Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 11 (2024) pp: 01-15 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Orthogonality Preservers Revisited by Closedness Adjacent Elements

Aisha Salah⁽¹⁾ and ShawgyHussein⁽²⁾

(1) Sudan University of Science and Technology, Sudan.

(2) Sudan University of Science and Technology, College of Science, Department of Mathematics, Sudan.

Abstract

The author in [30] obtain a complete characterization of all orthogonality preserving operators from a JB algebra to a JB^{*}-triple following [30]. If* T_m : *J* → *E is a bounded linear operator from a JB^{*}-algebra (respectively, a C*-algebra) to a JB*-triple and* h_m *denotes the element* $T_m^{**}(1)$ *, then* T_m *is orthogonality preserving, if and only if,* T_m *preserves zero-triple-products, if and only if, there exists a Jordan* **homomorphism* $S_m: J \to E_2^{**}(r(h_m))$ such that $S_m(x)$ and h_m operator commute and $T_m(x)$ $h_m \bullet_{r(h_m)} S_m(x)$, for every $x \in J$, where $r(h_m)$ is the range tripotent of $h_m E_2^{**}(r(h_m))$ is the Peirce-2 subspace associated to $r(h_m)$ and $\cdot_{r(h_m)}$ is the natural product making $E_2^{**}(r(h_m))$ a JB^* -algebra. This *characterization culminates the description of all orthogonality preserving operators between* ∗ *-algebras and* [∗] *-algebras and show a widegeneralizations.*

Keywords: Orthogonality preserving operators; orthogonally additive mappings; ∗ *- algebras;* [∗] *-algebras; J* ∗ *-triples.*

Received 26 Oct., 2024; Revised 05 Nov., 2024; Accepted 07 Nov., 2024 © The author(s) 2024. Published with open access at www.questjournas.org

I. Introduction

The study of orthogonality preserving operators between C*-algebras started with [1], where W. Arendt initiated the study of all operators preserving disjoint (or orthogonal) functions between $C(K)$ spaces. It was established there that for each orthogonality preserving operator T_m : $C(K) \to C(K)$, there exist $h_m \in C(K)$ and a mapping $\varphi_m: K \to K$ being continuous on the set $\{t \in K: h_m(t) \neq 0\}$ satisfying that

$$
T_m(f)(t) = h_m(t)f(\varphi_m(t)),
$$

for all $f \in C(k)$, $t \in K$. The authors in [16], [17] proved later that the description remains valid for all orthogonality preserving operators between $C_0(L)$ -space, where L is a locally compact Hausdorff space.

 $C(K)$ and $C_0(L)$ spaces are examples of abelian C*-algebras. In fact, the Gelfand theory assures that every abelian C*-algebra is C*-isomorphic to a $C_0(L)$ -space. Therefore, the just quoted results by Jarosz and Jeang-Wong provide a complete description of all orthogonality preserving operators between abelian C*-algebras.

In the setting of a general C^{*}-algebra A, two nearly adjacent elements a and $(a + \epsilon)$ in A are said to be orthogonal (denoted by $a \perp (a + \epsilon)$) if $a(a + \epsilon)^* = (a + \epsilon)^* a = 0$. A linear operator T_m between two C^* algebras A and B is called orthogonality preserving or disjointness preserving if $T_m(a) \perp T_m(a + \epsilon)$, for all $a \perp$ $(a + \epsilon)$ in A. The description of all orthogonality preserving operators between two C^{*}-algebras raised as an important problem studied by many authors.

When the problem is considered only for symmetric operators between general C*-algebras, M. Wolff established a full description in [26]. If T_m : $A \rightarrow B$ is a symmetric orthogonality preserving bounded linear operator between two C^{*}-algebras with A unital, then denoting $T_m(1) = h_m$ the following assertions hold:

a) $T_m(A)$ is contained in the norm closure of $h_m\{h_m\}'$, where $\{h_m\}'$ denotes the commutator of $\{h_m\}$.

b) There exists a Jordan *-homomorphism $S_m: A \to B^{**}$ such that $T_m(x + 2\epsilon) = h_m S_m(x + 2\epsilon)$, for all $(x +$ 2ϵ) \in A.

On every C^{*}-algebra A we can also consider a triple product defined by $\{x, x + \epsilon, x + 2\epsilon\} = \frac{1}{2}$ $\frac{1}{2}(x(x+\epsilon)^{*}(x+\epsilon))$ 2ϵ) + (x + 2 ϵ)(x + ϵ)*x). This triple product has been shown as an important tool to characterize orthogonal elements in a C^{*}-algebra. In fact, two elements aand $(a + \epsilon)$ in A are orthogonal if and only if $\{a, a, a + \epsilon\} = 0$ (compare Lemma 1 in [7]). In particular, every triple homomorphism between two C ∗ -algebras preserves orthogonal elements. Theorem 3.2 in [27] shows that a bounded linear operator T_m between two C^{*}-algebras is a triple homomorphism if and only if T_m is orthogonality preserving and T_m^{**} (1) is a partial isometry (tripotent).

There exists a wider class of complex Banach spaces containing all C^{*}-algebras in which the notion of orthogonality makes sense and extends the concept given for C*-algebras. We refer to the class of JB*-triples. A JB*-triple is a complex Banach space E, equipped with a continuous triple product $\{.\,,.\,,.\}$: $E \times E \times E \rightarrow E$, satisfying suitable algebraic and geometric conditions (see definition in §2). Every C*-algebra is a JB*-triple for the triple product given above.

Two elements a and $(a + \epsilon)$ in a JB^{*}-triple E are said to be orthogonal (written $a \perp (a + \epsilon)$) if $L(a, a + \epsilon)$ 0, where $L(a, a + \epsilon)$ is the linear operator on E defined by $L(a, a + \epsilon)(x) = \{a, a + \epsilon, x\}$. It is known that two elements in a C^* -algebra A are orthogonal for the C^* -algebra product if and only if they are orthogonal when A is considered as a JB[∗] -triple (compare the introduction of §4).

Techniques in JB^{*}-triple theory were revealed as a powerful tool in the description of all orthogonality preserving operators between two C^* -algebras established in[7]. Concretely, for every operator T_m between two C*-algebras, denoting $h_m = T_m^{**}(1)$, the following assertions are equivalent (see [30]):

a) T_m is orthogonality preserving.

b) There exists a triple homomorphism $S_m: A \to B^{**}$ satisfying $h_m^* S_m(x + 2\epsilon) = S_m((x + 2\epsilon)^*)^* h_m$, $h_m S_m((x+2\epsilon)^*)^* = S_m(x+2\epsilon)h_m^*$, and

$$
T_m(x + 2\epsilon) = L(h_m, r(h_m))(S_m(x + 2\epsilon)) = \frac{1}{2}(h_m r(h_m)^* S_m(x + 2\epsilon) + S_m(x + 2\epsilon)r(h_m)^* h_m)
$$

= $h_m r(h_m)^* S_m(x + 2\epsilon) = S_m(x + 2\epsilon)r(h_m)^* h_m$,

for all $(x + 2\epsilon) \in A$, where $r(h_m)$ denotes the range tripotent of h_m .

c) T_m preserves zero-triple-products (that is, $\{T_m(a), T_m(a+\epsilon), T_m(a+2\epsilon)\} = 0$ whenever $\{a, a + \epsilon, a + \epsilon\}$ 2ϵ } = 0.

Reference [7] also contains the following generalization of the main result in [27]: Let T_m be an operator from a JB^{*}-algebra *J* to a JB^{*}-triple E. Then T_m is a triple homomorphism if and only if T_m is orthogonality preserving and $T_{m}^{**}(1)$ is a tripotent. This result is in fact a consequence of a complete description of all orthogonality preserving operators from J to E whose second adjoint maps the unit of J^{**} to a von Neumann regular element. It seems natural to ask whether the condition of $T_{m}^{**}(1)$ being von Neumann regular can be omitted.

This paper culminates with the characterization of all orthogonality preserving operators from a JB[∗]-algebra to a JB^{*}-triple. Theorem 4.1 and Corollary 4.2 show that for a bounded linear operator T_m from a JB^{*}-algebra *J* to a JB^{*}-triple E the following are equivalent (see [30]):

a) T_m is orthogonality preserving.

b) There exists a (unital) Jordan *-homomorphism $S_m: M(J) \to E_2^{**}(r(h_m))$ such that $S_m(x)$ and h_m operator commute and $T_m(x) = h_m \cdot_{r(h_m)} S_m(x)$, for every $x \in J$, where $M(J)$ is the multiplier algebra of $J, r(h_m)$ is the range tripotent of h_m , $E_2^{**}(r(h_m))$ is the Peirce-2 subspace associated to $r(h_m)$ and $\cdot_{r(h_m)}$ is the natural product making $E_2^{**}(r(h_m))$ a JB^{*}-algebra.

c) T_m preserves zero-triple-products.

The proofs presented here are partially based on techniques developed in JB^{*} triple theory. The arguments do not depend on those results previously obtained by [1], [26], [27] and [7]. We shall actually show that all of them are direct consequences of the main result here.

A useful tool applied in the proof of the main result of this paper is the characterization of all orthogonally additive $(1 + 2\epsilon)$ -homogeneous polynomials on a general C^{*} algebra. This characterization has been recently obtained in [20]. Section 3 presents a shorter and simplified proof of this description.

