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Abstract

In the same analogous behavior we follow [16] showing the properties of extremal
functions for the Fuglede’s (1 + €)-modulus of a measure family . Based on the recent
result concerning (1 + €)-modulus showing the existence of certain Borel measure ny on
X. we give an interpretation of ny in some simple cases. We consider the case of disjoint
supports and a natural family of measures associated with a double fibration.
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I.  Introduction

B. Fuglede in [8] introduced the (1 + €)-modulus of a family of measures. which
plays a central role in many aspects of analysis on metric measure spaces. And recently
recognized by many authors. The crucial fact noticed by Fuglede is that families of
(1 + €)-modulus equal to zero. called (1 + €)-exceptional, may play the same role as
equivalence of functions on sets of measure zero in L'*€ spaces. The second remarkable
observation is named the Fuglede lemma, which states that convergence in L'*€ space
implies convergence in L' with respect to all measures in considered family except for
measures in an (1 + €)-exceptional family.
The above mentioned results led [13] to introduce the notion of the first Sobolev spaces
NL1+€(X) on the metric measure space X. Hence, (1 + €)-harmonicity may be studied on
such spaces [14]. So that the measures considered are the arc length measures on curves.
On considering measures associated with hypersurfaces. we get the equivalent notion of
(1 + e)-capacity of a condenser [15]. Capacity is an important tool in potential theory,
partial differential equations and in differential geometry. by its conformal invariance for
certain choice of the coefficient € > 0 (see [11], [4] and [7]).
Recently. [1] associated to any family £ of Borel measures on the Polish space X with the
reference measure m the unique optimal measure ny on E. This measure is absolutely
continuous with respect to the (1 + €)-modulus. thus provides weaker condition for
negligible sets and considered on the family of measures associated to parametric curves
allows to provide alternative definition of (1 + €)-week upper gradient (on metric measure
spaces).
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We describe the measure ny in some simple cases. We consider a family of measures with
disjoint supports and a family naturally associated with a double fibration. The common
feature of these cases is existence of a Borel map onto X. The push-forward of ny with
respect to this map defines a measure which may be described with a given data (see [16]).
hence more precisely. by the sequence of extremal functions (fi)z for the (1 + €)-

modulus of £. The main ingredient, is the improved integral formula derived in [1]

fz fidng = modHE(E)_lJZ (F)ofydm,
z x 7

j

where mod, 4. (X) is the Fuglede (1 + €)-modulus of £ with respect to a measure m and
fi:E — Ris given by X ; f}(,u,) = Z; fidu
2. Properties of Fuglede’s (1 + e)-Modulus

We review the notion and properties of the Fuglede's (1 + €)-modulus. For more
details see [8], [2]. For X be a metric space and M the o-algebra of Borel sets. Fix a
reference Borel measure m and let £ be a set of Borel measures on X. Denote by
L1(X,m) the space of all Borel functions f;: X — [0, o] such that fX 2 f;-HEdm <
and by LI*€ _(X,m) the space of all Borel measurable functions taking values in

[_ me]

[—oo, oo] and such that fX 2 fjHEdm < oo. We define the (1 + €)-modulus of X by

mod,, (Z) = inf J Z (fHxcdm|f; € LPE(X,m),J Z fidu = 1forp € Ty
X = x &
j j

A function f; € LI"°(X,m) such that fX 2 fjdu =1 for all u € X is called (1 +€)-

admissible or admissible for the (1 4 €)-modulus of . (1 + €)-modulus has the following
properties [8]:

(1) if T < X, then mod, 4 .(T) < mod,;.(Z).

(i) if T © U;Z;, then mod,4.(T) < ¥;mod;.(Z;).

In other words. (1 + €)-modulus is an outer measure on the space of measures. Moreover.

one can easily show that

mod,;.(T U X) = mod,,.(T) + mod, 4. (%),
for families T and X such that supp T N supp £ = @, where
suppX = U supp p.
HEE

