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Abstract 
The author in [30] obtain a complete characterization of all orthogonality preserving operators from a JB*-

algebra to a 𝐽𝐵∗-triple following [30]. If 𝑇𝑚 ∶  𝐽 →  𝐸 is a bounded linear operator from a 𝐽𝐵∗-algebra 

(respectively, a 𝐶∗-algebra) to a 𝐽𝐵∗-triple and ℎ𝑚 denotes the element 𝑇𝑚
∗∗(1), then 𝑇𝑚 is orthogonality 

preserving, if and only if, 𝑇𝑚 preserves zero-triple-products, if and only if, there exists a Jordan ∗-

homomorphism 𝑆𝑚 ∶  𝐽 →  𝐸2
∗∗(𝑟(ℎ𝑚)) such that 𝑆𝑚(𝑥) and ℎ𝑚 operator commute and 𝑇𝑚(𝑥) =

 ℎ𝑚 •𝑟(ℎ𝑚) 𝑆𝑚(𝑥), for every 𝑥 ∈  𝐽, where 𝑟(ℎ𝑚) is the range tripotent of ℎ𝑚, 𝐸2
∗∗(𝑟(ℎ𝑚)) is the Peirce-2 

subspace associated to 𝑟(ℎ𝑚) and •𝑟(ℎ𝑚) is the natural product making 𝐸2
∗∗(𝑟(ℎ𝑚)) a 𝐽𝐵∗-algebra. This 

characterization culminates the description of all orthogonality preserving operators between 𝐶∗-algebras and 

𝐽𝐵∗-algebras and show a widegeneralizations. 
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I. Introduction 

The study of orthogonality preserving operators between C∗-algebras started with [1], where W. Arendt initiated 

the study of all operators preserving disjoint (or orthogonal) functions between 𝐶(𝐾) spaces. It was established 

there that for each orthogonality preserving operator 𝑇𝑚: 𝐶(𝐾) → 𝐶(𝐾), there exist ℎ𝑚 ∈ 𝐶(𝐾) and a mapping 

𝜑𝑚: 𝐾 → 𝐾 being continuous on the set {𝑡 ∈ 𝐾: ℎ𝑚(𝑡) ≠ 0} satisfying that 

𝑇𝑚(𝑓)(𝑡) = ℎ𝑚(𝑡)𝑓(𝜑𝑚(𝑡)), 

for all 𝑓 ∈ 𝐶(𝑘), 𝑡 ∈ 𝐾. The authors in [16], [17] proved later that the description remains valid for all 

orthogonality preserving operators between 𝐶0(𝐿)-space, where 𝐿 is a locally compact Hausdorff space. 

𝐶(𝐾) and 𝐶0(𝐿) spaces are examples of abelian C∗-algebras. In fact, the Gelfand theory assures that every 

abelian C∗-algebra is C∗-isomorphic to a 𝐶0(𝐿)-space. Therefore, the just quoted results by Jarosz and Jeang-

Wong provide a complete description of all orthogonality preserving operators between abelian C∗-algebras. 

In the setting of a general C∗-algebra 𝐴, two nearly adjacent elements 𝑎 and (𝑎 + 𝜖) in 𝐴 are said to be 

orthogonal (denoted by 𝑎 ⊥ (𝑎 + 𝜖) ) if 𝑎(𝑎 + 𝜖)∗ = (𝑎 + 𝜖)∗𝑎 = 0. A linear operator 𝑇𝑚 between two C∗-

algebras 𝐴 and 𝐵 is called orthogonality preserving or disjointness preserving if 𝑇𝑚(𝑎) ⊥ 𝑇𝑚(𝑎 + 𝜖), for all 𝑎 ⊥
(𝑎 + 𝜖) in 𝐴. The description of all orthogonality preserving operators between two C∗-algebras raised as an 

important problem studied by many authors. 