II. Preliminaries

Given Banach spaces X and $Y, L(X, Y)$ will denote the space of all bounded linear mappings from X to Y. We shall write $L(X)$ for the space $L(X, X)$. Throughout the paper the word "operator" (respectively, multilinear or sesquilinear operator) will always mean bounded linear mapping (respectively bounded multilinear or sesquilinear mapping). The dual space of a Banach space X is always denoted by X^* .

When A is a JB^{*}-algebra or a C^{*}-algebra then, A_{sa} will stand for the set of all self-adjoint elements in A. We shall make use of standard notation in C^* -algebra and JB * -triple theory.

C*-algebras and JB^{*}-algebras belong to a more general class of Banach spaces known under the name of JB^{*}triples. JB^{*}-triples were introduced by [19]. A JB^{*}-triple is a complex Banach space E together with a continuous triple product $\{,\ldots\}$: $E \times E \times E \rightarrow E$, which is conjugate linear in the middle variable and symmetric and bilinear in the outer variables satisfying that,

(JB1) $L(a, a + \epsilon)L(x, x + \epsilon) = L(x, x + \epsilon)L(a, a + \epsilon) + L(L(a, a + \epsilon)x, x + \epsilon) - L(x, L(a + \epsilon, a)x + \epsilon),$ where $L(a, a + \epsilon)$ is the operator on E given by $L(a, a + \epsilon)x = \{a, a + \epsilon, x\};$

(JB2) $L(a, a)$ is a hermitian operator with non-negative spectrum;

$$
(JB3) \parallel L(a, a) \parallel = \parallel a \parallel^{2}.
$$

For each x in a JB*-triple $E, Q(x)$ will stand for the conjugate linear operator on E defined by the law $(x +$ ϵ) $\mapsto Q(x)(x + \epsilon) = \{x, x + \epsilon, x\}.$

Every C ∗ -algebra is a JB[∗] -triple via the triple product given by

$$
2\{x, x + \epsilon, x + 2\epsilon\} = x(x + \epsilon)^{*}(x + 2\epsilon) + (x + 2\epsilon)(x + \epsilon)^{*}x,
$$

and every JB[∗] -algebra is a JB[∗] -triple under the triple product

$$
\{x, x + \epsilon, x + 2\epsilon\} = (x \circ (x + \epsilon)^*) \circ (x + 2\epsilon) + ((x + 2\epsilon) \circ (x + \epsilon)^*) \circ x - (x \circ (x + 2\epsilon)) \circ (x + \epsilon)^*.
$$

A JBW^{*}-triple is a JB^{*}-triple which is also a dual Banach space (with a unique isometric predual [4]). It is known that the triple product of a JBW[∗]-triple is separately weak^{*}-continuous [4]. The second dual of a JB^{*}triple E is a JBW^{*}-triple with a product extending that of E (compare [9]).

An element *e* in a JB^{*}-triple *E* is said to be a tripotent if {*e*, *e*, *e*} = *e*. Each tripotent *e* in *E* gives raise to the socalled Peirce decomposition of E associated to e , that is,

$$
E = E_2(e) \oplus E_1(e) \oplus E_0(e),
$$

where for $i = 0,1,2, E_i(e)$ is the $\frac{i}{2}$ eigenspace of $L(e, e)$. The Peirce decomposition satisfies certain rules known as Peirce arithmetic:

$$
\big\{E_i(e),E_j(e),E_k(e)\big\}\subseteq E_{i-j+k}(e),
$$

if $i - j + k \in \{0, 1, 2\}$ and is zero otherwise. In addition,

$$
{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.
$$

The corresponding Peirce projections are denoted by $(P_m)_i(e): E \to E_i(e)$, $(i = 0,1,2)$. The Peirce space $E_2(e)$ is a JB^{*}-algebra with product $x \cdot_e (x + \epsilon) := \{x, e, x + \epsilon\}$ and involution $x^{*k} := \{e, x, e\}.$

For each element x in a JB -triple E, we shall denote $x^{[1]} = x, x^{[3]} = \{x, x, x\}$, and $x^{[2(1+2\epsilon)+1]} =$ $\{x, x, x^{[2(1+2\epsilon)-1]}\}\$, $((1+2\epsilon) \in \mathbb{N})$. The symbol E_x will stand for the JB^{*} subtriple generated by the element x. It is known that E_x is JB^{*}-triple isomorphic (and hence isometric) to $C_0(\Omega)$ for some locally compact Hausdorff space Ω contained in $(0, || x ||)$, such that $\Omega \cup \{0\}$ is compact, where $C_0(\Omega)$ denotes the Banach space of all complex-valued continuous functions vanishing at 0 . It is also known that if Ψ denotes the triple isomorphism from E_x onto $C_0(\Omega)$, then $\Psi(x)(t) = t(t \in \Omega)$ (cf. Corollary 4.8 in [18], Corollary 1.15 in [19] and [12]).

Therefore, for each $x \in E$, there exists a unique element $(x + \epsilon) \in E_x$ satisfying that $\{x + \epsilon, x + \epsilon, x + \epsilon\} = x$. The element $(x + \epsilon)$, denoted by $x^{\left[\frac{1}{3}\right]}$, is termed the cubic root of x. We can inductively define, $x^{\left[\frac{1}{3(1+\epsilon)}\right]}$ $\frac{1}{3^{(1+2\epsilon)}}\Big|$ = $\int_{\mathcal{X}} \sqrt{\frac{1}{3(1+2)}}$ $\frac{1}{3(1+2\epsilon)-1}$ $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $(1 + 2\epsilon) \in \mathbb{N}$. The sequence $\left(x^{\frac{1}{3(1+\epsilon)}} \right)$ $\frac{1}{3^{(1+2\epsilon)}}$ converges in the weak*-topology of E^{**} to a tripotent denoted by $r(x)$ and called the range tripotent of x. The element $r(x)$ is the smallest tripotent $e \in E^{**}$ satisfying that x is positive in the JBW^{*}-algebra $E_2^{**}(e)$ (compare [11], Lemma 3.3).

A subspace I of a JB^{*}-triple E is said to be an inner ideal of E if $\{I, E, I\} \subseteq I$. Given an element x in E, let $E(x)$ denote the norm closed inner ideal of E generated by x. It is known that $E(x)$ coincides with the norm-closure of the set

 $Q(x)(E) = {x, E, x}$. Moreover $E(x)$ is a JB^{*}-subalgebra of $E_2^{**}(r(x))$ and contains x as a positive element (compare page 19 and Proposition 2.1 in [6]).

The symmetrized Jordan triple product in a JB^* -triple E is defined by the expression

$$
\langle x, x + \epsilon, x + 2\epsilon \rangle = \frac{1}{3} (\{x, x + \epsilon, x + 2\epsilon\} + \{x + \epsilon, x + 2\epsilon, x\} + \{x + 2\epsilon, x, x + \epsilon\}).
$$

Given a C^* -algebra (respectively, a JB^{*}-algebra), A, the multiplier algebra of A, $M(A)$, is the set of all elements $x \in A^{**}$ such that for each elements $a \in A$, xa and ax (respectively, $x \circ a$) also lie in A. We notice that $M(A)$ is a C*-algebra (respectively, a JB*-algebra) and contains the unit element of A^{**} .

III. Orthogonally Additive Polynomials on C^* -Algebras: The Role Played by the Multiplier **Algebra**

One of the most useful tools used in the study of orthogonality preserving operators between C*-algebras is the description of all orthogonally additive $(1 + 2\epsilon)$ -homogeneous polynomials on a C*-algebra, obtained in [20]. We present here a shorter and simplified proof of the main results established in the just quoted paper.

Let A be a C^{*}-algebra and let X be a complex Banach space. A mapping $f: A \to X$ is said to be orthogonally additive (respectively, orthogonally additive on A_{sa}) if for every $a, (a + \epsilon) \in A$ (respectively, $a, (a + \epsilon) \in A_{sa}$) with $a \perp (a + \epsilon)$ we have $f(a + a + \epsilon) = f(a) + f(a + \epsilon)$.

We shall say that f is additive on elements having zero-product if for every $a, (a + \epsilon) \in A$ with $a(a + \epsilon) =$ $0 = (a + \epsilon)a$ we have $f(2a + \epsilon) = f(a) + f(a + \epsilon)$. When f behaves additively only on self-adjoint elements having zero-product, we shall say that f is additive on elements having zero-product on A_{sa} .

An X-valued n-homogeneous polynomial between two Banach spaces Y and X is a continuous X-valued mapping P_m on Y for which there exists a continuous (and symmetric) $(1 + 2\epsilon)$ -linear operator $T_m: Y \times \cdots \times$ $Y \to X$ satisfying $P_m(x) = T_m(x, ..., x)$, for every x in X. The following polarization formula

$$
T_m(x_1, \ldots, x_{(1+2\epsilon)}) = \frac{1}{2^{(1+2\epsilon)}(1+2\epsilon)!} \sum_{\epsilon_i = \pm 1} \epsilon_i \cdot \ldots \cdot \epsilon_{(1+2\epsilon)} P_m(\sum_{i=1}^{1+2\epsilon} \epsilon_i x_i), \tag{3.1}
$$

holds for all $x_1, ..., x_{1+2\epsilon} \in Y$.

