Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 10 (2024) pp: 58-63 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

A Fixed Point Theorem in Multiplicative Metric Spaces

Bharti Dhaka, Manoj Kumar

Department of Mathematics Baba Mastnath Univserity, Rohtak

Abstract In this paper, we shall prove a common fixed point theorems for three self maps satisfying weakly C-Contractive condition in multiplicative metric space. Our results extend and unify some fixed point theorems in multiplicative metric space.

Keywords: multiplicative metric space, weakly C-contractive mapping, fixed point. *2020 MSC:* 47H10, 54H25

I. Introduction and Preliminaries

Throughout this paper the letters \mathbb{R} , \mathbb{R}^+ and \mathbb{N} denote the set of all real numbers, the set of all positive real numbers and the set of all natural numbers respectively.

In 2008, Bashirov et al. [1] introduced the concept of multiplicative metric space as follows:

Definition 1.1 Let X be nonempty set. A multiplicative metric is a mapping

 $d: X \times X \rightarrow \mathbf{R}^+$ satisfying the following conditions:

 $d(x, y) \ge 1, \forall x, y \in X \text{ and } d(x, y) = 1, \text{ if and only if } x = y;$

d(x, y) = d(y, x) for all $x, y \in X$;

 $d(x, y) \le d(x, z).d(z, y)$ for all $x, y, z \in X$ (multiplicative triangle inequality).

Then the mapping d together with X, that is , (X, d) is a multiplicative metric space.

Example 1.2. Let R_{+}^{n} be the collection of all *n*-tuples of positive real numbers.Let $d^{*}(x, y)$: $R_{+}^{n} \rightarrow R$ be defined as follows :

 $d^{*}(u, v) = \left|\frac{u_{1}}{v_{1}}\right|^{*} \cdot \left|\frac{u_{1}}{v_{1}}\right|^{*} \cdot \dots \cdot \left|\frac{u_{n}}{v_{n}}\right|^{*}$

where $u = (u_1, u_2, u_3, ..., u_n)$, $v = (v_1, v_2, v_3, ..., v_n) \in \mathbb{R}^n$ and $|.|^* : \mathbb{R}_+ \to \mathbb{R}_+$ is defined by:

$$|k|^* = \begin{cases} k, if \ k \ge 1\\ \frac{1}{k}, if \ k < 1 \end{cases}$$

Then it is obvious that all conditions of a multiplicative metric space are satisfied and (\mathbf{R}_{+}^{n}, d) is a multiplicative metric space.

Example 1.3. Let $d : \mathbb{R} \times \mathbb{R} \to [1, \infty)$ be defined as $d(x, y) = a^{|x-y|}$, where $x, y \in \mathbb{R}$ and a > 1. Then d is a multiplicative metric and (\mathbb{R}, d) is a multiplicative metric space.

Remark 1.4. We note that Example 1.2 is valid for positive real numbers and Example 1.3 is valid for all real numbers.

DOI: 10.35629/0743-10105863

Example 1.5. Let (*X*, *d*) be a metric space. Define a mapping d_a on X² by $d_a(x, y) =$

$$a^{d(x-y)} = 1$$
, if $x = y$;

a, if $x \neq y$,

where $x, y \in X$ and a > 1. Then d_a is called a discrete multiplicative metric and (X, d_a) is known as the discrete multiplicative metric space.

Example 1.6. Let $X = C^*[a, b]$ be the collection of all real-valued multiplicative functions on $[a, b] \in \mathbb{R}_+$, then (X, d) is a multiplicative metric space with d defined by $d(f, g) = sup_{x \in [a,b]} |\frac{f(x)}{g(x)}|$ for arbitrary $f, g \in X$.

Definition 1.7. Let (X, d) be a multiplicative metric space. Then a sequence $\{x_n\}$ is said to be

1. multiplicative convergent to x of for every multiplicative open ball $B_{\epsilon}(x) = y \in X \setminus d(x, y) < \epsilon, \epsilon >$ 1, there exists a natural number N such that $n \ge N$ then $x_n \in B_{\epsilon}(x)$ that is, $d(x_n, x) \to 1$ as $n \to \infty$.

2. a multiplicative cauchy sequence if for all $\epsilon > 1$ there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$, $\forall m, n > N$ that is $d(x_n, x_m) \to 1$ as $n, m \to \infty$.

A multiplicative metric space is said to be complete if every multiplicative cauchy sequence in it is multiplicative convergent to $x \in X$.