When the problem is considered only for symmetric operators between general C∗-algebras, M. Wolff 

established a full description in [26]. If 𝑇𝑚 : 𝐴 → 𝐵 is a symmetric orthogonality preserving bounded linear 

operator between two C∗-algebras with 𝐴 unital, then denoting 𝑇𝑚(1) = ℎ𝑚 the following assertions hold: 

http://www.questjournals.org/
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a) 𝑇𝑚(𝐴) is contained in the norm closure of ℎ𝑚{ℎ𝑚}′, where {ℎ𝑚}′ denotes the commutator of {ℎ𝑚}. 

b) There exists a Jordan *-homomorphism 𝑆𝑚: 𝐴 → 𝐵∗∗ such that 𝑇𝑚(𝑥 + 2𝜖) = ℎ𝑚𝑆𝑚(𝑥 + 2𝜖), for all (𝑥 +
2𝜖) ∈ 𝐴. 

On every C∗-algebra 𝐴 we can also consider a triple product defined by {𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖}: =
1

2
(𝑥(𝑥 + 𝜖)∗(𝑥 +

2𝜖) + (𝑥 + 2𝜖)(𝑥 + 𝜖)∗𝑥). This triple product has been shown as an important tool to characterize orthogonal 

elements in a C∗-algebra. In fact, two elements 𝑎and (𝑎 + 𝜖) in 𝐴 are orthogonal if and only if {𝑎, 𝑎, 𝑎 + 𝜖} = 0 

(compare Lemma 1 in [7]). In particular, every triple homomorphism between two C∗-algebras preserves 

orthogonal elements. Theorem 3.2 in [27] shows that a bounded linear operator 𝑇𝑚 between two C∗-algebras is a 

triple homomorphism if and only if 𝑇𝑚 is orthogonality preserving and 𝑇𝑚
∗∗ (1) is a partial isometry (tripotent). 

There exists a wider class of complex Banach spaces containing all C∗-algebras in which the notion of 

orthogonality makes sense and extends the concept given for C∗-algebras. We refer to the class of JB∗-triples. A 

JB*-triple is a complex Banach space 𝐸, equipped with a continuous triple product {. , . , . }: 𝐸 × 𝐸 × 𝐸 → 𝐸, 

satisfying suitable algebraic and geometric conditions (see definition in §2 ). Every C∗-algebra is a JB∗-triple for 

the triple product given above. 

Two elements 𝑎 and (𝑎 + 𝜖) in a JB∗-triple 𝐸 are said to be orthogonal (written 𝑎 ⊥ (𝑎 + 𝜖) ) if 𝐿(𝑎, 𝑎 + 𝜖) =
0, where 𝐿(𝑎, 𝑎 + 𝜖) is the linear operator on 𝐸 defined by 𝐿(𝑎, 𝑎 + 𝜖)(𝑥): = {𝑎, 𝑎 + 𝜖, 𝑥}. It is known that two 

elements in a C∗-algebra 𝐴 are orthogonal for the C∗-algebra product if and only if they are orthogonal when 𝐴 is 

considered as a JB∗-triple (compare the introduction of §4 ). 

Techniques in JB∗-triple theory were revealed as a powerful tool in the description of all orthogonality 

preserving operators between two C∗-algebras established in[7]. Concretely, for every operator 𝑇𝑚 between two 

C∗-algebras, denoting ℎ𝑚 = 𝑇m
∗∗(1), the following assertions are equivalent (see [30]): 

a) 𝑇𝑚 is orthogonality preserving. 

b) There exists a triple homomorphism 𝑆𝑚: 𝐴 → 𝐵∗∗ satisfying ℎ𝑚
∗ 𝑆𝑚(𝑥 + 2𝜖) = 𝑆𝑚((𝑥 + 2𝜖)∗)∗ℎ𝑚, 

