L^{1+\epsilon}$ space implies convergence in L^1 with respect to all measures in considered family except for measures in an $(1 + \epsilon)$ -exceptional family.

The above mentioned results led [13] to introduce the notion of the first Sobolev spaces $N^{1,1+\epsilon}(X)$ on the metric measure space X. Hence, $(1+\epsilon)$ -harmonicity may be studied on such spaces [14]. So that the measures considered are the arc length measures on curves. On considering measures associated with hypersurfaces, we get the equivalent notion of $(1+\epsilon)$ -capacity of a condenser [15]. Capacity is an important tool in potential theory, partial differential equations and in differential geometry, by its conformal invariance for certain choice of the coefficient $\epsilon > 0$ (see [11], [4] and [7]).

Recently, [1] associated to any family Σ of Borel measures on the Polish space X with the reference measure \mathfrak{m} the unique optimal measure \mathfrak{n}_{Σ} on Σ . This measure is absolutely continuous with respect to the $(1+\epsilon)$ -modulus, thus provides weaker condition for negligible sets and considered on the family of measures associated to parametric curves allows to provide alternative definition of $(1+\epsilon)$ -week upper gradient (on metric measure spaces).

We describe the measure n_{Σ} in some simple cases. We consider a family of measures with disjoint supports and a family naturally associated with a double fibration. The common feature of these cases is existence of a Borel map onto Σ . The push-forward of \mathfrak{n}_{Σ} with respect to this map defines a measure which may be described with a given data (see [16]), hence more precisely, by the sequence of extremal functions $(f_j)_{\Sigma}$ for the $(1+\epsilon)$ modulus of Σ . The main ingredient, is the improved integral formula derived in [1]

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma} = \operatorname{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m},$$

where $\operatorname{mod}_{1+\epsilon}(\Sigma)$ is the Fuglede $(1+\epsilon)$ -modulus of Σ with respect to a measure \mathfrak{m} and $\hat{f}_i: \Sigma \to \mathbb{R}$ is given by $\sum_i \hat{f}_i(\mu) = \int_{\mathbf{x}} \sum_i f_i d\mu$.

2. Properties of Fuglede's $(1 + \epsilon)$ -Modulus

We review the notion and properties of the Fuglede's $(1 + \epsilon)$ -modulus. For more details see [8], [2]. For X be a metric space and $\mathcal M$ the σ -algebra of Borel sets. Fix a reference Borel measure m and let Σ be a set of Borel measures on X. Denote by $\mathcal{L}^{1+\epsilon}_+(X,\mathfrak{m})$ the space of all Borel functions $f_j\colon X\to [0,\infty]$ such that $\int_X \sum_j f_j^{1+\epsilon} d\mathfrak{m} <\infty$ and by $\mathcal{L}^{1+\epsilon}_{[-\infty,\infty]}(X,\mathfrak{m})$ the space of all Borel measurable functions taking values in $[-\infty, \infty]$ and such that $\int_X \sum_j f_j^{1+\epsilon} d\mathfrak{m} < \infty$. We define the $(1+\epsilon)$ -modulus of Σ by

$$\operatorname{mod}_{1+\epsilon}(\Sigma) = \inf \left\{ \int_X \sum_j (f_j)_X^{1+\epsilon} d\mathfrak{m} \mid f_j \in \mathcal{L}_+^{1+\epsilon}(X,\mathfrak{m}), \int_X \sum_j f_j d\mu \ge 1 \text{ for } \mu \in \Sigma \right\}.$$

A function $f_j \in \mathcal{L}^{1+\epsilon}_+(X,\mathfrak{m})$ such that $\int_X \sum_j f_j d\mu \geq 1$ for all $\mu \in \Sigma$ is called $(1+\epsilon)$ admissible or admissible for the $(1 + \epsilon)$ -modulus of Σ . $(1 + \epsilon)$ -modulus has the following properties [8]:

- (i) if $T \subset \Sigma$, then $\operatorname{mod}_{1+\epsilon}(T) \leq \operatorname{mod}_{1+\epsilon}(\Sigma)$,
- (ii) if $T \subset \bigcup_i \Sigma_i$, then $\operatorname{mod}_{1+\epsilon}(T) \leq \sum_i \operatorname{mod}_{1+\epsilon}(\Sigma_i)$.

In other words, $(1 + \epsilon)$ -modulus is an outer measure on the space of measures. Moreover, one can easily show that

$$\operatorname{mod}_{1+\epsilon}(T \cup \Sigma) = \operatorname{mod}_{1+\epsilon}(T) + \operatorname{mod}_{1+\epsilon}(\Sigma),$$

for families
$$T$$
 and Σ such that supp $T \cap \text{supp } \Sigma = \emptyset$, where $\sup_{\mu \in \Sigma} \Sigma = \emptyset$

We say that a family Σ is $(1 + \epsilon)$ -exceptional if its $(1 + \epsilon)$ -modulus is equal to zero. Moreover, we say that a certain property (P) holds $(1 + \epsilon)$ -almost everywhere $((1 + \epsilon)$ a.e., for short) with respect to Σ , if there is a subfamily $T \subset \Sigma$ such that (P) holds for every measure $\mu \in \Sigma \setminus T$ and T is $(1 + \epsilon)$ -exceptional. A $(1 + \epsilon)$ -admissible functions $(f_i)_{\Sigma}$ which realizes the infimum for the $(1+\epsilon)$ -modulus of Σ is called extremal for the $(1+\epsilon)$ ϵ)-modulus of Σ . One can show, that up to a subfamily of $(1+\epsilon)$ -modulus zero, there is unique extremal function [8]. It can be characterized by the following Badger's criterion [2].