Definition 1.8. Let *f* be a mapping of a multiplicative metric space (*X*, *d*) into itself. Then *f* is said to be a multiplicative contraction if there exists a real constant $\lambda \in [0, 1)$ such that $d(fx, fy) \le d^{\lambda}(x, y)$ for all $x, y \in X$.

II. Main Results

In this section, our aim is to prove a common fixed point theorem for three self-mpas in multiplicative metric spaces.

B.S. Chaudhary [3] gave the concept of weakly C-contractive mappings.

Definition 2.1. Let (X, d) be a multiplicative metric. A mapping $T : X \to X$ space is said to be C-Contractive, if there exists $\alpha \in (0, \frac{1}{2})$ such that $\forall x, y \in X$ the following inequality holds: $d(Tx, Ty) \leq [d(x, Ty).d(y, Tx)]^{\alpha}$.

Definition 2.2. A mapping $T : X \to X$, where (X, d) is a multiplicative metric space is said to be weakly C- contractive if $\forall x, y \in X$, $d(Tx, Ty) \leq [d(x, Ty)d(y, Tx)]^{\alpha} - \phi(d(x, Ty).d(y, Tx)),$ where $\phi : [0, \infty)^2 \to [0, \infty)$ is a continuous function such that $\phi(x, y) = 0$ if and only if x = y = 1.

Jungck and Rhoades [5] introduced the notion of weakly compatible maps as follows:

Definition 2.3. Let T and S be two self mappings of a multiplicative metric space (X, d), T and S are said to be weakly compatible if for all $x \in X$ the equality $Tx = Sx \Rightarrow TSx = STx$. **Theorem 2.4.** Let (X, d) be a complete multiplicative metric space and let *E* be a non empty closed subset of *X*. Let *T*, *S* : *E* \rightarrow *E* be such that

$$d(Tx, Sy) \leq \{(d(Rx, Sy) + d(Ry, Tx))\}^{\frac{1}{2}} - \phi(d(Rx, Sy), d(Ry, Tx)),$$
(1)
for every pair $(x, y) \in X \times X$, where $\phi : [0, \infty)^2 \to [0, \infty)$ is a continuous function such that $\phi(x, y) = 0$ if and only if $x = y = 1$ and $R : E \to X$ satisfying the following hypothesis
 $TE \subseteq RE$ and $SE \subseteq RE$,

The pairs (T, R) and (S, R) are weakly compatible. In addition, assume that R(E) is a closed subset of X. Then T and R and S have a unique common fixed point.

Proof:- Let $x_0 \in E$ be arbitrary ,using (1), \exists two sequences $\{x_n\}$ and $\{y_n\}$ such that $y_0 = Tx_o = Rx_1$, $y_1 = Sx_1 = Rx_2$, $y_2 = Tx_2 = Rx_3..., y_{2n} = Tx_{2n} = Rx_{2n+1}$, $y_{2n+1} = Sx_{2n+1} = Rx_{2n+2},...$

We complete the proof in three steps

Step 1

We will prove that $\lim_{n \to \infty} d(y_n, y_{n+1}) = 1$.

By making use of equation (1), for n = 2k, we have

$$\begin{aligned} d(y_{2k,}, y_{2k+1}) &= d(Tx_{2k}, Sx_{2k+1}) \\ &\leq [d(Rx_{2k}, Sx_{2k+1}).d(Rx_{2k+1}, T_{2k})]^{1/2} - \phi(d(Rx_{2k}, Sx_{2k+1})d(Rx_{2k+1}, Tx_{2k})) \\ &= [d(y_{2k-1}, y_{2k+1})d(y_{2k}, y_{2k})]^{1/2} - \phi(d(y_{2k-1}, y_{2k+1})d(y_{2k}, y_{2k})) \end{aligned}$$
(2)
$$&\leq d(y_{2k-1}, y_{2k+1})^{1/2} \\ &\leq [d(y_{2k-1}, y_{2k}).d(y_{2k}, y_{2k+1})]^{1/2} \end{aligned}$$

Hence

 $d(y_{2k+1}, y_{2k}) \leq d(y_{2k}, y_{2k+1})^{1/2}$

If n = 2K+1, then similarly we can prove

 $d(y_{2k+2}, y_{2k+1}) \le d(y_{2k+1}, y_{2k})$

Thus $d(y_{n+1}, y_n)$ is decreasing sequence of non negative real numbers and hence it is convergent.