ℎ𝑚𝑆𝑚((𝑥 + 2𝜖)∗)∗ = 𝑆𝑚(𝑥 + 2𝜖)ℎ𝑚
∗ , and 

𝑇𝑚(𝑥 + 2𝜖) = 𝐿(ℎ𝑚, 𝑟(ℎ𝑚))(𝑆𝑚(𝑥 + 2𝜖)) =
1

2
(ℎ𝑚𝑟(ℎ𝑚)∗𝑆𝑚(𝑥 + 2𝜖) + 𝑆𝑚(𝑥 + 2𝜖)𝑟(ℎ𝑚)∗ℎ𝑚)

= ℎ𝑚𝑟(ℎ𝑚)∗𝑆𝑚(𝑥 + 2𝜖) = 𝑆𝑚(𝑥 + 2𝜖)𝑟(ℎ𝑚)∗ℎ𝑚,
 

for all (𝑥 + 2𝜖) ∈ 𝐴, where 𝑟(ℎ𝑚) denotes the range tripotent of ℎ𝑚. 

c) 𝑇𝑚 preserves zero-triple-products (that is, {𝑇𝑚(𝑎), 𝑇𝑚(𝑎 + 𝜖), 𝑇𝑚(𝑎 + 2𝜖)} = 0 whenever {𝑎, 𝑎 + 𝜖, 𝑎 +
2𝜖} = 0. 

Reference [7] also contains the following generalization of the main result in [27]: Let 𝑇𝑚 be an operator from a 

JB∗-algebra 𝐽 to a JB*-triple 𝐸. Then 𝑇𝑚 is a triple homomorphism if and only if 𝑇𝑚 is orthogonality preserving 

and 𝑇m
∗∗(1) is a tripotent. This result is in fact a consequence of a complete description of all orthogonality 

preserving operators from 𝐽 to 𝐸 whose second adjoint maps the unit of 𝐽∗∗ to a von Neumann regular element. 

It seems natural to ask whether the condition of 𝑇m
∗∗(1) being von Neumann regular can be omitted. 

This paper culminates with the characterization of all orthogonality preserving operators from a JB∗-algebra to a 

JB*-triple. Theorem 4.1 and Corollary 4.2 show that for a bounded linear operator 𝑇𝑚 from a JB∗-algebra 𝐽 to a 

JB∗-triple 𝐸 the following are equivalent (see [30]): 

a) 𝑇𝑚 is orthogonality preserving. 

b) There exists a (unital) Jordan *-homomorphism 𝑆𝑚: 𝑀(𝐽) → 𝐸2
∗∗(𝑟(ℎ𝑚)) such that 𝑆𝑚(𝑥) and ℎ𝑚 operator 

commute and 𝑇𝑚(𝑥) = ℎ𝑚 ∙𝑟(ℎ𝑚) 𝑆𝑚(𝑥), for every 𝑥 ∈ 𝐽, where 𝑀(𝐽) is the multiplier algebra of 𝐽, 𝑟(ℎ𝑚) is the 

range tripotent of ℎ𝑚, 𝐸2
∗∗(𝑟(ℎ𝑚)) is the Peirce-2 subspace associated to 𝑟(ℎ𝑚) and ∙𝑟(ℎ𝑚) is the natural product 

making 𝐸2
∗∗(𝑟(ℎ𝑚)) a JB∗-algebra. 
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c) 𝑇𝑚preserves zero-triple-products. 

The proofs presented here are partially based on techniques developed in JB∗ triple theory. The arguments do 

not depend on those results previously obtained by [1], [26], [27] and [7]. We shall actually show that all of 

them are direct consequences of the main result here. 

A useful tool applied in the proof of the main result of this paper is the characterization of all orthogonally 

additive (1 + 2𝜖)-homogeneous polynomials on a general C∗ algebra. This characterization has been recently 

obtained in [20]. Section 3 presents a shorter and simplified proof of this description. 