We say that a family £ is (1 + €)-exceptional if its (1 + €)-modulus is equal to zero.
Moreover, we say that a certain property (P) holds (1 + €)-almost everywhere ((1 + €)-
a.e.. for short) with respect to X, if there is a subfamily T < Z such that (P) holds for every
measure u € X\ T and T is (1 + €)-exceptional. A (1 + €)-admissible functions (f;)y
which realizes the infimum for the (1 + €)-modulus of ¥ is called extremal for the (1 +
€)-modulus of . One can show, that up to a subfamily of (1 + €)-modulus zero. there is
unique extremal function [8]. It can be characterized by the following Badger's criterion
2]
Theorem 1. Let X be a metric space and m a Borel measure on X. Assume mod,, (Z) <
o0. A (1 + €)-admissible function (f;)y € £1*°(X, m) is extremal for the (1 + €)-modulus
of the family X if and only if there is a family £, such that mod,, (£ U Z,) = mod,,.(Z)
and the following two conditions hold:
D [, X; (fi)zdv =1forv e X,.
(i) if [, X, f;dv = 0 for all v € ;. where f; € L[lfc:m](X, m), then [, ¥, (f;)sf;dm =
0.
3. Measures Associated with Families of Borel Measures
All facts are taken from [1]. For X be a Polish space. M (X) the set of all Borel measures
on X and fix a measure m € M (X). We can endow M (X) with the topology of =-week
convergence, 1.e., p,; — u if
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[3 3 o

for all f; € C,(X) (here, €, (X) denotes the set of all continuous and bounded functions on
X ). Now for any Borel functions f; put

f}:M(X) - R, Z f;(ﬂ) = LZ fidu.
] i

Notice that if f; € Cp(X) then, by the definition, fJT 1s continuous, hence Borel. If. more
generally, f; € LYTE(X,m), then )‘? is again Borel. This follows by the use of monotone
class theorem. In fact. we can find a sequence ((jj-)n) in C,(X) converging in L*(X, i) to
f; for any p € M (X). Since Ui—)n are Borel, the limut (f:,—) 1s Borel.

Let £ ¢ M (X). [1] show. assuming E is Suslin, existence of a Borel probability measure
n = ng on M (X) concentrated on I such that

f D fAn<e@ ) 1 f e fE LM, ()
" j

(X) =

for some nonnegative constant c(1), which we choose smallest possible. Any measure n
1+€

on M (X) satisfying (1) 1s called a plan with barycenter in L € (X, m), € = 0. Assume now
that mod, . .(Z) > 0 and supyu(X) < oo and let I be a Suslin set in M (X). Recall, that a

set S 1s Suslin if it is an image of a Polish space under continuous map. Among all plans
1+€
with barycenter (not necessary probability measures) in L ¢ (X, m) there is one optimal,

what is explained in a proposition below (see [16]).
Proposition 2. [1]. Let X be a Suslin set such that mod;,.(Z) > 0 and supgu(X) < oo.

Put
c B n(Z)
1+em- C(ST:)IEG C(TT.).
14€

Then there exists an optimal plan ny with barycenter in L ¢ (X,m) in (2). Moreover,
1

(2)

(ng) = €% w = mod,; ;. () 1+ In addition. there is an extremal function (f;)s for the
(1 + €)-modulus of X. It satisfies
(Jﬁ)z =1ny — ae onkX. (3)

1+€
We recall the alternative definition of a plan with barycenter in L € (X, m) [1]. Letnbe a
1+€

plan with barycenter in L ¢ (X, m). Define a Borel measure n on X by

n(4)) = f > uAdn() = L f D adn A€ B(X).
M

@ 7 ()75
Thus by (1)
1
n(4;) = em(4;)T¥e, A; € B(X).
By Radon-Nikodym theorem there is a density p € L*(X,m) such that n = pm. By
argument of approximation by simple functions we get that

LZ Jydn = er Z fydn, f; € L¥*<(X, m). (4)
j j
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Hence,

J Z fipdm < CZ I i lyse, f; € LY4(X,m).
x &
i

B
14€ 1+€
By duality of Lebesgue spaces L'™¢(X,m) and L™¢ (X, m)" it follows that p € Le (X, m)

and the smallest possible constant ¢ equals || p |[z+e.
3

Notice, that for a plan ny we have
p = mod, ()7 (f})s.
In other words, the following formula holds

LZ fidny Zmod1+g[2]_lLZ (}j);f;dm fi € L ¢(X,m). (5)

4. Some results
We provide a formula for a plan ny assuming there 1s a Borel surjective map m: X — Z.

We start with some observations. Let £ € M (X) be Suslin and assume mod,,.(Z) > 0.
1+€
Then there is an optimal plan ny with barycenter in L ¢ . Assume there is a Borel

surjective map w: X — Z. Put
X, = (). (©6)

We may push-forward a measure modHE[Z)'l(ﬁ 3*¢m with respect to w to obtain a

measure iy on X,
_ 1 1+e
iy = Ty (modHE(E) (fi)z m). (7)
Moreover, denote by f; a composition f}oﬁ for f; € L1*¢(X,m). Then f; is a Borel
function on X. By the definition we have

fz fdnj, = modHE(E’)_lf z (Fiefidm,  f € L1*(X,m). (8)
x J X 7

4.1. Case of Disjoint Supports
Assume that support of u is contained in X, for any y € X. We say in this case that a

family X is separate.