Theorem 1. Let X be a metric space and m a Borel measure on X. Assume $\operatorname{mod}_{1+\epsilon}(\Sigma)$ < ∞ . A $(1+\epsilon)$ -admissible function $(f_j)_{\Sigma} \in \mathcal{L}^{1+\epsilon}_+(X,\mathfrak{m})$ is extremal for the $(1+\epsilon)$ -modulus of the family Σ if and only if there is a family Σ_0 such that $\operatorname{mod}_{1+\epsilon}(\Sigma \cup \Sigma_0) = \operatorname{mod}_{1+\epsilon}(\Sigma)$ and the following two conditions hold:

- $\begin{array}{l} \text{(i)} \int_{X} \sum_{j} \ (f_{j})_{\Sigma} d\nu = 1 \text{ for } \nu \in \Sigma_{0}, \\ \text{(ii)} \text{ if } \int_{X} \sum_{j} f_{j} \, d\nu \geq 0 \text{ for all } \nu \in \Sigma_{0}, \text{ where } f_{j} \in \mathcal{L}^{1+\epsilon}_{[-\infty,\infty]}(X,\mathfrak{m}), \text{ then } \int_{X} \sum_{j} \ (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m} \geq 0. \end{array}$

3. Measures Associated with Families of Borel Measures

All facts are taken from [1]. For X be a Polish space, $\mathcal{M}(X)$ the set of all Borel measures on X and fix a measure $\mathfrak{m} \in \mathcal{M}(X)$. We can endow $\mathcal{M}(X)$ with the topology of *-week convergence, i.e., $\mu_n \to \mu$ if

$$\int_X \sum_i f_j d\mu_n \to \int_X \sum_i f_j d\mu$$

for all $f_j \in C_b(X)$ (here, $C_b(X)$ denotes the set of all continuous and bounded functions on X). Now for any Borel functions f_j put

$$\hat{f}_{\mathbf{j}}: \mathcal{M}(X) \to \mathbb{R}, \qquad \sum_{j} \hat{f}_{\mathbf{j}}(\mu) = \int_{X} \sum_{j} f_{j} d\mu.$$

Notice that if $f_j \in C_b(X)$ then, by the definition, \hat{f}_j is continuous, hence Borel. If, more generally, $f_j \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m})$, then \hat{f}_j is again Borel. This follows by the use of monotone class theorem. In fact, we can find a sequence $(f_j)_n$ in $C_b(X)$ converging in $L^1(X,\mu)$ to f_j for any $\mu \in \mathcal{M}(X)$. Since $(\hat{f}_j)_n$ are Borel, the limit (\hat{f}_j) is Borel.

Let $\Sigma \subset \mathcal{M}(X)$. [1] show, assuming Σ is Suslin, existence of a Borel probability measure $\mathfrak{n} = \mathfrak{n}_{\Sigma}$ on $\mathcal{M}(X)$ concentrated on Σ such that

$$\int_{\mathcal{M}(X)} \sum_{j} \hat{f}_{j} d\mathfrak{n} \leq c(\mathfrak{n}) \sum_{j} \| f_{j} \|_{1+\epsilon}, f_{j} \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m}), \tag{1}$$

for some nonnegative constant $c(\mathfrak{n})$, which we choose smallest possible. Any measure \mathfrak{n} on $\mathcal{M}(X)$ satisfying (1) is called a plan with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})$, $\epsilon \geq 0$. Assume now that $\operatorname{mod}_{1+\epsilon}(\Sigma) > 0$ and $\sup_{\Sigma} \mu(X) < \infty$ and let Σ be a Suslin set in $\mathcal{M}(X)$. Recall, that a set S is Suslin if it is an image of a Polish space under continuous map. Among all plans with barycenter (not necessary probability measures) in $L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})$ there is one optimal, what is explained in a proposition below (see [16]).