II. Preliminaries 

Given Banach spaces 𝑋 and 𝑌, 𝐿(𝑋, 𝑌) will denote the space of all bounded linear mappings from 𝑋 to 𝑌. We 

shall write 𝐿(𝑋) for the space 𝐿(𝑋, 𝑋). Throughout the paper the word "operator" (respectively, multilinear or 

sesquilinear operator) will always mean bounded linear mapping (respectively bounded multilinear or 

sesquilinear mapping). The dual space of a Banach space 𝑋 is always denoted by 𝑋∗. 

When 𝐴 is a JB∗-algebra or a C∗-algebra then, 𝐴𝑠𝑎 will stand for the set of all self-adjoint elements in 𝐴. We 

shall make use of standard notation in C∗-algebra and JB∗-triple theory. 

C∗-algebras and JB∗-algebras belong to a more general class of Banach spaces known under the name of JB∗-

triples. JB∗-triples were introduced by [19]. A JB*-triple is a complex Banach space 𝐸 together with a 

continuous triple product {. , . , . }: 𝐸 × 𝐸 × 𝐸 → 𝐸, which is conjugate linear in the middle variable and 

symmetric and bilinear in the outer variables satisfying that, 

(JB1) 𝐿(𝑎, 𝑎 + 𝜖)𝐿(𝑥, 𝑥 + 𝜖) = 𝐿(𝑥, 𝑥 + 𝜖)𝐿(𝑎, 𝑎 + 𝜖) + 𝐿(𝐿(𝑎, 𝑎 + 𝜖)𝑥, 𝑥 + 𝜖) − 𝐿(𝑥, 𝐿(𝑎 + 𝜖, 𝑎)𝑥 + 𝜖), 

where 𝐿(𝑎, 𝑎 + 𝜖) is the operator on 𝐸 given by 𝐿(𝑎, 𝑎 + 𝜖)𝑥 = {𝑎, 𝑎 + 𝜖, 𝑥}; 

(JB2) 𝐿(𝑎, 𝑎) is a hermitian operator with non-negative spectrum; 

(JB3) ∥ 𝐿(𝑎, 𝑎) ∥=∥ 𝑎 ∥2. 

For each 𝑥 in a JB*-triple 𝐸, 𝑄(𝑥) will stand for the conjugate linear operator on 𝐸 defined by the law (𝑥 +
𝜖) ↦ 𝑄(𝑥)(𝑥 + 𝜖) = {𝑥, 𝑥 + 𝜖, 𝑥}. 

Every C∗-algebra is a JB∗-triple via the triple product given by 

2{𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} = 𝑥(𝑥 + 𝜖)∗(𝑥 + 2𝜖) + (𝑥 + 2𝜖)(𝑥 + 𝜖)∗𝑥, 

and every JB∗-algebra is a JB∗-triple under the triple product 

{𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} = (𝑥 ∘ (𝑥 + 𝜖)∗) ∘ (𝑥 + 2𝜖) + ((𝑥 + 2𝜖) ∘ (𝑥 + 𝜖)∗) ∘ 𝑥 − (𝑥 ∘ (𝑥 + 2𝜖)) ∘ (𝑥 + 𝜖)∗. 

A JBW*-triple is a JB∗-triple which is also a dual Banach space (with a unique isometric predual [4]). It is 

known that the triple product of a JBW∗-triple is separately weak*-continuous [4]. The second dual of a JB*-

triple 𝐸 is a JBW∗-triple with a product extending that of 𝐸 (compare [9] ). 

An element 𝑒 in a JB∗-triple 𝐸 is said to be a tripotent if {𝑒, 𝑒, 𝑒} = 𝑒. Each tripotent 𝑒 in 𝐸 gives raise to the so-

called Peirce decomposition of 𝐸 associated to 𝑒, that is, 

𝐸 = 𝐸2(𝑒) ⊕ 𝐸1(𝑒) ⊕ 𝐸0(𝑒), 

where for 𝑖 = 0,1,2, 𝐸𝑖(𝑒) is the 
𝑖

2
 eigenspace of 𝐿(𝑒, 𝑒). The Peirce decomposition satisfies certain rules known 

as Peirce arithmetic: 

{𝐸𝑖(𝑒), 𝐸𝑗(𝑒), 𝐸𝑘(𝑒)} ⊆ 𝐸𝑖−𝑗+𝑘(𝑒), 

if 𝑖 − 𝑗 + 𝑘 ∈ {0,1,2} and is zero otherwise. In addition, 
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{𝐸2(𝑒), 𝐸0(𝑒), 𝐸} = {𝐸0(𝑒), 𝐸2(𝑒), 𝐸} = 0. 