Lemma 3 ([16]). For the (1 + €)-modulus of separate family £ we have [f:,);; =1(1+
€)-a.e. on X.

Proof. Suppose (f}}z(y) > 1. Then we could replace (f;)y by m(ﬁ)g on X, to geta
function with the smaller L**¢(X, m)-norm. This contradicts the minimality of (f})s.
Lemma 4 (see [16]). For any Suslin subset Il of a separate family Z(f;)y restricted to

Uuen X, and zero elsewhere is extremal for the (1 + €)-modulus of family II.
Proof. Suppose there exist (f;)p. which is admissible for I and such that

IZ; Gl <5 16zl on UyenX,. Put

Z (f)n(x) forx e g X,
D )= S
j.

1+€

; Je(x)  for remaining x
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Then f; is (1 + €)-admissible for £ and | Z; fj ll14+e< X; ||(fj)z||1+E. which contradicts
extremality of 2; (f})s.
For any f; € L'*¢(X, m) by Lemuma 3 we have

2 e = [ 2. (D)oftu =2, A0 =2, fi-wex

Hence by (8) and (5) we Qet

| Z fang = | Z Psfn: = | Z dns.

Choose a Suslin subset I1 ¢ £. By Lemmas 3 and 4 we see that ng(I1) = nz(II). hence
these two measures agree on Suslin sets. Moreover. taking f; = (f;)n in (5) we get

) = mod. ()7 | 2. DR = mot. 2™ | 2, Uieam

1110d1+e(1'[)
1+E(E)
Concluding, we have the following proposition (see [16]).
Proposition 5. The plan ny on separate family X is equal to the conditional probability
with respect to (1 + E)-moduhls fo1 Suslin subsets. Moreover,

ny = 15 = my(mody 4 (2) (f))i"m).
By above proposition we have the following integral formula
[ D) oregam=[ 3 (gpam g€ e xm), ©
X = X =

Remark 1. Notice that the integral formula (9) was obtained in the case of Lebesgue
measures associated with a foliation on a Riemannian manifold [5.6].
4.2, Connections with Disintegration Theorem

For X be a Suslin family of Borel measures on a space X such that mod,;.(Z) > 0
with respect to a fixed Borel measure m 1is positive. Assume there is a Borel map m: X —
Z. Then ny. defined by (7). is a Borel measure on X. By Disintegration Theorem (see [3])

applied to a map m and a measure ny. there is a family of Borel measures L' = {v'u}p.EE on

modHE(E)‘lLZ (ﬂ-);ﬁdnt:LJ_l{#)z fdv,dng (). (10)

We compute the (1 + €)-modulus of X'. If f; 1s admissible fm the (1 + €)-modulus of X’
then by (10) it follows that

1
1< f ldng: < J I Z fidv,dng(u) < modHE(Z)_mZ 17 e
b () ==
j

]

X such that

Thus
mod,, . (X') = mod,, (Z). (11)
Moreover, above last inequality can be stated as

n 1
j E fidng < mod;, () TFe E I fi lise,
T &
j

J
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where fj is taken with respect to XL’. This shows that nys is a plan with barycenter in
1+€

Le (X,m) associated with X’ and that c(ny) < mod,..(Z). Notice that measures

Vy, i € I, have disjoint supports.

It would be interesting to check when there is equality in (11). In the example below, we

show that it may happen (see [16]).