Proposition 2. [1], Let Σ be a Suslin set such that $\operatorname{mod}_{1+\epsilon}(\Sigma) > 0$ and $\sup_{\Sigma} \mu(X) < \infty$. Put

$$C_{1+\epsilon,m} := \sup_{c(\mathfrak{n})>0} \frac{\mathfrak{n}(\Sigma)}{c(\mathfrak{n})}.$$
 (2)

Then there exists an optimal plan \mathfrak{n}_{Σ} with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})$ in (2). Moreover, $(\mathfrak{n}_{\Sigma}) = C_{1+\epsilon,\mathfrak{m}}^{-1} = \operatorname{mod}_{1+\epsilon}(\Sigma)^{-\frac{1}{1+\epsilon}}$. In addition, there is an extremal function $(f_j)_{\Sigma}$ for the $(1+\epsilon)$ -modulus of Σ . It satisfies

$$(\hat{f}_{j})_{\Sigma} = 1 \, \mathfrak{n}_{\Sigma} - \text{ a.e. on } \Sigma.$$
 (3)

We recall the alternative definition of a plan with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}(X, \mathfrak{m})$ [1]. Let \mathfrak{n} be a plan with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}(X, \mathfrak{m})$. Define a Borel measure $\underline{\mathfrak{n}}$ on X by

$$\underline{\mathfrak{n}}(A_j) = \int_{\mathcal{M}(X)} \sum_{i} \mu(A_j) d\mathfrak{n}(\mu) = \int_{\mathcal{M}(X)} \sum_{i} \widehat{\chi_{A_j}} d\mathfrak{n}, \ A_j \in \mathcal{B}(X).$$

Thus by (1)

$$\underline{\mathfrak{n}}(A_j) \leq c \mathfrak{m}(A_j)^{\frac{1}{1+\epsilon}}, A_j \in \mathcal{B}(X).$$

By Radon-Nikodym theorem there is a density $\rho \in L^1(X, \mathfrak{m})$ such that $\underline{\mathfrak{n}} = \rho \mathfrak{m}$. By argument of approximation by simple functions we get that

$$\int_{X} \sum_{i} f_{j} d\underline{\mathbf{n}} = \int_{\mathcal{M}(X)} \sum_{i} \hat{f}_{j} d\mathbf{n}, f_{j} \in \mathcal{L}^{1+\epsilon}(X, \mathbf{m}). \tag{4}$$

Hence,

$$\int_X \sum_j f_j \rho d\mathfrak{m} \leq c \sum_j \ \| f_j \|_{1+\epsilon}, \, f_j \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m}).$$

By duality of Lebesgue spaces $L^{1+\epsilon}(X,\mathfrak{m})$ and $L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})^*$ it follows that $\rho \in L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})$ and the smallest possible constant c equals $\|\rho\|_{\frac{1+\epsilon}{\epsilon}}$.

Notice, that for a plan n_{Σ} we have

$$\rho = \operatorname{mod}_{1+\epsilon}(\Sigma)^{-1}(f_i)_{\Sigma}^{\epsilon}.$$

In other words, the following formula holds

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma} = \operatorname{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m}, \qquad f_{j} \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m}).$$
 (5)

4. Some results

We provide a formula for a plan \mathfrak{n}_{Σ} assuming there is a Borel surjective map $\pi: X \to \Sigma$.

We start with some observations. Let $\Sigma \subset \mathcal{M}(X)$ be Suslin and assume $\operatorname{mod}_{1+\epsilon}(\Sigma) > 0$.

Then there is an optimal plan \mathfrak{n}_{Σ} with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}$. Assume there is a Borel surjective map $\pi: X \to \Sigma$. Put

$$X_{\mu} = \pi^{-1}(\mu). \tag{6}$$

We may push-forward a measure $\operatorname{mod}_{1+\epsilon}(\Sigma)^{-1}(f_j)^{1+\epsilon}_{\Sigma}\mathfrak{m}$ with respect to π to obtain a measure \mathfrak{n}'_{Σ} on Σ ,

$$\mathfrak{n}_{\Sigma}' = \pi_{\sharp} \left(\operatorname{mod}_{1+\epsilon}(\Sigma)^{-1} (f_j)_{\Sigma}^{1+\epsilon} \mathfrak{m} \right). \tag{7}$$

Moreover, denote by $\bar{f_j}$ a composition $\hat{f_j} \circ \pi$ for $f_j \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m})$. Then $\bar{f_j}$ is a Borel function on X. By the definition we have

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}'_{\Sigma} = \operatorname{mod}_{1+\epsilon}(\Sigma')^{-1} \int_{X} \sum_{j} (f_{j})_{\Sigma}^{1+\epsilon} \bar{f}_{j} d\mathfrak{m}, \qquad f_{j} \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m}). \tag{8}$$

4.1. Case of Disjoint Supports

Assume that support of μ is contained in X_{μ} for any $\mu \in \Sigma$. We say in this case that a family Σ is separate.

Lemma 3 ([16]). For the $(1 + \epsilon)$ -modulus of separate family Σ we have $(\hat{f}_j)_{\Sigma} = 1$ $(1 + \epsilon)$ -a.e. on Σ .

Proof. Suppose $(\hat{f}_j)_{\Sigma}(\mu) > 1$. Then we could replace $(f_j)_{\Sigma}$ by $\frac{1}{(f_j)_{\Sigma}(\mu)}(f_j)_{\Sigma}$ on X_{μ} to get a function with the smaller $L^{1+\epsilon}(X,\mathfrak{m})$ -norm. This contradicts the minimality of $(f_j)_{\Sigma}$.