Given two Banach spaces X and Y, the symbol $\mathcal{P}^{1+2\epsilon}(X, Y)$ will stand for the Banach space of all $(1 + 2\epsilon)$ homogeneous polynomials from X to Y and we write $\mathcal{P}^{1+2\epsilon}(X) := \mathcal{P}^{1+2\epsilon}(X,\mathbb{K})$.

The authors in [23] prove that for every compact Hausdorff space K and every orthogonally additive $(1 + 2\epsilon)$ homogeneous polynomial P_m from $C(K)$ to a Banach space X, there exists an operator T_m : $C(K) \to X$ satisfying that $P_m(f) = T_m(f^{1+2\epsilon})$, for all $f \in C(K)$. The proof remains valid when $C(K)$ -spaces are replaced with $C_0(L)$ spaces, where L is a locally compact Hausdorff space.

Let $X_1, ..., X_{1+2\epsilon}$, and X be Banach spaces, $T_m: X_1 \times \cdots \times X_{1+2\epsilon} \to X$ a (continuous) $(1+2\epsilon)$ -linear operator, and π : {1, ..., 1 + 2 ϵ } \rightarrow {1, ..., 1 + 2 ϵ } a permutation. It is known that there exists a unique (1 + 2 ϵ)-linear extension $AB(T_m)_\pi : X_1^{**} \times \cdots \times X_{1+2\epsilon}^{**} \to X^{**}$ such that for every $z_i \in X_i^{**}$ and every net $(x_{\alpha_i}^i) \in X_i (1 \le i \le 1 + \epsilon)$ 2ϵ), converging to z_i in the weak * topology we have

$$
AB(T_m)_{\pi}(z_1,\ldots,z_{1+2\epsilon}) = \text{ weak}^* - \lim_{\alpha_{\pi(1)}} \cdots \text{ weak}^* - \lim_{\alpha_{\pi(1+2\epsilon)}} T_m(x_{\alpha_1}^1,\ldots,x_{\alpha_{1+2\epsilon}}^{1+2\epsilon}).
$$

Moreover, $AB(T_m)_{\pi}$ is bounded and has the same norm as T_m . The extensions $AB(T_m)_{\pi}$ coincide with those constructed for polynomials in [2], and are usually termed the Aron-Berner extensions of T_m (see also Proposition 3.1 in [22]).

If every operator from X_i to X_j^* is weakly compact $(i \neq j)$, the Aron-Berner extensions of T_m defined above do not depend on the chosen permutation π (see [3], and Theorem 1 in [5]). In particular, this happens when every X_i has Pelczynski's property (V) (if all of the X_i 's satisfy property (V), then their duals, X_i^* , have no copies of c_0 , therefore every operator from X_i to X_j^* is unconditionally converging, and hence weakly compact by (V) , see [21]). When all the Aron-Berner extensions of T_m coincide, the symbol $AB(T_m)$ will stand for any of them. It is also known that, $AB(T_m)$ is symmetric whenever T_m is.

When $P_m: X \to Y$ is the $(1 + 2\epsilon)$ -homogeneous polynomial defined by T_m , $AB(P_m): X^{**} \to Y^{**}$ will denote the $(1+2\epsilon)$ -homogeneous polynomial whose associated symmetric $(1+2\epsilon)$ -linear operator is $AB(T_m)$.

We should note at this point that every C^* -algebra satisfies property (V) (see Corollary 6 in [24]).

The original proof presented in [20] relies on the following technical result: for every symmetric and continuous $(1 + 2\epsilon)$ -linear form T_m on a C^{*}-algebra A such that the $(1 + 2\epsilon)$ homogeneous polynomial $P_m(x)$ $T_m(x, ..., x)$, $(\forall x \in A)$ is orthogonally additive on A_{sa} , the (2ϵ) -homogeneous polynomial $R(x) =$ $AB(T_m)(1, x, ..., x)$, $(\forall x \in A)$ is orthogonally additive on A_{sa} , where 1 denotes the unit of A^{**} . The proof exhibited in this paper avoids the use of the above technical tool. Instead of using the Aron-Berner extension on the $A^{**} \times ... \times A^{**}$ we shall focus our attention on its restriction to the Cartesian product $M(A) \times ... \times M(A)$, where $M(A)$ denotes the multiplier algebra of A in A^{**} .

The following result, whose proof is essentially algebraic, is inspired by Proposition 2.4 in [23].

Lemma 3.1 (see [30]). Let $P_m: A \to \mathbb{K}$ be an element in $\mathcal{P}^{1+2\epsilon}(A)$ and let $T_m: A \times \cdots \times A \to \mathbb{K}$ be its associate symmetric n-linear operator. Suppose that P_m is orthogonally additive on A_{sa} . Then for every $\epsilon > 0$ and every $a_1, ..., a_{1+\epsilon}, b_1, ..., b_{\epsilon}$ in A_{sa} such that, for each *i* and *j*, a_i and b_j are orthogonal we have

$$
T_m(a_1,\ldots,a_{1+\epsilon},b_1,\ldots,b_\epsilon)=0.
$$

Proof. Let $\epsilon > 0$. We claim that for every a and $(a + \epsilon)$ in A_{sa} with $a \perp (a + \epsilon)$ we have

$$
T_m(a, 1 + \epsilon, a, a + \epsilon, \epsilon, a + \epsilon) = 0. \quad (3.2)
$$

Indeed, the equation

$$
\lambda^{1+2\epsilon}T_m(a,\ldots,a) + \mu^{1+2\epsilon}T_m(a+\epsilon,\ldots,a+\epsilon) = \lambda^{1+2\epsilon}P_m(a) + \mu^{1+2\epsilon}P_m(a+\epsilon) = P_m(\lambda a + \mu(a+\epsilon))
$$

=
$$
\sum_{\substack{0 \le k_1,k_2 \le 1+2\epsilon \\ k_1+k_2=1+2\epsilon}} \frac{(1+2\epsilon)!}{k_1!k_2!} \lambda^{k_1}\mu^{k_2}T_m(a,k_1,a,a+\epsilon,k_2,a+\epsilon)
$$
 (by the symmetry of T_m),

holds for every λ and μ in ℝ. Therefore,

$$
\sum_{\substack{0 < k_1,k_2 < 1+z\epsilon \\ k_1 + k_2 = 1+2\epsilon }} \frac{(1+2\epsilon)!}{k_1! \, k_2!} \lambda^{k_1} \mu^{k_2} T_m(a,k_1,a,a+\epsilon,k_2,a+\epsilon) = 0,
$$

for all λ and μ in ℝ, which in particular gives (3.2).

Let $a_1, ..., a_{1+\epsilon}, b_1, ..., b_{\epsilon}$ in A_{sa} be such that, for each *i* and *j*, a_i and b_j are orthogonal. Having in mind that whenever we fix $(1 + \epsilon)$ variables of T_m we have another symmetric and continuous multilinear form, the polarization formula (3.1) yields

$$
T_m\left(a_1, \ldots, a_{1+\epsilon}, \sum_{j=1}^{\epsilon} \varepsilon_j b_j, \ldots, \sum_{j=1}^{\epsilon} \varepsilon_j b_j\right)
$$

=
$$
\frac{1}{2^{1+\epsilon}(1+\epsilon)!} \sum_{\sigma_j=\pm 1} \sigma_1 \cdots \sigma_{1+\epsilon} T_m\left(\sum_{k=1}^{1+\epsilon} \sigma_k a_k, \ldots, \sum_{k=1}^{1+\epsilon} \sigma_k a_k, \sum_{j=1}^{\epsilon} \varepsilon_j b_j, \ldots, \sum_{j=1}^{\epsilon} \varepsilon_j b_j\right) = 0,
$$

where in the last equality we applied (3.2) and the fact that $\sum_{k=1}^{1+\epsilon} \sigma_k a_k$ and $\sum_{j=1}^{\epsilon} \varepsilon_j b_j$ are orthogonal. Finally, the formula (3.3) gives

$$
T_m(a_1, ..., a_{1+\epsilon}, b_1, ..., b_{\epsilon})
$$

=
$$
\frac{1}{2^{\epsilon}(\epsilon)!} \sum_{\varepsilon_i = \pm 1} \varepsilon_1 \cdot ... \cdot \varepsilon_{\epsilon} T_m \left(a_1, ..., a_{1+\epsilon}, \sum_{j=1}^{\epsilon} \varepsilon_j b_j, ..., \sum_{j=1}^{\epsilon} \varepsilon_j b_j \right) = 0.
$$
 (3.3)

Proposition 3.1 (see [30]). Let A be a C^* -algebra. Suppose that $T_m: A \times ... \times A \to \mathbb{C}$ is a symmetric and continuous n-linear form on A such that the $(1 + 2\epsilon)$ -homogeneous polynomial $P_m(x) = T_m(x, ..., x)$, $\forall x \in A$, is orthogonally additive on A_{sa} . Then the polynomial $R: M(A) \to \mathbb{C}$, $R(x) := AB(T_m)(x, ..., x)$ is orthogonally additive on $M(A)_{sa}$.