Example 1. Let X = [0,1] and consider a Lebesgue measure mon X. Let p; ., 0 < e < 1,

. . 1
be a normalized Lebesgue measure on [0,1 — €], 1.e. i, = :ml[ :
- 0,1-¢

be the Dirac measure at 0. Put L = {gt;_.}.croq)- A map m: X — X given by m(1 —¢) =
H1—e 1s continuous. An admissible function (f;)y is extremal for the (1 + €)-modulus of X

if
1 i ELI_EZ (fi)z(s)ds = 1
-

for all 1—e. Differentiating with respect to 1—e€., we get that (f;)y = 1. Thus
mod,, (X)) = 1. We will derive the formula for the (1 + €)-modulus of a family £’ of
measures v,_. on X. which existence follows by Disintegration Theorem. We know that
Vi_. is concentrated on a set X;_, =1 *(yy_.) = {1 — €}. Hence v,_, = ¢,_.6,_, for
some positive ¢;_.. Thus, by Disintegration Theorem

j:z fj(l—E)d(l—e):Ilz c1-ofi(1—€)d(1—e),
ki 0o 5

for any f;. Hence ¢;_.=1—¢€ and v;_. = ;. 13 a Dirac measure. We thus have
mod;.(Z’) = 1 = mod, ().
Moreover, let us determine the plan ny. By a definition we have

L 1 i ng_EZ f}(s)deﬂz(Hl—E) = jl Z fi(l—e)d(1—e¢)
J o

for any continuous f;. Taking f; = F' such that F(0) = 0 we obtain
F(1—¢)
[ 2 = F),
5 €
Now it easily follows that ny is a Dirac measure at u, .
5. Double Fibration
For G be a locally compact group, Hy and H 4 closed subgroups of G. Define two left coset
spaces

and let gy = &,

X=G/Hg, A=G/H,.
Moreover, consider the following assumptions:
(1) the groups G,Hy,H4; and H = Hy N H; are unimodular, i.e., left-invariant Haar
measure are also right-invariant.
(11) the set HyH 4 1s closed in G,
(i) ifhH,; € H Hy.then h € Hy. If hHy © HyH 4. then h € H 4.
We say that two elements x € X and & € A are incident if as cosets in & they intersect.
The set of elements in A which are incident with x € X is denoted by X. Analogously. the
set of points in X which are incident with £ € A is denoted by &‘;c . Put

F={(x,) € XxA|xandZ are incident }.
Then we have two fibrations F — X and F v A, this we speak about a double fibration.
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Let us recall important results concerning existence of invariant measures for a double
fibration [9]. Let x, = {Hy} and &, = {H 4}. There 1s a unique Hy-invariant measure y, on
x, and a unique H 4-invariant measure n, on &,. Moreover, there exists a nonzero measure
on each ¥ and on vf , such that they coincide with gy on X, and ng, respectively. For these
measures, if X; corresponds to x; by g € G, then p,. corresponds to p1, by g. Analogous
correspondence holds for elements in 4. Denote by m and n the (normalized) G-invariant
measures on X and <A, respectively, induced from Haar measure on G. Fix a smooth
positive and bounded function p on F and consider the following Radon and its dual
transformations

D 5@ = [ D 5eee dneo)
j J

]
D a = [ Y epeHin)

j
for Borel and non-negative functions f; and ¢;. Then it is not hard to see that (compare
[12]. [9] in the continuous or L**€ category: see also [8] for similar and general approach)

[ > smaane = [ 37 @0 @dn® (12)
X 7 A J

for any non-negative Borel functions f; and ¢;.
Put
E={p(u 1§ €A}
Each p; 1s supported on éc c X. whereas each n, is supported on x < A. We seek for the
extremal function (f;)y for the famuly X.
Proposition 6 (see [16]). Assume that there is an admissible function (ﬁjg for ¥ such that
the following conditions hold:
O )z =1.
(i1) there exists Borel positive function (¢;)y on A such that (f;)z = (¢;)z-
Then (f;)z is extremal for the (1 + €)-modulus of X.
Proof. The proof follows by using standard methods. Let f; be admissible for . By (12)
and Holder inequality,

0 < LZ F sz = | Z (hm = | Z (F)E<dm
sZ UX (ﬁ)yfdm)m(jx fj”Edm)m—LZ (F)k+edm,

1+e . S .
where —— is a coefficient conjugate to 1 + €. Thus
€
j D (pkedm < j > fitedm
| x5 X5
Hence (f;)y is extremal.

Remark 2. Let us remark on the similarity of above theorem to the Badger’s criterion
(Theorem 1). In this case, X, 1s just 2. Thus, condition (1) of Proposition 6 and Theorem 1
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coincide. By the ‘Plancherel’ formula (12) for any positive Borel functions f; on X such
that f} > 0 on X we have

LZ (fy)zfydm = LZ @, f;dn =0

assuming (2) of Proposition 6.