Lemma 4 (see [16]). For any Suslin subset Π of a separate family $\Sigma(f_j)_{\Sigma}$ restricted to $\bigcup_{\mu \in \Pi} X_{\mu}$ and zero elsewhere is extremal for the $(1 + \epsilon)$ -modulus of family Π .

Proof. Suppose there exist $(f_j)_{\Pi}$, which is admissible for Π and such that $\|\sum_j (f_j)_{\Pi}\|_{1+\epsilon} < \sum_j \|(f_j)_{\Sigma}\|_{1+\epsilon}$ on $\bigcup_{\mu \in \Pi} X_{\mu}$. Put

$$\sum_{j} f_{j}(x) = \begin{cases} \sum_{j} (f_{j})_{\Pi}(x) & \text{for } x \in \bigcup_{\mu \in \Pi} X_{\mu} \\ \sum_{j} (f_{j})_{\Sigma}(x) & \text{for remaining } x \end{cases}$$

Then f_j is $(1 + \epsilon)$ -admissible for Σ and $\|\sum_j f_j\|_{1+\epsilon} < \sum_j \|(f_j)_{\Sigma}\|_{1+\epsilon}$, which contradicts extremality of $\sum_{i} (f_i)_{\Sigma}$.

For any $f_i \in \mathcal{L}^{1+\epsilon}(X, \mathfrak{m})$ by Lemma 3 we have

$$\sum_{j} \widehat{(f_j)_{\Sigma}(f_j)}(\mu) = \int_{X_{\mu}} \sum_{j} \widehat{(f_j)_{\Sigma}} \overline{f_j} d\mu = \sum_{j} \widehat{f_j}(\mu) (\widehat{f_j})_{\Sigma}(\mu) = \sum_{j} \widehat{f_j}(\mu), \ \mu \in \Sigma.$$

Hence, by (8) and (5) we ge

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma}' = \int_{\Sigma} \sum_{j} \widehat{(f_{j})_{\Sigma} f_{j}} d\mathfrak{n}_{\Sigma} = \int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma}.$$

Choose a Suslin subset $\Pi \subset \Sigma$. By Lemmas 3 and 4 we see that $\mathfrak{n}'_{\Sigma}(\Pi) = \mathfrak{n}_{\Sigma}(\Pi)$, hence these two measures agree on Suslin sets. Moreover, taking $f_i = (f_i)_{\Pi}$ in (5) we get

$$\begin{split} \mathfrak{n}_{\Sigma}(\Pi) &= \mathrm{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} (f_{j})_{\Pi} d\mathfrak{m} = \mathrm{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{X} \sum_{j} (f_{j})_{\Pi}^{1+\epsilon} d\mathfrak{m} \\ &= \frac{\mathrm{mod}_{1+\epsilon}(\Pi)}{\mathrm{mod}_{1+\epsilon}(\Sigma)'} \end{split}$$

Concluding, we have the following proposition (see [16]).

Proposition 5. The plan n_{Σ} on separate family Σ is equal to the conditional probability with respect to $(1 + \epsilon)$ -modulus for Suslin subsets. Moreover,

$$\mathfrak{n}_{\Sigma} = \mathfrak{n}'_{\Sigma} = \pi_{\sharp} \big(\operatorname{mod}_{1+\epsilon}(\Sigma)(f_{j})_{\Sigma}^{1+\epsilon} \mathfrak{m} \big)$$

 $\mathfrak{n}_\Sigma=\mathfrak{n}_\Sigma'=\pi_\sharp\big(\mathrm{mod}_{1+\epsilon}(\Sigma)(f_j)_\Sigma^{1+\epsilon}\mathfrak{m}\big).$ By above proposition we have the following integral formula

$$\int_{X} \sum_{j} (f_{j})_{\Sigma}^{1+\epsilon} \bar{f}_{j} d\mathfrak{m} = \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m}, f_{j} \in \mathcal{L}^{1+\epsilon}(X,\mathfrak{m}).$$
 (9)

Remark 1. Notice that the integral formula (9) was obtained in the case of Lebesgue measures associated with a foliation on a Riemannian manifold [5,6].

4.2. Connections with Disintegration Theorem

For Σ be a Suslin family of Borel measures on a space X such that $\operatorname{mod}_{1+\epsilon}(\Sigma) > 0$ with respect to a fixed Borel measure m is positive. Assume there is a Borel map $\pi: X \to \mathbb{R}$ Σ . Then $\mathfrak{n}_{\Sigma'}$, defined by (7), is a Borel measure on Σ . By Disintegration Theorem (see [3]) applied to a map π and a measure \mathfrak{n}'_{Σ} , there is a family of Borel measures $\Sigma' = \{\nu_{\mu}\}_{\mu \in \Sigma}$ on X such that

$$\operatorname{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m} = \int_{\Sigma} \int_{\pi^{-1}(\mu)} \sum_{j} f_{j} d\nu_{\mu} d\mathfrak{n}_{\Sigma'}(\mu). \tag{10}$$