Proof. Let a and $(a + \epsilon)$ be two orthogonal elements in $M(A)_{sa}$. Since $a^{\frac{1}{3}}$ and $(a + \epsilon)^{\frac{1}{3}}$ are orthogonal, we deduce that, for each pair x , $(x + \epsilon)$ in \overline{A} , $\overline{a}^{\frac{1}{3}} x \overline{a}^{\frac{1}{3}}$ and $(a + \epsilon)^{\frac{1}{3}} (x + \epsilon) (a + \epsilon)^{\frac{1}{3}}$ also are orthogonal elements in A. The hypothesis of P_m being orthogonally additive assures, via Lemma 3.1, that

$$
T_{m}\left(a^{\frac{1}{3}}x_{1}a^{\frac{1}{3}} + (a+\epsilon)^{\frac{1}{3}}y_{1}(a+\epsilon)^{\frac{1}{3}}, \ldots, a^{\frac{1}{3}}x_{1+2\epsilon}a^{\frac{1}{3}} + (a+\epsilon)^{\frac{1}{3}}y_{1+2\epsilon}(a+\epsilon)^{\frac{1}{3}}\right) = T_{m}\left(a^{\frac{1}{3}}x_{1}a^{\frac{1}{3}}, \ldots, a^{\frac{1}{3}}x_{1+2\epsilon}a^{\frac{1}{3}}\right) + T_{m}\left((a+\epsilon)^{\frac{1}{3}}y_{1}(a+\epsilon)^{\frac{1}{3}}, \ldots, (a+\epsilon)^{\frac{1}{3}}y_{1+2\epsilon}(a+\epsilon)^{\frac{1}{3}}\right), \text{ for all } x_{1}, \ldots, x_{1+2\epsilon}, y_{1}, \ldots, y_{1+2\epsilon} \in A. \tag{3.4}
$$

Now, Goldstine's theorem (cf. Theorem V.4.2.5 in [10]) guarantees that the closed unit ball of A_{sa} is weak*dense in the closed unit ball of A_{sa}^{**} . Therefore there exist two bounded nets (x_λ) and (y_μ) in A_{sa} , converging in the weak*-topology of A^{**} to $a^{\frac{1}{3}}$ and $(a+\epsilon)^{\frac{1}{3}}$, respectively. In our setting the Aron-Berner extension of T_m is separately weak*-continuous. Thus, by replacing, in equation (3.4), x_1 and y_1 with (x_λ) and (y_μ) , respectively, and taking weak*-limits, we have:

$$
AB(T_m)\left(2a+\epsilon, a^{\frac{1}{3}}x_2a^{\frac{1}{3}}+(a+\epsilon)^{\frac{1}{3}}y_2(a+\epsilon)^{\frac{1}{3}},..., a^{\frac{1}{3}}x_{1+2\epsilon}a^{\frac{1}{3}}+(a+\epsilon)^{\frac{1}{3}}y_{1+2\epsilon}(a+\epsilon)^{\frac{1}{3}}\right) = AB(T_m)\left(a, a^{\frac{1}{3}}x_2a^{\frac{1}{3}},..., a^{\frac{1}{3}}x_{1+2\epsilon}a^{\frac{1}{3}}\right) + AB(T_m)\left(a+\epsilon, (a+\epsilon)^{\frac{1}{3}}y_2(a+\epsilon)^{\frac{1}{3}},..., (a+\epsilon)^{\frac{1}{3}}y_{1+2\epsilon}(a+\epsilon)^{\frac{1}{3}}\right),
$$

for all $x_2, ..., x_{1+2\epsilon}, y_1, ..., y_{1+2\epsilon} \in A$. When the above argument is repeated for $x_2, y_2, ..., x_{1+2\epsilon}, y_{1+2\epsilon}$ we derive

$$
R(2a + \epsilon) = AB(T_m)(2a + \epsilon, \dots, 2a + \epsilon)
$$

= $AB(T_m)(a, \dots, a) + AB(T_m)(a + \epsilon, \dots, a + \epsilon) = R(a) + R(a + \epsilon),$

which finishes the proof.

We observe that $M(A)$ is always unital, so Proposition 3.1 allows us to apply the final argument in the proof of Theorem 2.8 in [20] but avoiding some technical and laborious results needed in its original proof(see [30]).

Theorem 3.1. [20] Let A be a C^* -algebra, $(1 + 2\epsilon) \in \mathbb{N}$ and P_m an n-homogeneous scalar polynomial on A. The following are equivalent.

(a) There exists $\varphi_m \in A^*$ such that, for every $x \in A$,

$$
P_m(x) = \varphi_m(x^{1+2\epsilon}).
$$

(b) P_m is additive on elements having zero-products.

(c) P_m is orthogonally additive on A_{sa} .

Proof. The implications $(a) \Rightarrow (b) \Rightarrow (c)$ are clear. To see that $(c) \Rightarrow (a)$ we proceed by induction on $(1 +$ 2ϵ). When $\epsilon = 0$ the result is trivial. We suppose that the statement is true for (2 ϵ).

Let $T_m: A \times ... \times A \to \mathbb{C}$ be the unique symmetric and continuous $(1 + 2\epsilon)$ -linear form on A associated to P_m . Proposition 3.1 guarantees that the polynomial $AB(P_m)$ associated to $AB(T_m)$ is orthogonally additive on $M(A)_{sa}.$

Let θ be defined by $\theta(x_2, ..., x_{1+2\epsilon}) = AB(T_m)(1, x_2, ..., x_{1+2\epsilon})$, $(x_2, ..., x_{1+2\epsilon} \in M(A))$. We claim that the polynomial R associated to θ is orthogonally additive on $M(A)_{sa}$. Indeed, let a and $(a + \epsilon)$ be two orthogonal elements in $M(A)_{sa}$ and let C denote C^{*} subalgebra of $M(A)$ generated by $a, (a + \epsilon)$ and 1. Clearly C is a unital abelian C^{*}-algebra and $P_m|_c$ is orthogonally additive. Thus, Theorem 2.1 in [23] assures the existence of a functional $\psi_c \in C^*$ such that

$$
AB(T_m)|_C(y_1, ..., y_{1+2\epsilon}) = \psi_{a+2\epsilon}(y_1 ... y_{1+2\epsilon})
$$

for all $y_1, ..., y_{1+2\epsilon} \in C_x$. In particular

$$
R(2a + \epsilon) = \theta(2a + \epsilon, \dots, 2a + \epsilon) = AB(T_m)|_c(1, 2a + \epsilon, \dots, 2a + \epsilon)
$$

= $\psi_c((2a + \epsilon)^{2\epsilon}) = \psi_c(a^{2\epsilon} + (a + \epsilon)^{2\epsilon}) = \psi_c(a^{2\epsilon}) + \psi_c((a + \epsilon)^{2\epsilon})$
= $AB(T_m)|_c(1, a, \dots, a + \epsilon) + AB(T_m)|_c(1, a + \epsilon, \dots, a + \epsilon) = R(a) + R(a + \epsilon),$

which proves the claim.

By the induction hypothesis, there exists $\varphi_m \in M(A)^*$ such that

$$
R(x)=\varphi_m(x^{2\epsilon})
$$

for all $x \in M(A)$.

On the other hand, for every $x \in M(A)_{sa}$, let C_x be the abelian C*-subalgebra of $M(A)$ generated by 1 and x, and let $(T_m)_{C_x}: C_x \times ... \times C_x \to \mathbb{C}$ be the restriction of T_m . Clearly the polynomial associated to $(T_m)_{C_x}$ also is orthogonally additive. Therefore, Theorem 2.1 of [23] guarantees the existence of a measure $\psi_x \in (C_x)^*$ with $\|\psi_x\| = \|(T_m)_{|C_x}\|$ such that

$$
(T_m)_{|C_x}(y_1,\ldots,y_{1+2\epsilon})=\psi_x(y_1\ldots y_{1+2\epsilon})
$$

for all $y_1, ..., y_{1+2\epsilon} \in C_x$.

Now, we claim that, for every $x \in M(A)_{sa}$, $\psi_x = \varphi_{m|c_x}$. Indeed, let us fix $x \in M(A)_{sa}$ and pick a positive element $(x + 2\epsilon) \in C_x$. There is no loss of generality in assuming that $||x + 2\epsilon|| = 1$. The positivity of $(x + 2\epsilon)$ 2ϵ) implies the existence of a positive normone element $(x + \epsilon) \in C_x$ satisfying $(x + \epsilon)^{2\epsilon} = x + 2\epsilon$.

We therefore have

$$
\psi_x(x+2\epsilon) = \psi_x((x+\epsilon)^{2\epsilon}) = AB((T_m)_{|C_x})(1, x+\epsilon, ..., x+\epsilon) = AB(T_m)(1, x+\epsilon, ..., x+\epsilon)
$$

= $\theta(x+\epsilon, ..., x+\epsilon) = R(x+\epsilon) = \varphi_m((x+\epsilon)^{2\epsilon}) = \varphi_m(x+2\epsilon).$

Since $(x + 2\epsilon)$ is an arbitrary positive norm-one element in C_x we deduce, by linearity,

that $\psi_x = \varphi_{m|_{C_x}}$.

Thus, for each $x \in M(A)_{sa}$, we have

$$
AB(P_m)(x) = AB(T_m)(x, ..., x) = \psi_x(x^{1+2\epsilon}) = \varphi_m(x^{1+2\epsilon}).
$$

The polarization formula given in (3.1) applies to prove that $AB(P_m)(x) = \varphi_m(x^{1+2\epsilon})$ for all $x \in M(A)$.

The following vector-valued version of the above theorem was established in [20], Corollary 3.1.

Theorem 3.2. [20] Let A be a C^* -algebra, X a complex Banach space, $(1 + 2\epsilon) \in \mathbb{N}$ and $P_m: A \to X$ an nhomogeneous polynomial. The following are equivalent.