Also we assume that

 $\lim_{n\to\infty}(d(y_{n+1}, y_n)) = r$

Therefore

 $d(y_{n+1}, y_n) \le d(y_{n-1}, y_{n+1}) \stackrel{1/2}{=} d(y_{n-1}, y_n) \cdot d(y_n, y_{n-1}) \stackrel{1/2}{=}$ (3)

If $n \to \infty$, then we have

DOI: 10.35629/0743-10105863

 $r \leq \lim_{n \to \infty} [d(y_{n-1}, y_{n+1})]^{1/2} \leq r$

Therefore $\lim_{n\to\infty} d(y_{n-1}, y_{n+1}) = r^2$.

 $d(y_{2k+1}, y_{2k}) = d(Tx_{2k}, Sx_{2k+1})$

$$\leq d(\mathbf{y}_{2k-1}, \mathbf{y}_{2k+1}) \cdot d(\mathbf{y}_{2k}, \mathbf{y}_{2k}) 2 - \phi(d(\mathbf{y}_{2k-1}, \mathbf{y}_{2k+1}), d(\mathbf{y}_{2k}, \mathbf{y}_{2k}))$$
(4)

Now if $k \to \infty$ and using the continuity of ϕ we obtain

 $r \le r - \phi(r^2, 1)$

And consequently $\phi(r^2, 1) = 0$ gives us that

$$r = \lim_{n \to \infty} d(y_n, y_{n+1}) = 1.$$
(5)

Step 2:

Here we shall prove that $\{y_n\}$ is a Cauchy sequence.

Since $d(y_{n+1}, y_{n+2}) \le d(y_n, y_{n+1})$,

It is sufficient to show that the sub-sequence $\{y_{2n}\}$ is a Cauchy sequence.

Suppose that $\{y_{2n}\}$ is not Cauchy sequence.

then $\exists \epsilon > 0$ for we can find sub-sequence $\{y_{2m(k)}\}$ and $\{y_{2n(k)}\}$ of y_{2n} such that n(k) is the least index for which n(k) > m(k) > k and $d(y_{2m(k)}, y_{2n(k)}) \ge \epsilon$ This means that

$$d(y_{2m(k)}, y_{2n(k)-2}) < \epsilon$$
 (6)

From triangular inequality, we have

$$\epsilon \leq d(y_{2m(k)}, y_{2n(k)}) \leq d(y_{2m(k)}, y_{2n(k)-2}) \cdot d(y_{2m(k)-2}, y_{2n(k)-1}) \cdot d(y_{2n(k)-1}, y_{2n(k)})$$
(7)
Letting $k \to \infty$ and using (5) we can conclude that

 $\epsilon \leq d(y_{2m(k)}, y_{2n(k)}) \leq \epsilon \cdot 1 \cdot 1 = \epsilon$

Therefore, we get

 $d(y_{2m(k)}, y_{2n(k)}) = \epsilon$ (8)

Moreover we have

$$|d(y_{2n(k)}, y_{2n(k)+1}) - d(y_{2n(k)}, y_{2n(k)})| \le d(y_{2n(k)}, y_{2n(k)+1})$$
(9)

And

 $|d(y_{2nk}, y_{2m(k)}-1) - d(y_{2nk}, y_{2m(k)})| \le d(y_{2mk}, y_{2m(k)-1})$ (10)

$$| d(y_{2nk}, y_{2m(k)-2}) - d(y_{2nk}, y_{2m(k)-1}) | \le d(y_{2m(k)-2}, y_{2m(k)-1})$$
(11)