We compute the $(1 + \epsilon)$ -modulus of Σ' . If f_i is admissible for the $(1 + \epsilon)$ -modulus of Σ' then by (10) it follows that

$$1 \leq \int_{\Sigma} 1 d\mathfrak{n}_{\Sigma'} \leq \int_{\Sigma} \int_{\pi^{-1}(\mu)} \sum_{j} f_{j} d\nu_{\mu} d\mathfrak{n}_{\Sigma'}(\mu) \leq \operatorname{mod}_{1+\epsilon}(\Sigma)^{-\frac{1}{1+\epsilon}} \sum_{j} \| f_{j} \|_{1+\epsilon}.$$

Thus

$$\operatorname{mod}_{1+\epsilon}(\Sigma') \ge \operatorname{mod}_{1+\epsilon}(\Sigma).$$
 (11)

Moreover, above last inequality can be stated as

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma'} \leq \operatorname{mod}_{1+\epsilon}(\Sigma)^{-\frac{1}{1+\epsilon}} \sum_{j} \| f_{j} \|_{1+\epsilon},$$

where \hat{f}_j is taken with respect to Σ' . This shows that $\mathfrak{n}_{\Sigma'}$ is a plan with barycenter in $L^{\frac{1+\epsilon}{\epsilon}}(X,\mathfrak{m})$ associated with Σ' and that $c(\mathfrak{n}_{\Sigma'}) \leq \mathrm{mod}_{1+\epsilon}(\Sigma)$. Notice that measures $\nu_{\mu}, \mu \in \Sigma$, have disjoint supports.

It would be interesting to check when there is equality in (11). In the example below, we show that it may happen (see [16]).

Example 1. Let X = [0,1] and consider a Lebesgue measure \mathfrak{m} on X. Let $\mu_{1-\epsilon}$, $0 \le \epsilon < 1$, be a normalized Lebesgue measure on $[0,1-\epsilon]$, i.e. $\mu_{1-\epsilon} = \frac{1}{1-\epsilon}\mathfrak{m}\Big|_{[0,1-\epsilon]}$ and let $\mu_0 = \delta_0$ be the Dirac measure at 0. Put $\Sigma = \{\mu_{1-\epsilon}\}_{\epsilon \in [0,1]}$. A map $\pi: X \to \Sigma$ given by $\pi(1-\epsilon) = \mu_{1-\epsilon}$ is continuous. An admissible function $(f_j)_{\Sigma}$ is extremal for the $(1+\epsilon)$ -modulus of Σ if

$$\frac{1}{1-\epsilon} \int_0^{1-\epsilon} \sum_j (f_j)_{\Sigma}(s) ds = 1$$

for all $1-\epsilon$. Differentiating with respect to $1-\epsilon$, we get that $(f_j)_{\Sigma}=1$. Thus $\mathrm{mod}_{1+\epsilon}(\Sigma)=1$. We will derive the formula for the $(1+\epsilon)$ -modulus of a family Σ' of measures $\nu_{1-\epsilon}$ on X, which existence follows by Disintegration Theorem. We know that $\nu_{1-\epsilon}$ is concentrated on a set $X_{1-\epsilon}=\pi^{-1}(\mu_{1-\epsilon})=\{1-\epsilon\}$. Hence $\nu_{1-\epsilon}=c_{1-\epsilon}\delta_{1-\epsilon}$ for some positive $c_{1-\epsilon}$. Thus, by Disintegration Theorem

$$\int_0^1 \sum_j f_j(1-\epsilon)d(1-\epsilon) = \int_0^1 \sum_j c_{1-\epsilon}f_j(1-\epsilon)d(1-\epsilon),$$

for any f_j . Hence $c_{1-\epsilon} = 1 - \epsilon$ and $v_{1-\epsilon} = \delta_{1-\epsilon}$ is a Dirac measure. We thus have $\operatorname{mod}_{1+\epsilon}(\Sigma') = 1 = \operatorname{mod}_{1+\epsilon}(\Sigma)$.

Moreover, let us determine the plan n_{Σ} . By a definition we have

$$\int_{\Sigma} \frac{1}{1-\epsilon} \int_{0}^{1-\epsilon} \sum_{j} f_{j}(s) ds dn_{\Sigma}(\mu_{1-\epsilon}) = \int_{0}^{1} \sum_{j} f_{j}(1-\epsilon) d(1-\epsilon)$$

for any continuous f_i . Taking $f_i = F'$ such that F(0) = 0 we obtain

$$\int_{\Sigma} \frac{F(1-\epsilon)}{1-\epsilon} d\mathfrak{n}_{\Sigma}(\mu_{1-\epsilon}) = F(1).$$

Now it easily follows that n_{Σ} is a Dirac measure at μ_1 .

5. Double Fibration

For G be a locally compact group, H_X and H_A closed subgroups of G. Define two left coset spaces

$$X = G/H_X$$
, $\mathcal{A} = G/H_{\mathcal{A}}$.