(a) There exists an operator $T_m: A \to X$ such that, for every $x \in A$,

$$
P_m(x) = T_m(x^{1+2\epsilon}).
$$

(b) P_m is additive on elements having zero-products.

(c) P_m is orthogonally additive on A_{sa} .

IV. Orthogonality Preservers Between C*-Algebras and JB*-Algebras

Let *J* be an arbitrary JB[∗]-algebra. One of the main results stated in [7] describes the orthogonality preserving operators from *J* to a JB^{*}-triple whose second transpose maps the unit in A^{**} to a tripotent in E^{**} . This section contains most of the novelties in this paper. We shall present a complete description of all orthogonality preserving operators from a JB^{*}-algebra to a JB^{*}-triple, without assuming any additional condition.

We recall that two elements $a, (a + \epsilon)$ in a JB^{*}-triple are said to be orthogonal (written $\perp a + \epsilon$) if $L(a, a + \epsilon)$ ϵ) = 0. Lemma 1 in [7] shows that $a \perp a + \epsilon$ if and only if one of the following statements holds:

$$
\{a, a, a + \epsilon\} = 0; \qquad a \perp r(a + \epsilon); \qquad r(a) \perp r(a + \epsilon); E_2^{**}(r(a)) \perp E_2^{**}(r(a + \epsilon)); \qquad r(a) \in E_0^{**}(r(a + \epsilon)); \qquad a \in E_0^{**}(r(a + \epsilon)); a + \epsilon \in E_0^{**}(r(a)); \qquad E_a \perp E_{a+\epsilon} \qquad \{a + \epsilon, a + \epsilon, a\} = 0.
$$
\n(4.1)

The Jordan identity (JB1) and the above reformulations assure that

$$
a \perp \{x, x + \epsilon, x + 2\epsilon\}
$$
 whenever *a* is orthogonal to $x, x + \epsilon$ and $(x + 2\epsilon)$. (4.2)

If A is a C^{*}-algebra, it can be checked from the above reformulations, that two elements $a, a + \epsilon$ in A are orthogonal for the C^{*}-algebra product (i.e. $(a + \epsilon)^* = 0 = (a + \epsilon)^* a$) if and only if they are orthogonal when A is considered as a JB $*$ -triple.

The equivalent reformulations of orthogonality given in (4.1) admit another

equivalent statement in the setting of JB^{*}-algebra when one of the elements is positive.

Lemma 4.1 (see [30]). Let h_m and x be elements in a JB^* -algebra *J* with h_m positive. Then $x \perp h_m$ if and only if $h_m \circ x = 0$.

Proof. Having in mind that $h_m \circ x = \{1, h_m, x\}$, where 1 denotes the unit element in J^{**} , it is clear that $h_m \circ x =$ 0 whenever $h_m \perp x$. We shall show that $x \perp h_m$ whenever $h_m \circ x = 0$. Given a positive element h_m in *J*, there exists another positive element $(a + \epsilon)$ satisfying $(a + \epsilon)^2 = h_m$. Since the triple product $\{a + \epsilon, a + \epsilon, x\}$ coincides with $(a + \epsilon)^2 \circ x = h_m \circ x = 0$, the equivalent reformulations of orthogonality given in (4.1) guarantee that $(a + \epsilon) \perp x$, or equivalently, $x \in J_0^{**}(r(a + \epsilon))$. It is not hard to check that for a positive $(a + \epsilon)$ ϵ), the range tripotents $r(a + \epsilon)$ and $r((a + \epsilon)^2) = r(h_m)$ both coincide with the range projection of $(a + \epsilon)$ in J^{**} and hence $r(a + \epsilon) = r((a + \epsilon)^2) = r(h_m)$. Again, the equivalences stated in (4.1) assure that $x \perp h_m$.

Let E and F be JB^{*}-triples. An operator $T_m: E \to F$ is said to be orthogonality preserving if $T_m(a) \perp T_m(a + \epsilon)$ whenever $a \perp (a + \epsilon)$ in E. This concept extends the usual definition of orthogonality preserving linear operator between C ∗ -algebras.

Lemma 4.2 (see [30]). Let $T_m: J \to E$ be an orthogonality preserving operator from a JB^* algebra to a JB^* -triple, then $T_m^{**}|_{M(J)}: M(J) \to E^{**}$ is orthogonality preserving.

Proof. Let $a, (a + \epsilon) \in M(J)$. By (4.1), $a^{\left[\frac{1}{3}\right]}$ and $(a + \epsilon)^{\left[\frac{1}{3}\right]}$ are orthogonal elements in $M(J)$. Thus, we deduce that for each pair $x, (x + \epsilon)$ in $J, Q(a^{\frac{1}{3}}) x$ and $Q((a + \epsilon)^{\frac{1}{3}}) (x + \epsilon)$ are two orthogonal elements in J . Now, Goldstine's theorem guarantees that the closed unit ball of J is weak*-dense in the closed unit ball of J^{**} . Therefore there exist two bounded nets (x_λ) and (y_μ) in *J*, converging in the weak*-topology of *J*^{**} to $a^{\left[\frac{1}{3}\right]}$ and $(a + \epsilon)^{\left[\frac{1}{3}\right]}$, respectively.

Since the triple product of any JBW^{*}-triple is separately weak $*$ continuous ([4]) and T_m^{**} is weak $*$ * . continuous, we deduce that, for each $x, (x + \epsilon)$ in \overline{f} , the net $0 =$ $\left\{T_m\left(Q\left(a^{[\frac{1}{3}]}x_\lambda\right),T_m\left(Q\left(a^{[\frac{1}{3}]}x\right),T_m\left(Q\left((a+\epsilon)^{[\frac{1}{3}]}x_\lambda\right);x+\epsilon\right)\right)\right\}$ converges to

 $\left\{T_{\rm m}^{**}(a), T_m\left(Q\left(a^{\left[\frac{1}{3}\right]}(x)\right), T_m\left(Q\left((a+\epsilon)^{\left[\frac{1}{3}\right]}(x+\epsilon)\right)\right)\right\}$ in the weak*-topology of E^{**} . Therefore

$$
\left\{T_{\mathbf{m}}^{**}(a), T_m\left(Q\left(a^{\left[\frac{1}{3}\right]}\right)x\right), T_m\left(Q\left((a+\epsilon)^{\left[\frac{1}{3}\right]}\right)(x+\epsilon)\right)\right\}=0,
$$

for all $x, (x + \epsilon) \in J$. Similarly, $\left\{ T_{\mathbf{m}}^{**}(a), T_{\mathbf{m}}^{*}(a), T_{m}\left(Q\left((a + \epsilon)^{\left[\frac{1}{3}\right]}(a) + \epsilon \right) \right) \right\} = 0$, for all $(x + \epsilon) \in J$.

Finally, $0 = \left\{ T_{\text{m}}^{**}(a), T_{\text{m}}^{*}(a), T_{m}\left(Q\left((a+\epsilon)^{\frac{1}{3}} \right) y_{\mu} \right) \right\} \rightarrow \left\{ T_{\text{m}}^{**}(a), T_{\text{m}}^{**}(a), T_{\text{m}}^{**}(a+\epsilon) \right\}$, in the weak*-topology of E^{**} , and hence $T^{**}_{m}(a) \perp T^{**}_{m}(a + \epsilon)$.

Let A be a C^{*}-algebra and let X be a complex Banach space. A continuous sesquilinear mapping $\Phi: A \times A \to X$ is said to be orthogonal if $\Phi(a, a + \epsilon) = 0$ for every $a, (a + \epsilon) \in A$ such that $a \perp (a + \epsilon)$. By a celebrated result due to [13] (see [14] for an alternative proof), for every continuous sesquilinear orthogonal form $V: A \times$ $A \to \mathbb{C}$, there exist two functionals $\omega_1, \omega_2 \in A^*$ satisfying that

$$
V(x, x + \epsilon) = \omega_1(x(x + \epsilon)^*) + \omega_2((x + \epsilon)^*x),
$$

for all $x, (x + \epsilon) \in A$. Denoting $\phi = \omega_1 + \omega_2$ and $\psi = \omega_1 - \omega_2$, we have

$$
V(x, x + \epsilon) = \phi(x \circ (x + \epsilon)^*) + \psi([x, (x + \epsilon)^*]),
$$

for all $x, (x + \epsilon) \in A$, where $a \circ (a + \epsilon) := \frac{1}{2}$ $\frac{1}{2}(a(a + \epsilon) + (a + \epsilon)a), [a, a + \epsilon] := \frac{1}{2}$ $\frac{1}{2}(a(a+\epsilon)-(a+\epsilon)a)$. In particular, $V(x, x + \epsilon) = V(x + \epsilon, x)$ whenever $[x, (x + \epsilon)^*] = 0$ and $x \circ (x + \epsilon)^* = x^* \circ (x + \epsilon)$. The following lemma follows straightforwardly from the above remarks and the Hahn-Banach theorem.

Lemma 4.3. Let A be a C^* -algebra, X a Banach space and $\Phi: A \times A \rightarrow X$ a continuous sesquilinear orthogonal operator. Then $\Phi(x, x + \epsilon) = \Phi(x + \epsilon, x)$ whenever $[x, (x + \epsilon)^*] = 0$ and $x \circ (x + \epsilon)^* = x^* \circ (x + \epsilon)$.