Remark 3. If the Radon transform is injective, i.e. the map f; — f} 1s on the suitable class
injective with the constant functions in the range of this correspondence, then the
condition (1) of Proposition 6 characterizes (jj)z completely. In such case. the second
assumption is useless.

We will justify above theorem on the concrete examples. The classical example in
this theory is the Radon transform on X = R™ with the dual homogeneous space A being
the manifold of all hyperplanes in R". By well-known results extremal function should be
harmonic and bounded, hence constant. Since it integrates to 1 on each element of A, we
conclude that there is no extremal function in this case and, consequently. (1 + €)-
modulus of considered family £ is zero for any € > 0. Hence, Proposition 6 does not apply
in this situation.

Let us begin with the 'elementary' example (see [16]).
Example 2. Consider a (n — 1)-dimensional unit sphere S*~* centered at the origin in R™.
Then S™™' = S0(n)/SO(n — 1), where SO(n — 1) is considered as a subgroup fixing the
north pole x,. Consider a double fibration with fibrations SO(n) + S"~* and a trivial one
$0(n) v SO(n). where we consider SO(n) as a trivial quotient SO(n) = SO0(n)/{e}.
Then a coset gSO(n — 1) intersects coset G{e} if and only if gg~* € SO(n — 1). hence
x € M is incident to a transformation g € SO(n) if and only if gx, = x. In other words
Xx=g50(n—1)cS0Mm), g={x}c M,
where x = gx,. Then p is a Dirac measure §, at x and n, 1s a Haar measure on gSO(n —
1). Hence, for any Borel non-negative functions f; and ¢; we have (we choose p = 1)

Z f(g)—z £, Z 3y = | Z @y (h)dn, (h), gx, =

g50(n—1)
Thus any adnussible function f for £ ={u, | x €S"” 1} satisfies f; = 1. Now, it is
obvious that the extremal function (f;)y is identically 1. Let us apply Proposition 6.
Clearly. (f;)z = 1 satisfies condition (1) of Proposition 6. Taking (¢;)y = 1 also the
second condition holds. Notice, that formula (12) may be obtained straightforward by the
coarea formula (gx, = x)

LO( )Z fi@)e;(9)dn(g) =LO( )Z f:(9x0)0;(g)dn(g)

SO S0(n) <
— L Lotn_l)z f;(hxy)@;(h)dn, (h)dm(x)
:fo}(X) SO{jn—l)Z @;(h)dn,, (h)dm(x)

= | £

D @il hydn,, (Wdm(x)
g50(n—1) 7
= [ 37 H@eeodn,

M=

since hxy = x, forany h € SO(n — 1) and by invariance of n,.
The second example concerns the Funk transform on a sphere (see [16]).
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Example 3. Let X = $Z be the unit 2-dimensional sphere in R?*, 5% = 0(3)/0(2). Let A
be a set of all great circles in 52, ie. 4 = 0(3)/0(2) X Z,. where 0(2) X Z, is a
subgroup fixing a line through a north pole. Then. for x € 52, % is a set of all great circles
passing through x and for & € A, & is just & considered as a great circle in S2. Consider a
family ¥ of all Lebesgue measures on great circles. By an inversion formula for a Funk
transform [10] it follows that the extremal function for the (1 + €)-modulus of £ equals

()= = i Notice that in this case we can apply Proposition 6. In fact. (f;)z satisfies (1)
and putting (@;)y to be a constant such that ¢; = (2m) ¢ it satisfies (2) of Proposition 6.

To finish this section. we show the relation with the plan ny on Z. Firstly, we have a
bijective map @: A — X, (&) = p(+,§)py. This map is continuous, since it is equivalent
to the continuity off} for any f; € Cp(X). Hence, is Borel. Consider a measure ny given
by the relation

nyg = CDﬁ((qa}—):gn).
Then ny is a Borel measure on X. Denote also by f; a function on X corresponding by @ to

fi-ie. fi(pC Oug) = £(8). By (5) and (12).

LZ Frdng :LZ f}(qoj)zdnzLZ fj(qu)zdmzfxz (F)f,dm

= mod,, . (3)~ f > fydns
E .
J

for any f; € £L17<(X, m). Thus
mod, ;. (Z)ny = nz.
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