Moreover, consider the following assumptions:

- (i) the groups G, H_X, H_A and $H = H_X \cap H_A$ are unimodular, i.e., left-invariant Haar measure are also right-invariant,
- (ii) the set $H_X H_{\mathcal{A}}$ is closed in G,
- (iii) if $hH_{\mathcal{A}} \subset H_{\mathcal{A}}H_X$, then $h \in H_X$. If $hH_X \subset H_XH_{\mathcal{A}}$, then $h \in H_{\mathcal{A}}$.

We say that two elements $x \in X$ and $\xi \in \mathcal{A}$ are incident if as cosets in G they intersect. The set of elements in \mathcal{A} which are incident with $x \in X$ is denoted by \check{x} . Analogously, the set of points in X which are incident with $\xi \in \mathcal{A}$ is denoted by $\hat{\xi}$. Put

$$F = \{ (x, \xi) \in X \times \mathcal{A} \mid x \text{ and } \xi \text{ are incident } \}.$$

Then we have two fibrations $F \mapsto X$ and $F \mapsto \mathcal{A}$, this we speak about a double fibration.

Let us recall important results concerning existence of invariant measures for a double fibration [9]. Let $x_0 = \{H_X\}$ and $\xi_0 = \{H_{\mathcal{A}}\}$. There is a unique H_X -invariant measure μ_0 on $\check{x_0}$ and a unique $H_{\mathcal{A}}$ -invariant measure \mathfrak{n}_0 on $\hat{\xi_0}$. Moreover, there exists a nonzero measure on each \check{x} and on $\hat{\xi}$, such that they coincide with μ_0 on $\check{x_0}$ and \mathfrak{n}_0 , respectively. For these measures, if $\check{x_1}$ corresponds to $\check{x_2}$ by $g \in G$, then μ_{x_1} corresponds to μ_{x_2} by g. Analogous correspondence holds for elements in \mathcal{A} . Denote by \mathfrak{m} and \mathfrak{n} the (normalized) G-invariant measures on K and K, respectively, induced from Haar measure on K. Fix a smooth positive and bounded function K0 on K1 and consider the following Radon and its dual transformations

$$\begin{split} & \sum_j \ \hat{f}_{\rm j}(\xi) & = \int_{\hat{\xi}} \sum_j \ f_j(x) \rho(x,\xi) d\mu_\xi(x), \\ & \sum_j \ \check{\varphi}_{\rm j}(x) & = \int_{\check{x}} \sum_j \ \varphi_j(\xi) \rho(x,\xi) d\mathfrak{n}_x(\xi) \end{split}$$

for Borel and non-negative functions f_j and φ_j . Then it is not hard to see that (compare [12], [9] in the continuous or $L^{1+\epsilon}$ category; see also [8] for similar and general approach)

$$\int_{X} \sum_{j} f_{j}(x) \check{\varphi}_{j}(x) d\mathfrak{m}(x) = \int_{\mathcal{A}} \sum_{j} \hat{f}_{j}(\xi) \varphi_{j}(\xi) d\mathfrak{n}(\xi)$$
(12)

for any non-negative Borel functions f_j and φ_j . Put

$$\Sigma = \{ \rho(\cdot, \xi) \mu_{\xi} \mid \xi \in \mathcal{A} \}.$$

Each μ_{ξ} is supported on $\hat{\xi} \subset X$, whereas each \mathfrak{n}_x is supported on $\check{x} \subset \mathcal{A}$. We seek for the extremal function $(f_i)_{\Sigma}$ for the family Σ .

Proposition 6 (see [16]). Assume that there is an admissible function $(f_j)_{\Sigma}$ for Σ such that the following conditions hold:

(i)
$$(\hat{f}_j)_{\Sigma} = 1$$
,

(ii) there exists Borel positive function $(\varphi_j)_{\Sigma}$ on \mathcal{A} such that $(f_j)_{\Sigma}^{\epsilon} = (\check{\varphi}_j)_{\Sigma}$.

Then $(f_i)_{\Sigma}$ is extremal for the $(1 + \epsilon)$ -modulus of Σ .

Proof. The proof follows by using standard methods. Let f_j be admissible for Σ . By (12) and Hölder inequality,

$$0 \leq \int_{\mathcal{A}} \sum_{j} f_{j} \widehat{-(f_{j})}_{\Sigma} (\varphi_{j})_{\Sigma} d\mathfrak{m} = \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m} - \int_{X} \sum_{j} (f_{j})_{\Sigma}^{1+\epsilon} d\mathfrak{m}$$
$$\leq \sum_{j} \left(\int_{X} (f_{j})_{\Sigma}^{1+\epsilon} d\mathfrak{m} \right)^{\frac{\epsilon}{1+\epsilon}} \left(\int_{X} f_{j}^{1+\epsilon} d\mathfrak{m} \right)^{\frac{1}{1+\epsilon}} - \int_{X} \sum_{j} (f_{j})_{\Sigma}^{1+\epsilon} d\mathfrak{m},$$

where $\frac{1+\epsilon}{\epsilon}$ is a coefficient conjugate to $1+\epsilon$. Thus

$$\int_{X} \sum_{j} (f_{j})_{\Sigma}^{1+\epsilon} d\mathfrak{m} \leq \int_{X} \sum_{j} f_{j}^{1+\epsilon} d\mathfrak{m}.$$

Hence $(f_j)_{\Sigma}$ is extremal.