The corresponding Peirce projections are denoted by (𝑃𝑚)𝑖(𝑒): 𝐸 → 𝐸𝑖(𝑒), (𝑖 = 0,1,2). The Peirce space 𝐸2(𝑒) 

is a JB∗-algebra with product 𝑥 ∙𝑒 (𝑥 + 𝜖): = {𝑥, 𝑒, 𝑥 + 𝜖} and involution 𝑥♯𝑘: = {𝑒, 𝑥, 𝑒}. 

For each element 𝑥 in a JB -triple 𝐸, we shall denote 𝑥[1]: = 𝑥, 𝑥[3]: = {𝑥, 𝑥, 𝑥}, and 𝑥[2(1+2𝜖)+1]: =

{𝑥, 𝑥, 𝑥[2(1+2𝜖)−1]}, ((1 + 2𝜖) ∈ ℕ). The symbol 𝐸𝑥 will stand for the JB∗ subtriple generated by the element 𝑥. 

It is known that 𝐸𝑥 is JB∗-triple isomorphic (and hence isometric) to 𝐶0(Ω) for some locally compact Hausdorff 

space Ω contained in (0, ∥ 𝑥 ∥], such that Ω ∪ {0} is compact, where 𝐶0(Ω) denotes the Banach space of all 

complex-valued continuous functions vanishing at 0 . It is also known that if Ψ denotes the triple isomorphism 

from 𝐸𝑥 onto 𝐶0(Ω), then Ψ(𝑥)(𝑡) = 𝑡(𝑡 ∈ Ω) (cf. Corollary 4.8 in [18], Corollary 1.15 in [19] and [12]). 

Therefore, for each 𝑥 ∈ 𝐸, there exists a unique element (𝑥 + 𝜖) ∈ 𝐸𝑥 satisfying that {𝑥 + 𝜖, 𝑥 + 𝜖, 𝑥 + 𝜖} = 𝑥. 

The element (𝑥 + 𝜖), denoted by 𝑥[
1

3
]
, is termed the cubic root of 𝑥. We can inductively define, 𝑥

[
1

3(1+2𝜖)]
=

(𝑥
[

1

3(1+2𝜖)−1
]
)

[
1

3
]

, (1 + 2𝜖) ∈ ℕ. The sequence (𝑥
[

1

3(1+2𝜖)]
)converges in the weak*-topology of 𝐸∗∗ to a tripotent 

denoted by 𝑟(𝑥) and called the range tripotent of 𝑥. The element 𝑟(𝑥) is the smallest tripotent 𝑒 ∈ 𝐸∗∗ satisfying 

that 𝑥 is positive in the JBW∗-algebra 𝐸2
∗∗(𝑒) (compare [11], Lemma 3.3). 

A subspace 𝐼 of a JB∗-triple 𝐸 is said to be an inner ideal of 𝐸 if {𝐼, 𝐸, 𝐼} ⊆ I. Given an element 𝑥 in 𝐸, let 𝐸(𝑥) 

denote the norm closed inner ideal of 𝐸 generated by 𝑥. It is known that 𝐸(𝑥) coincides with the norm-closure 

of the set 

𝑄(𝑥)(𝐸) = {𝑥, 𝐸, 𝑥}. Moreover 𝐸(𝑥) is a JB∗-subalgebra of 𝐸2
∗∗(𝑟(𝑥)) and contains 𝑥 as a positive element 

(compare page 19 and Proposition 2.1 in [6]). 