Using (5), (8), (9), (10) and (11), we get $\lim_{k \to \infty} d(y_{m(k)-1}, y_{2n(k)} = \lim_{k \to \infty} d(y_{2m(k)-1}, y_{2n(k)-1})$ $= \lim_{k \to \infty} d(y_{2m(k)-2}, y_{2n(k)}) = \epsilon$ (12) Now, from (1) we have $d(y_{2m(k)-1}, y_{2n(k)}) = d(Tx_{2n(k)}, Sx_{2m(k)-1})$ $\leq [d(Rx_{2n(k)}, Sx_{2n(k-1)}).d(Rx_{2n(k-1)}, Tx_{2n(k)})]^{1/2}$ - $\phi(d(Rx_{2n(k)}, Sx_{2m(k)-1})d(Rx_{2m(k+1)}, Tx_{2n(k)}))$ $\leq [d(y_{2n(k-1)}, y_{2m(k-1)}).d(y_{2m(k-2)}, y_{2n(k)})]^{1/2}$ - $\phi(d(y_{2n(k-1)}, y_{2m(k-1)}), d(y_{2m(k-2)}, y_{2nk}))$ (13)Letting $k \to \infty$ in the above inequality, using (12) and the continuity of ϕ , we have $\epsilon \leq [(\epsilon, \epsilon)]^{1/2} - \phi(\epsilon, \epsilon)$ $\epsilon \leq \epsilon - \phi(\epsilon, \epsilon)$ $\phi(\epsilon, \epsilon) \leq 0$ $\phi(\epsilon, \epsilon) = 0$ And from the last inequality $\phi(\epsilon, \epsilon) = 0$. By our assumption about ϕ , we have $\epsilon = 1$, which is contradiction (because $\epsilon > 1$). **STEP (3):** Here, we shall show that S , T and R have a common fixed point. Since (X, d) is complete and $\{y_n\}$ is Cauchy, then $\exists z \in X$ such that $\lim_{n \to \infty} y_n = z$ Since *E* is closed and $y_n \subseteq E$, we have $z \in E$. By assumption R(E) is closed, so $\exists u \in E$ such that z = Ru. For all $n \in \mathbb{N}$, we have $d(Tu, y_{2n+1}) = d(Tu, Sx_{2n+1})$ $\leq [d(Ru, Sx_{2n+1}).d(Rx_{2n+1}, Tu)]^{1/2}$ $-\phi(d(Ru, Sx_{2n+1})d(Rx_{2n+1}, Tu))$ (14) $\leq [d(z, y_{2n+1}).d(y_{2n}, Tu)]^{1/2} - \phi(d(Ru, Sx_{2n+1})d(Rx_{2n+1}, Tu))$ Making $n \to \infty$, we get $d(Tu, z) \leq [d(z, z).d(z, Tu)]^{1/2} - \phi(d(Ru, z).d(z, Tu))$ and hence $\phi(1, d(z, Tu)) \le [d(z, z).d(z, Tu)]^{1/2} - d(Tu, z) \le 0$, that is, $\phi(1, d(z, Tu)) = 0$ Therefore d(z, Tu) = 1. Therefore Tu = z. Similarly, we get Su = z, so Tu = Su = Ru = zSince the pairs (R, T) and (R, S) are weakly compatible, we have Tz = Sz = Rz. Now we can have $d(Tz, y_{2n+1}) = d(Tz, Sx_{2n+1})$ $\leq [d(Rz, Sx_{2n+1}).d(Rx_{2n+1}, Tz)]^{1/2}$ $-\phi(d(Rz, Sx2n + 1)d(Rx_{2n+1}, Tz))$ $\leq [d(Rz, y_{2n+1}).d(y_{2n}, Tz)]^{1/2} - \phi(d(Rz, y_{2n+1}), d(y_{2n}, Tu))$ (15)Making $n \to \infty$ and since Tz = Sz = Rz, we obtain

(16)

 $d(Tz, z) = [d(Tz, z).d(z, Tz)]^{1/2} - \phi(d(Tz, z), d(z, Tz))^{-1}$

Hence $\phi(d(Tz, z), d(z, Tz)) = 1$ and so d(Tz, z) = 1.

Therefore Tz = z and Tz = Sz = Rz.

We conclude that Tz = Sz = Rz = z

Uniqueness of the common fixed point follows from (1).

References

- [1]. A. E. Bashirov, E.M. Kurupnar, A. Ozyapici, Multiplicative Calculus and its Application, Journal of Mathematical Analysis and Applications, **337**(2008), 36-48.
- [2]. S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25(1972), 727-730.
- [3]. B. S. Choudhury, Unique fixed point theorem for weak C-contractive mappings, Kathmandu Univ.J.of Sci.,Engineering and Tech., **5**(1)(2009), 6-13.
- [4]. B. Fisher, Four mappings with a common fixed point, J. Univ. Kuwaait sci .m 8(1981), 131-139.
- [5]. G. Jungck, B.E. Rhoades, Fixed point for set valued functions without con-tinuity, Indian J.Pure Appl.Math., 29(3)(1988), 227-238.
- [6]. R.P. Pant, Common Fixed Point of contractive maps, J. Math. Anal. Appl, 226(1988), 251-258.