Let us recall that two elements a and $(a + \epsilon)$ in a JB^{*}-algebra *J* are said to operator commute in *J* if the multiplication operators M_a and $M_{a+\epsilon}$ commute, where M_a is defined by $M_a(x) := a \circ x$. That is, a and $(a+\epsilon)$ operators commute if and only if $(a \circ x) \circ (a + \epsilon) = a \circ (x \circ (a + \epsilon))$ for all x in *J*. Self-adjoint elements a and $(a + \epsilon)$ in *J* generate a JB^{*}-subalgebra that can be realized as a JC^{*}-subalgebra of some $B(H)$, [29], and, in this identification, a and $(a + \epsilon)$ commute in the usual sense whenever the operators commute in J (compare Proposition 1 in [25]). Similarly, two elements a and $(a + \epsilon)$ of J_{sa} operator commute if and only if $a^2 \circ (a +$ ϵ) = { $a, a + \epsilon, a$ } (i.e., $a^2 \circ (a + \epsilon) = 2(a \circ (a + \epsilon)) \circ a - a^2 \circ (a + \epsilon)$). If $(a + \epsilon) \in J$ we use { $a + \epsilon$ }' to denote the set of elements in *I* that operator commute with $(a + \epsilon)$. (This corresponds to the usual notation in von Neumann algebras.)

Proposition 4.1 (see [30]). Let A be a C^* -algebra, E a JB^{*}-triple and $T_m: A \to E$ an orthogonality preserving operator. Then for $h_m = T_m^{**}(1)$, the following assertions hold:

a) $\{T_m(x), h_m, h_m\} = \{h_m, T_m(x^*), h_m\}$, for all $x \in A$.

b)
$$
T_m(A_{sa}) \subset E_2^{**}(r(h_m))_{sa}.
$$

c) For each $a \in A$, $T_m(a)$ and h_m operator commute in the JB*-algebra $E_2^{**}(r(h_m))$. d) When h_m is a tripotent, then $T_m: A \to E_2^{**}(r(h_m))$ is a Jordan *-homomorphism, in particular T_m is a triple homomorphism.

Proof. a) By Lemma 4.2, $T_m^{**}|_{M(A)}$: $M(A) \to E^{**}$ is orthogonality preserving. Therefore, the assignment $(x, x +$ ϵ) \mapsto { $T_{\rm m}^{**}(x)$, $T_{\rm m}^{**}(x+\epsilon)$, $h_{\rm m}$ }, defines a continuous sesquilinear orthogonal operator on $M(A) \times M(A)$. Lemma 4.3, applied to $x \in A_{sa}$ and $(x + \epsilon) = 1$ gives $\{T_m(x), h_m, h_m\} = \{h_m, T_m(x), h_m\}$. The desired statement follows by linearity.

b) Let $a \in A_{sa}$. By the Peirce arithmetic and a) we have

$$
\begin{aligned} \{(P_m)_2(r(h_m))T_m(a), h_m, h_m\} + \{(P_m)_1(r(h_m))T_m(a), h_m, h_m\} &= \{T_m(a), h_m, h_m\} \\ &= \{h_m, T_m(a), h_m\} = \{h_m, (P_m)_2(r(h_m))T_m(a), h_m\}, \end{aligned}
$$

which implies that $\{(P_m)_1(r(h_m))T_m(a), h_m, h_m\} = 0$, and hence $(P_m)_1(r(h_m))T_m(a) \perp h_m$. The equivalences in (4.1) imply that $(P_m)_1(r(h_m))T_m(a) \in E_0^{**}(r(h_m))$, which gives

$$
T_m(A_{sa}) \subseteq E_2^{**}(r(h_m)) \oplus E_0^{**}(r(h_m)). \tag{4.3}
$$

Consider now the mapping $(P_m)_3$: $M(A) \to E^{**}$,

$$
(P_m)_3(x) = \{T_m^{**}(x), T_m^{**}(x^*), T_m^{**}(x)\}.
$$

It is clear that $(P_m)_3$ is a 3-homogeneous polynomial on $M(A)$. Since, by Lemma 4.2, $T_m^{**}|_{M(A)}$ is orthogonality preserving, $(P_m)_3$ is orthogonally additive on $M(A)_{sa}$. By Corollary 3.1 in [20] or Theorem 3.2, there exists an operator $(F_m)_3$: $M(A) \to E^{**}$ satisfying that

$$
(P_m)_3(x) = (F_m)_3(x^3),
$$

for all x in $M(A)$. If $(S_m)_3$: $M(A) \times M(A) \times M(A) \to E^{**}$ is the (unique) symmetric 3-linear operator associated to $(P_m)_3$, we have

$$
(F_m)_3()=(S_m)_3(x,x+\epsilon,x+2\epsilon)=,\qquad(4.4)
$$

for all $x, (x + \epsilon), (x + 2\epsilon) \in M(A)_{sa}$. Now, taking $a \in M(A)_{sa}$ and $(x + \epsilon) = (x + 2\epsilon) = 1$ in (4.4), we deduce that

$$
(F_m)_3(a) = \langle T_m^{**}(a), h_m, h_m \rangle = \frac{2}{3} \{ T_m^{**}(a), h_m, h_m \} + \frac{1}{3} \{ h_m, T_m^{**}(a), h_m \}. \tag{4.5}
$$

Thus, for each $a \in M(A)_{sa}$ we have

$$
\{T_m^{**}(a), T_m^{**}(a), T_m^{**}(a)\} = (F_m)_3(a^3) = \langle h_m, h_m, T_m^{**}(a^3) \rangle. \tag{4.6}
$$

Now, (4.3), (4.6) and the Peirce arithmetic show that

$$
T_m(A_{sa}) \subseteq E_2^{**}(r(h_m)) \cap E.
$$

We shall finally prove that T_m is symmetric for the involution in $E_2^{**}(r(h_m))$. In order to simplify notation, we shall write $r(h_m) = r$. Let us recall that $E_2^{**}(r)$ is a JB^{*}-algebra with Jordan product and involution given by $x \cdot_r (x + \epsilon) = \{x, r, x + \epsilon\}$ and $x^* = \{r, x, r\} = Q(r)(x)$, respectively. The triple product in $E_2^{**}(r)$ is also determined by the expression

$$
\{x, x + \epsilon, x + 2\epsilon\} = \left(x \cdot_r (x + \epsilon)^* \right) \cdot_r (x + 2\epsilon) + \left((x + 2\epsilon) \cdot_r (x + \epsilon)^* \right) \cdot_r x - \left(x \cdot_r (x + 2\epsilon) \right) \cdot_r (x + \epsilon)^{k_r}.
$$

Lemma 4.3 applied to the form $\Phi(x, x + \epsilon) = \{T_{m}^{**}(x), T_{m}^{**}(x + \epsilon), x + 2\epsilon\}$ guarantees that

$$
\{T_{\rm m}^{**}(x),h_{m},x+2\epsilon\}=\{h_{m},T_{\rm m}^{**}(x),x+2\epsilon\}
$$

for every $x \in M(A)_{sa}$ and $(x + 2\epsilon) \in E^{**}$. Let us fix $x = a \in A_{sa}$. By taking $(x + 2\epsilon) = r$, the above identity gives $h_m \cdot_r T_m(a)^{\sharp} \ddot{r}_r = h_m \cdot_r T_m(a)$, that is, $h_m \cdot_r \frac{T_m(a) - T_m(a)^{\sharp}r}{r^2}$ $\frac{2I_m(u)}{2i}$ = 0. Lemma 4.1 now applies to give $(T_m(a) T_m(a)^{Er}$ \perp h_m , and hence $T_m(a) - T_m(a)^{or}$ lies in $E_2^{**}(r) \cap E_0^{**}(r) = \{0\}$ (compare (4.1)). This implies $T_m(A_{sa}) \subset E_2^{**}(r)_{sa}.$

c) It follows by $a + \epsilon$) that $T_m(A_{sa}) \subset E_2^{**}(r)_{sa}$ and hence the triple product in $T_m(A_{sa})$ is determined by the Jordan product of $E_2^{**}(r)_{sa}$. By a), for each $a \in A_{sa}$, we have $\{h_m, h_m, T_m(a)\} = \{h_m, T_m(a), h_m\}$. Thus, $h_m^2 \cdot r T_m(a) = 2(h_m \cdot r T_m(a)) \cdot r h_m - h_m^2 \cdot r T_m(a)$, which gives the desired statement.

d) Let us assume that h_m is a tripotent. In this case $h_m = r(h_m) = r$. Statement $a + \epsilon$) assures that $T_m(A_{sa}) \subset$ $E_2^{**}(r)_{sa}$. Thus, equation (4.5) guarantees that $(F_m)_3(a) = \{T_m^{**}(a), h_m, h_m\} = \{h_m, T_m^{**}(a), h_m\} = T_m^{**}(a)$, for all $a \in M(A)_{sa}$. Now, the formula established in (4.4) implies that

$$
\langle T_{\mathbf{m}}^{**}(a), T_{\mathbf{m}}^{**}(a+\epsilon), T_{\mathbf{m}}^{**}(a+2\epsilon) \rangle = (F_m)_3 \langle a, a+\epsilon, a+2\epsilon \rangle = T_{\mathbf{m}}^{**} \langle a, a+\epsilon, a+2\epsilon \rangle,
$$

for all $a, (a + \epsilon), (a + 2\epsilon) \in M(A)_{sa}$. Taking $\epsilon = \frac{1-a}{2}$. $\frac{-a}{2}$ in the above equation, we have

$$
T^{**}_{\mathbf{m}}(a)\cdot_r T^{**}_{\mathbf{m}}(a+\epsilon) = \{T^{**}_{\mathbf{m}}(a), T^{**}_{\mathbf{m}}(a+\epsilon), r\} = T^{**}_{\mathbf{m}}(\{a,a+\epsilon,1\}) = T^{**}_{\mathbf{m}}(a\circ (a+\epsilon)),
$$

for all $a, (a + \epsilon) \in M(A)_{sa}$. We have then shown that $T_{m}^{*}|_{M(A)}: M(A) \to E_2^{**}(r)$ is a unital Jordan *homomorphism, which proves d).