Remark 2. Let us remark on the similarity of above theorem to the Badger's criterion (Theorem 1). In this case, Σ_0 is just Σ . Thus, condition (1) of Proposition 6 and Theorem 1

coincide. By the 'Plancherel' formula (12) for any positive Borel functions f_j on X such that $\hat{f}_j \geq 0$ on Σ we have

$$\int_X \sum_j \ (f_j)_{\Sigma}^{\epsilon} f_j d\mathfrak{m} = \int_{\mathcal{A}} \sum_j \ \varphi_j \hat{f}_j d\mathfrak{n} \geq 0$$

assuming (2) of Proposition 6.

Remark 3. If the Radon transform is injective, i.e. the map $f_j \to \hat{f}_j$ is on the suitable class injective with the constant functions in the range of this correspondence, then the condition (1) of Proposition 6 characterizes $(f_j)_{\Sigma}$ completely. In such case, the second assumption is useless.

We will justify above theorem on the concrete examples. The classical example in this theory is the Radon transform on $X = \mathbb{R}^n$ with the dual homogeneous space \mathcal{A} being the manifold of all hyperplanes in \mathbb{R}^n . By well-known results extremal function should be harmonic and bounded, hence constant. Since it integrates to 1 on each element of \mathcal{A} , we conclude that there is no extremal function in this case and, consequently, $(1 + \epsilon)$ -modulus of considered family Σ is zero for any $\epsilon > 0$. Hence, Proposition 6 does not apply in this situation.

Let us begin with the 'elementary' example (see [16]).

Example 2. Consider a (n-1)-dimensional unit sphere S^{n-1} centered at the origin in \mathbb{R}^n . Then $S^{n-1} = SO(n)/SO(n-1)$, where SO(n-1) is considered as a subgroup fixing the north pole x_0 . Consider a double fibration with fibrations $SO(n) \mapsto S^{n-1}$ and a trivial one $SO(n) \mapsto SO(n)$, where we consider SO(n) as a trivial quotient $SO(n) = SO(n)/\{e\}$. Then a coset gSO(n-1) intersects coset $\tilde{g}\{e\}$ if and only if $g\tilde{g}^{-1} \in SO(n-1)$, hence $x \in M$ is incident to a transformation $g \in SO(n)$ if and only if $gx_0 = x$. In other words

$$\check{x} = gSO(n-1) \subset SO(n), \ \hat{g} = \{x\} \subset M,$$

where $x = gx_0$. Then μ_g is a Dirac measure δ_x at x and \mathfrak{n}_x is a Haar measure on gSO(n-1). Hence, for any Borel non-negative functions f_j and φ_j we have (we choose $\rho=1$)

$$\sum_{j} \hat{f}_{j}(g) = \sum_{j} f_{j}(x), \qquad \sum_{j} \check{\varphi}_{j}(x) = \int_{gSO(n-1)} \sum_{j} \varphi_{j}(h) d\mathfrak{n}_{x}(h), \ gx_{0} = x.$$

Thus, any admissible function f_j for $\Sigma = \{\mu_x \mid x \in S^{n-1}\}$ satisfies $f_j \ge 1$. Now, it is obvious that the extremal function $(f_j)_{\Sigma}$ is identically 1. Let us apply Proposition 6. Clearly, $(f_j)_{\Sigma} = 1$ satisfies condition (1) of Proposition 6. Taking $(\varphi_j)_{\Sigma} = 1$ also the second condition holds. Notice, that formula (12) may be obtained straightforward by the coarea formula $(gx_0 = x)$

$$\begin{split} \int_{SO(n)} \sum_j \ \hat{f_{\mathbf{j}}}(g) \varphi_j(g) d\mathfrak{n}(g) &= \int_{SO(n)} \sum_j \ f_j(gx_0) \varphi_j(g) d\mathfrak{n}(g) \\ &= \int_M \int_{SO(n-1)} \sum_j \ f_j(hx_0) \varphi_j(h) d\mathfrak{n}_{x_0}(h) d\mathfrak{m}(x) \\ &= \int_M f_j(x) \int_{SO(n-1)} \sum_j \ \varphi_j(h) d\mathfrak{n}_{x_0}(h) d\mathfrak{m}(x) \\ &= \int_M f_j(x) \int_{gSO(n-1)} \sum_j \ \varphi_j(g^{-1}h) d\mathfrak{n}_{x_0}(h) d\mathfrak{m}(x) \\ &= \int_M \sum_j \ f_j(x) \check{\phi_j}(x) d\mathfrak{m}(x), \end{split}$$

since $hx_0 = x_0$ for any $h \in SO(n-1)$ and by invariance of n_x . The second example concerns the Funk transform on a sphere (see [16]).