The symmetrized Jordan triple product in a JB∗-triple 𝐸 is defined by the expression 

< 𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖 >: =
1

3
({𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} + {𝑥 + 𝜖, 𝑥 + 2𝜖, 𝑥} + {𝑥 + 2𝜖, 𝑥, 𝑥 + 𝜖}). 

Given a C∗-algebra (respectively, a JB∗-algebra), 𝐴, the multiplier algebra of 𝐴, 𝑀(𝐴), is the set of all elements 

𝑥 ∈ 𝐴∗∗ such that for each elements 𝑎 ∈ 𝐴, 𝑥𝑎 and 𝑎𝑥 (respectively, 𝑥 ∘ 𝑎 ) also lie in 𝐴. We notice that 𝑀(𝐴) is 

a C∗-algebra (respectively, a JB∗-algebra) and contains the unit element of 𝐴∗∗. 

III. Orthogonally Additive Polynomials on 𝑪∗-Algebras: The Role Played by the Multiplier 

Algebra 

One of the most useful tools used in the study of orthogonality preserving operators between C∗-algebras is the 

description of all orthogonally additive (1 + 2𝜖)-homogeneous polynomials on a C∗-algebra, obtained in [20]. 

We present here a shorter and simplified proof of the main results established in the just quoted paper. 

Let 𝐴 be a C∗-algebra and let 𝑋 be a complex Banach space. A mapping 𝑓: 𝐴 → 𝑋 is said to be orthogonally 

additive (respectively, orthogonally additive on 𝐴𝑠𝑎 ) if for every 𝑎, (𝑎 + 𝜖) ∈ 𝐴 (respectively, 𝑎, (𝑎 + 𝜖) ∈ 𝐴𝑠𝑎 

) with 𝑎 ⊥ (𝑎 + 𝜖) we have 𝑓(𝑎 + 𝑎 + 𝜖) = 𝑓(𝑎) + 𝑓(𝑎 + 𝜖). 

We shall say that 𝑓 is additive on elements having zero-product if for every 𝑎, (𝑎 + 𝜖) ∈ 𝐴 with 𝑎(𝑎 + 𝜖) =
0 = (𝑎 + 𝜖)𝑎 we have 𝑓(2𝑎 + 𝜖) = 𝑓(𝑎) + 𝑓(𝑎 + 𝜖). When 𝑓 behaves additively only on self-adjoint elements 

having zero-product, we shall say that 𝑓 is additive on elements having zero-product on 𝐴𝑠𝑎. 

An 𝑋-valued n-homogeneous polynomial between two Banach spaces 𝑌 and 𝑋 is a continuous 𝑋-valued 

mapping 𝑃𝑚 on 𝑌 for which there exists a continuous (and symmetric) (1 + 2𝜖)-linear operator 𝑇𝑚: 𝑌 × ⋯ ×
𝑌 ⟶ 𝑋 satisfying 𝑃𝑚(𝑥) = 𝑇𝑚(𝑥, … , 𝑥), for every 𝑥 in 𝑋. The following polarization formula 

𝑇𝑚(𝑥1, … , 𝑥(1+2𝜖)) =
1

2(1+2𝜖)(1+2𝜖)!
∑  𝜀𝑖=±1 𝜀1 ⋅ … ⋅ 𝜀(1+2𝜖)𝑃𝑚(∑  1+2𝜖

𝑖=1  𝜀𝑖𝑥𝑖),                       (3.1) 
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holds for all 𝑥1, … , 𝑥1+2𝜖 ∈ 𝑌. 

Given two Banach spaces 𝑋 and 𝑌, the symbol 𝒫1+2𝜖(𝑋, 𝑌) will stand for the Banach space of all (1 + 2𝜖)-

homogeneous polynomials from 𝑋 to 𝑌 and we write 𝒫1+2𝜖(𝑋): = 𝒫1+2𝜖(𝑋, 𝕂). 