It should be noticed that the main result in [27] is a direct consequence of statement) in the above proposition.

Let $T_m: J \to E$ be an orthogonality preserving operator from a JB^{*}-algebra to a JB^{*}-triple and let h_m denote $T_{\rm m}^{**}(1)$. Lemma 4.2 assures that $T_{\rm m}^{**}|_{M(f)}: M(f) \to E^{**}$ also is orthogonality preserving. Since for each selfadjoint element $a \in M(J)$, the JB^{*}-subalgebra $C_{\{1,a\}}$ of $M(J)$ generated by a and 1 is JB^{*}-isomorphic to an abelian C^{*}-algebra (compare Theorem 3.2.4 in [15]), the mapping $T_{\rm m}^{**}|_{\{11,a\}}: C_{\{1,a\}} \to E^{**}$ satisfies the hypothesis of Proposition 4.1 above. Therefore, $T_m^{**}(a) \in E_2^{**}(r(h_m))_{sa}$, $T_m^{**}(a)$ and h_m operator commute in

the JB^{*}-algebra $E_2^{**}(r(h_m))$ and if h_m is a tripotent then, $T_m^{**}(a^2) = T_m^{**}(a) \cdot_{r(h_m)} T_m^{**}(a)$. We have proved the following result(see [30]).

Corollary 4.1. Let *J* be a JB^* -algebra, *E* a JB^* -triple and $T_m: J \to E$ an orthogonality preserving operator. Then for $h_m = T_m^{**}(1)$, the following assertions hold:

a) $\{T_m(x), h_m, h_m\} = \{h_m, T_m(x^*), h_m\}$, for all $x \in J$.

b) $T_m(J_{sa}) \subset E_2^{**}(r(h_m))_{sa}$.

c) For each $a \in J, T_m(a)$ and h_m operator commute in the JB*-algebra $E_2^{**}(r(h_m))$. d) When h_m is a tripotent, then $T_m: J \to E_2^{**}(r(h_m))$ is a Jordan *-homomorphism, in particular T_m is a triple homomorphism.

The result describing orthogonality preserving operators from a JB^{*}-algebra to a JB^{*}-triple can be now stated(see [30]).

Theorem 4.1. Let $T_m: J \to E$ be an operator from a JB^* -algebra to a JB^* -triple and let $h_m = T_m^{**}(1)$. The following are equivalent:

a) T_m is orthogonality preserving.

b) There exists a (unital) Jordan *-homomorphism $S_m: M(J) \to E_2^{**}(r(h_m))$ such that $S_m(x)$ and h_m operator commute and $T_m(x) = h_m \cdot_{r(h_m)} S_m(x)$, for every $x \in J$.

Proof. The implication b) $\Rightarrow a$) is clear.

 $a) \Rightarrow b$) Let C denote the JB^{*}-subalgebra of $E_2^{**}(r(h_m))$ generated by h_m and $r(h_m)$. Let $\sigma(h_m) \subseteq (0, \| h_m \|]$ denote the spectrum of h_m in $E_2^{**}(r(h_m))$. It is known that $\sigma(h_m) \cup \{0\}$ is compact and C is JB^{*}-isomorphic to $C(\sigma(h_m) \cup \{0\})$, and under this identification h_m corresponds to the function $t \mapsto t$ (compare Theorem 3.2.4 in [15]). For each natural $(1 + 2\epsilon)$, let $p_{(1+2\epsilon)}$ be the projection in \bar{C}^{w^*} whose representation in $C(\sigma(h_m) \cup \{0\})^{**}$ is the characteristic function $\chi_{((\sigma(h_m) \cup \{0\}) \cap \left[\frac{1}{1+2\epsilon^2}\right])}$, and let $(h_m)_{1+2\epsilon}$ $p_{1+2\epsilon} \cdot r_{(h_m)} h_m$. We notice that $(p_{1+2\epsilon})$ converges to $r(h_m)$ in the $\sigma(E^{**}, E^*)$ -topology of E^{**} .

By Corollary 4.1 $T_m^{**}(M(J)_{sa}) \subset E_2^{**}(r(h_m))_{sa}$ and $T_m^{**}(M(J)) \subseteq \{h_m\}'$. The separate weak*-continuity of the product of $E_2^{**}(r(h_m))$ implies that $(x + \epsilon)$ and $T_m^{**}(x)$ operator commute for all $(x + \epsilon) \in \bar{C}^{w^*}$ and $x \in M(J)$. In particular, for each natural $(1 + 2\epsilon)$, $p_{1+2\epsilon}$ and $T_m^{**}(x)$ operator commute, for all $x \in M(J)$. Thus, the mapping $(S_m)_{1+2\epsilon} : M(J) \to E_2^{**}(r(h_m))$, $(S_m)_{1+2\epsilon}(x) := (h_m^{-1})_{1+2\epsilon} \cdot r(h_m)$ $T_m^{**}(x)$ is an orthogonality preserving operator between two JB^{*}-algebras satisfying that $(S_m)_{1+2\epsilon}(1) = p_{1+2\epsilon}$ is a tripotent. Corollary 4.1 assures that $(S_m)_{1+2\epsilon}$ is a Jordan *-homomorphism and hence $||(S_m)_{1+2\epsilon}|| \leq 1$, for all $(1+2\epsilon) \in \mathbb{N}$.

Let us take a free ultrafilter U on N. By the Banach-Alaoglu Theorem, any bounded set in $E_2^{**}(r(h_m))$ is relatively weak*-compact and hence the assignment $(x + 2\epsilon) \mapsto S_m(x + 2\epsilon) := w^* - \lim_{\mathcal{U}} (S_m)_{1+2\epsilon}(x + 2\epsilon)$ defines an operator $S_m: J \to E_2^{**}(r(h_m)).$

For each natural $(1 + 2\epsilon)$, and each $x \in M(J)$, $h_m \cdot_{r(h_m)} (S_m)_{1+2\epsilon}(x) = h_m \cdot_{r(h_m)} ((h_m^{-1})_{1+2\epsilon} \cdot_{r(h_m)} T_m^{**}(x)) =$ $p_{1+2\epsilon} \cdot_{r(h_m)} T_m^{**}(x)$. Since $r(h_m) = w^* - \lim_{(1+2\epsilon)} p_{(1+2\epsilon)}$, it follows from the separate weak*continuity of the Jordan product of* $E_2^{**}(r(h_m))$, that $h_m \cdot_{r(h_m)} S_m(x) = T_m^{**}(x)$, for all $x \in M(J)$. We have already seen that $(h_m^{-1})_{1+2\epsilon}, h_m$ and $T_m^{**}(x)$ pairwise operator commute for every $x \in M(J)$. Therefore, $(S_m)_{1+2\epsilon}(x)$ and h_m operator commute for every natural $(1 + 2\epsilon)$. The separate weak-continuity of the product assures that h_m and $S_m(x)$ operator commute for all $x \in M(J)$.

Finally, let $a \in M(J)_{sa}$. For each natural $1 + 2\epsilon$, $(S_m)_{1+2\epsilon}(a) \in E_2^{**}(r(h_m))_{sa}$ and $(S_m)_{1+2\epsilon}(a^2)$ $(S_m)_{1+2\epsilon}(a) \cdot_{r(h_m)} (S_m)_{1+2\epsilon}(a)$. Being $E_2^{**}(r(h_m))_{sa}$ weak*-closed, it is clear that $S_m(a) \in E_2^{**}(r(h_m))_{sa}$. Let $(1 + 2\epsilon)$ and m be two natural numbers. Since $(h_m^{-1})_{1+2\epsilon}$, $(h_m^{-1})_{m_0}$, and $T_m^{**}(a)$ are pairwise operator commuting, we have

$$
(S_m)_{1+2\epsilon}(a)\cdot_{r(h_m)}(S_m)_{m_0}(a)
$$

$$
= (h_m^{-1})_{1+2\epsilon} \cdot_{r(h_m)} (h_m^{-1})_{m_0} \cdot_{r(h_m)} T_m^{**}(a) \cdot_{r(h_m)} T_m^{**}(a) = (S_m)_{\min(1+2\epsilon,m)} (a)^2
$$

 $= (S_m)_{\min(1+2\epsilon,m)}(a^2).$

For a fixed natural m, taking $w^* - \lim_{1+2\epsilon \ge m,u}$ in the above expressions, we deduce that

$$
S_m(a)\cdot_{r(h_m)}(S_m)_{m_0}(a)=(S_m)_{m_0}(a^2),
$$

for all $m \in \mathbb{N}$. The same argument gives

$$
S_m(a) \cdot_{r(h_m)} S_m(a) = S_m(a^2).
$$

The description provided by the above Theorem generalizes Theorems 6 and 10 in [7]. Concretely, the just quoted theorems make use of the hypothesis of $T_m^{**}(1)$ being von Neumann regular, and this assumption is completely removed in Theorem 4.1.