Example 3. Let $X = S^2$ be the unit 2-dimensional sphere in \mathbb{R}^3 , $S^2 = O(3)/O(2)$. Let \mathcal{A} be a set of all great circles in S^2 , i.e., $\mathcal{A} = O(3)/O(2) \times \mathbb{Z}_2$, where $O(2) \times \mathbb{Z}_2$ is a subgroup fixing a line through a north pole. Then, for $x \in S^2$, \hat{x} is a set of all great circles passing through x and for $\xi \in \mathcal{A}, \check{\xi}$ is just ξ considered as a great circle in S^2 . Consider a family Σ of all Lebesgue measures on great circles. By an inversion formula for a Funk transform [10] it follows that the extremal function for the $(1+\epsilon)$ -modulus of Σ equals $(f_j)_{\Sigma} = \frac{1}{2\pi}$. Notice that in this case we can apply Proposition 6. In fact, $(f_j)_{\Sigma}$ satisfies (1) and putting $(\varphi_j)_{\Sigma}$ to be a constant such that $\check{\varphi}_j = (2\pi)^{-\epsilon}$ it satisfies (2) of Proposition 6. To finish this section, we show the relation with the plan n_{Σ} on Σ . Firstly, we have a bijective map $\Phi: \mathcal{A} \to \Sigma$, $\Phi(\xi) = \rho(\cdot, \xi)\mu_{\xi}$. This map is continuous, since it is equivalent to the continuity of \hat{f}_j for any $f_j \in C_b(X)$. Hence, is Borel. Consider a measure \mathfrak{n}'_Σ given by the relation

$$\mathfrak{n}'_{\Sigma} = \Phi_{\sharp} ((\varphi_j)_{\Sigma} \mathfrak{n}).$$

Then \mathfrak{n}'_{Σ} is a Borel measure on Σ . Denote also by \hat{f}_i a function on Σ corresponding by Φ to

$$\hat{f}_{j}, \text{ i.e., } \hat{f}_{j}(\rho(\cdot, \xi)\mu_{\xi}) \equiv \hat{f}_{j}(\xi). \text{ By (5) and (12),}$$

$$\int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}'_{\Sigma} = \int_{\mathcal{A}} \sum_{j} \hat{f}_{j}(\varphi_{j})_{\Sigma} d\mathfrak{n} = \int_{X} \sum_{j} f_{j}(\check{\varphi}_{j})_{\Sigma} d\mathfrak{m} = \int_{X} \sum_{j} (f_{j})_{\Sigma}^{\epsilon} f_{j} d\mathfrak{m}$$

$$= \text{mod}_{1+\epsilon}(\Sigma)^{-1} \int_{\Sigma} \sum_{j} \hat{f}_{j} d\mathfrak{n}_{\Sigma}$$

for any $f_j \in \mathcal{L}^{1+\epsilon}(X, \mathfrak{m})$. Thus

$$\operatorname{mod}_{1+\epsilon}(\Sigma)\mathfrak{n}'_{\Sigma}=\mathfrak{n}_{\Sigma}.$$

References

- [1] L. Ambrosio, S. Di Marino, G. Savare, On the duality between p-modulus and probability measures, J. Eur. Math. Soc. (JEMS) 17 (8) (2015) 1817–1853.
- [2] M. Badger, Beurling's criterion and extremal metrics for Fuglede modulus, Ann. Acad. Sci. Fenn. Math. 38 (2) (2013) 677-689.
- [3] V. Bogachev, Measure Theory, vol. II, Springer-Verlag, Berlin, 2007.
- [4] A. Cianchi, V. Maz'a, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds, J. Differential Geom. 87 (3) (2011) 469-491.
- [5] M. Ciska, Modulus of pairs of foliations, PhD thesis, University of Lodz, Poland, 2011.
- [6] M. Ciska-Niedziałomska, On the extremal function for the p-modulus of a foliation, Arch. Math. (Basel) 107 (1) (2016) 89-100.
- [7] J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (2) (1996) 277-291.
- [8] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171-
- [9] S. Helgason, A duality in integral geometry on symmetric spaces, in: Proc. U.S.-Japan Seminar in Differential Geometry, Kyoto, 1965, Nippon Hyoronsha, Tokyo, 1966, pp. 37-
- [10] Helgason, Radon Transform, second edition, http://wwwmath.mit.edu/~helgason/Radonbook.pdf.
- [11] V. Mazy'a, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, 2011.
- [12] J. Orloff, Invariant Radon transforms on a symmetric space, Trans. Amer. Math. Soc. 318 (2) (1990) 581-600.
- [13] N. Shamungalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2) (2000) 243-279.
- [14] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (3) (2001) 1021–1050.
- [15] W.P. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967) 460-473.
- [16] Małgorzata and Ciska-Niedziałomska, Some remarks on the Fuglede p-modulus, J. Math. Anal. Appl. 485 (2020) 123765.