We recall that an operator T_m between two JB^{*}-triples preserves zero-tripleproducts if $\{T_m(x), T_m(x + \theta)\}$ ϵ), $T_m(x + 2\epsilon)$ = 0 whenever $\{x, x + \epsilon, x + 2\epsilon\} = 0$. While an operator T_m between two C^{*}-algebras is said to be zero-products preserving if $T_m(x)T_m(x + \epsilon) = 0$ whenever $x(x + \epsilon) = 0$.

The authors in[8],[26], and [28] give a complete description of zero-product preserving bounded linear maps between C*-algebras.

The equivalent reformulations of orthogonality stated in (4.1) together with Theorem 4.1 above, give the following generalization of Corollary 18 in [7].

Corollary 4.2. Let $T_m: J \to E$ be an operator from a JB^* -algebra to a JB*-triple. Then T_m is orthogonality preserving if and only if T_m preserves zero-triple-products.

Example 4.1. Let T_m be a bounded linear operator between two C^* -algebras. It was already noticed in [7] that in the case of T_m being symmetric (i.e., $T_m(x^*) = T_m(x^*)$,

then T_m is orthogonality preserving on A_{sa} if and only if T_m preserves zero-products on A_{sa} . However, not every orthogonality preserving operator sends zero-products to zero-products. Consider, for example, $T_m: M_2(\mathbb{C}) \to M_2(\mathbb{C}), T_m(x) = ux$, where $u = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Clearly T_m is a triple homomorphism and hence orthogonality preserving, but taking $x = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $(x + \epsilon) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, we have $x(x + \epsilon) = (x + \epsilon)x = 0$ and $T_m(x) T_m(x + \epsilon) \neq 0.$

Theorem 17 in [7] follows now as a consequence of Theorem 4.1.

Corollary 4.3 (see [30]). Let $T_m: A \to B$ be an operator between two C^* -algebras. For $h_m = T_m^{**}(1)$ the following assertions are equivalent:

a) T_m is orthogonality preserving.

b) There exists a triple homomorphism $S_m: A \to B^{**}$ satisfying $h_m^* S_m(x + 2\epsilon) = S_m((x + 2\epsilon)^*)^* h_m$, $h_m S_m((x+2\epsilon)^*)^* = S_m(x+2\epsilon)h_m^*$, and

$$
T_m(x + 2\epsilon) = L(h_m, r(h_m))(S_m(x + 2\epsilon)) = \frac{1}{2}(h_m r(h_m)^* S_m(x + 2\epsilon) + S_m(x + 2\epsilon)r(h_m)^* h_m)
$$

= $h_m r(h_m)^* S_m(x + 2\epsilon) = S_m(x + 2\epsilon)r(h_m)^* h_m$,

for all $(x + 2\epsilon) \in A$.

Proof. The implication $b \Rightarrow a$ is clear.

DOI: 10.35629/0743-10110115 www.questjournals.org 13 | Page

 $a) \Rightarrow b$) By Theorem 4.1 there exists a (unital) Jordan *-homomorphism S_m : $M(A) \rightarrow B_2^{**}(r(h_m))$ such that $S_m(x)$ and h_m operator commute in $B_2^{**}(r(h_m))$ and $T_m(x) = h_m \cdot_{r(h_m)} S_m(x)$, for every $x \in A$. In order to simplify notation we shall write $r = r(h_m)$. Notice that r is a partial isometry in B^{**} , with left and right projections given by rr^* and r^*r , respectively. It is well known that $B_2^{**}(r) = rr^*B^{**}r^*r$.

It can be easily checked that $L_{r^*}: B_2^{**}(r) \to B_2^{**}(r^*r)$, $x \mapsto r^*x$, is a unital Jordan *-homomorphism and $B_2^{**}(r^*r)$ is a C^{*}-subalgebra of B^{**} because r^*r is a projection.

Take an element $a \in A_{sa}$. Since $S_m(a)$ and h_m operator commute in $B_2^{**}(r(h_m))_{sa}$, $L_{r^*}(h_m) = r^*h_m$ and $L_{r^*}(S_m(a)) = r^*S_m(a)$ operator commute in B_{sa}^{**} . Equivalently, r^*h_m and $r^*S_m(a)$ are two commuting elements in B^{**} . Therefore

$$
h_m^* S_m(a) = h_m^* r r^* S_m(a) = (r^* h_m)^* (r^* S_m(a)) = (r^* h_m) (r^* S_m(a)) = (r^* S_m(a)) (r^* h_m)
$$

= $(r^* S_m(a))^* (r^* h_m) = S_m(a)^* r r^* h_m = S_m(a)^* h_m$,

and similarly $h_m S_m(a)^* = S_m(a)h_m^*$. The proof concludes by a linear argument.

The general description of all orthogonality preserving operators between two JB[∗]-triples remains open. We can only prove the following local property.

Corollary 4.4. Let $T_m: E \to F$ be an orthogonality preserving operator between two JB^* -triples. Let x be a norm-one element in E and let $h_m = T_m^{**}(r(x))$. Then there exists a Jordan *-homomorphism $S_m: E(x) \to$ $F_2^{**}(r(h_m))$, satisfying that $T_m|_{E(x)} = L(h_m, r(h_m))$.

References

- [1]. W. Arendt, Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 no. 2 (1983) 199–215.
- [2]. R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978) 3–24. [3]. R. M. Aron, B. J. Cole, and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. ReineAngew. Math. 415
- (1991) 51–93.
- [4]. T. Barton and R. M. Timoney, Weak∗-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986) 177–191.
- [5]. F. Bombal and I. Villanueva, Multilinear operators on spaces of continuous functions, Funct. Approx. Comment. Math. 26 (1998) 117–126.
- [6]. L. J. Bunce, C. H. Chu, and B. Zalar, Structure spaces and decomposition in JB*- triples, Math. Scand. 86, no. 1 (2000) 17–35.
- [7]. M. Burgos, F. J. Fern´andez-Polo, J. J. Garc´es, J. Mart´ınez Moreno, and A. M. Peralta, Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008) 220–233.
- [8]. M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (1) (2003) 77–94. [9]. S. Dineen, The second dual of a JB*-triple system, In: Complex analysis, functional analysis and approximation theory (ed. by J.
- M´ugica), 67–69, (North-Holland Math. Stud. 125), North-Holland, Amsterdam-New York, 1986.
- [10]. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- [11]. C. M. Edwards and G. T. R¨uttimann, Compact tripotents in bi-dual JB∗ -triples, Math. Proc. Cambridge Philos. Soc. 120, no. 1 (1996) 155–173.
- [12]. Y. Friedman and B. Russo, Structure of the predual of a JBW∗ -triple, J. Reine u. Angew. Math. 356 (1985) 67–89.
- [13]. S. Goldstein, Stationarity of operator algebras, J. Funct. Anal. 118 no. 2 (1993) 275– 308.
- [14]. U. Haagerup and N. J. Laustsen, Weak amenability of C ∗ -algebras and a theorem of Goldstein, In Banach algebras '97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
- [15]. H. Hanche-Olsen, E. Størmer, Jordan operator algebras, Monographs and Studies in Mathematics, 21. Pitman (Advanced Publishing Program), Boston, MA, 1984.
- [16]. K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 no. 2 (1990) 139–144.
- [17]. J.-S. Jeang and N.-C. Wong, Weighted composition operators of $CO(X)$'s, J. Math. Anal. Appl. 201 (1996) 981–993.
[18]. W. Kaup, Algebraic Characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977)
- [18]. W. Kaup, Algebraic Characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977) 39–64.
- [19]. W. Kaup, A Riemann Mapping Theorem for bounded symmentric domains in complex Banach spaces, Math. Z. 183 (1983) 503– 529.
- [20]. C. Palazuelos, A. M. Peralta, and I. Villanueva, Orthogonally Additive Polynomials on C*-algebras, Quart. J. Math. Oxford 59 (3) (2008) 363–374.
- [21]. A. PeÃlczy´nski, Banach spaces on which every unconditionally converging operator isweakly compact. Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 10 (1962) 641–648.
- [22]. A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, The Strong*-topology and quasi completely continuous operators on Banach spaces, preprint 2006.
- [23]. D. P´erez and I. Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306 (2005) 97–105.
- [24]. H. Pfitzner, Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298, no. 2 (1994) 349–371.
- [25]. D. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53, (1965).
- [26]. M. Wolff, Disjointness preserving operators in C∗-algebras, Arch. Math. 62, (1994) 248–253.
- [27]. N. Wong, Triple homomorphisms of C∗-algebras, Southeast Asian Bulletin of Mathematics 29 (2005) 401–407.

[28]. N. Wong, Zero products preservers of C∗-algebras, to appear in the "Proceedings of the Fifth Conference on Function Spaces", Contemporary Math. 435 (2007) 377–380.

[30]. Marıa Burgos, Francisco J. Fernandez-Polo, Jorge J. Garces and Antonio M. Peralta, Orthogonality Preservers Revisited∗, Asian-European Journal of Mathematics, Vol. 2, No. 3 (2009) 387–405.

^{[29].} J. D. M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977) 291–302.