The authors in [23] prove that for every compact Hausdorff space 𝐾 and every orthogonally additive (1 + 2𝜖)-

homogeneous polynomial 𝑃𝑚 from 𝐶(𝐾) to a Banach space 𝑋, there exists an operator 𝑇𝑚: 𝐶(𝐾) → 𝑋 satisfying 

that 𝑃𝑚(𝑓) = 𝑇𝑚(𝑓1+2𝜖), for all 𝑓 ∈ 𝐶(𝐾). The proof remains valid when 𝐶(𝐾)-spaces are replaced with 𝐶0(𝐿) 

spaces, where 𝐿 is a locally compact Hausdorff space. 

Let 𝑋1, … , 𝑋1+2𝜖, and 𝑋 be Banach spaces, 𝑇𝑚: 𝑋1 × ⋯ × 𝑋1+2𝜖 → 𝑋 a (continuous) (1 + 2𝜖)-linear operator, 

and 𝜋: {1, … ,1 + 2𝜖} → {1, … ,1 + 2𝜖} a permutation. It is known that there exists a unique (1 + 2𝜖)-linear 

extension 𝐴𝐵(𝑇𝑚)𝜋: 𝑋1
∗∗ × ⋯ × 𝑋1+2𝜖

∗∗ → 𝑋∗∗ such that for every 𝑧𝑖 ∈ 𝑋𝑖
∗∗ and every net (𝑥𝛼𝑖

𝑖 ) ∈ 𝑋𝑖(1 ≤ 𝑖 ≤ 1 +

2𝜖), converging to 𝑧𝑖 in the weak ∗ topology we have 

𝐴𝐵(𝑇𝑚)𝜋(𝑧1, … , 𝑧1+2𝜖) =  weak 
∗

− lim
𝛼𝜋(1)

 ⋯  weak 
∗

− lim
𝛼𝜋(1+2𝜖)

 𝑇𝑚(𝑥𝛼1
1 , … , 𝑥𝛼1+2𝜖

1+2𝜖 ). 

Moreover, 𝐴𝐵(𝑇𝑚)𝜋 is bounded and has the same norm as 𝑇𝑚. The extensions 𝐴𝐵(𝑇𝑚)𝜋 coincide with those 

constructed for polynomials in [2], and are usually termed the Aron-Berner extensions of 𝑇𝑚 (see also 

Proposition 3.1 in [22]). 

If every operator from 𝑋𝑖 to 𝑋𝑗
∗ is weakly compact (𝑖 ≠ 𝑗), the Aron-Berner extensions of 𝑇𝑚 defined above do 

not depend on the chosen permutation 𝜋 (see [3], and Theorem 1 in [5]). In particular, this happens when every 

𝑋𝑖 has Pelczynski's property (𝑉) (if all of the 𝑋𝑖 's satisfy property (𝑉), then their duals, 𝑋𝑖
∗, have no copies of 

𝑐0, therefore every operator from 𝑋𝑖 to 𝑋𝑗
∗ is unconditionally converging, and hence weakly compact by (𝑉), see 

[21]). When all the Aron-Berner extensionsof 𝑇𝑚 coincide, the symbol 𝐴𝐵(𝑇𝑚) will stand for any of them. It is 

also known that, 𝐴𝐵(𝑇𝑚) is symmetric whenever 𝑇𝑚 is. 

When 𝑃𝑚: 𝑋 → 𝑌 is the (1 + 2𝜖)-homogeneous polynomial defined by 𝑇𝑚, 𝐴𝐵(𝑃𝑚): 𝑋∗∗ → 𝑌∗∗ will denote the 

(1 + 2𝜖)-homogeneous polynomial whose associated symmetric (1 + 2𝜖)-linear operator is 𝐴𝐵(𝑇𝑚). 

We should note at this point that every 𝐶∗-algebra satisfies property (𝑉) (see Corollary 6 in [24]). 

The original proof presented in [20] relies on the following technical result: for every symmetric and continuous 

(1 + 2𝜖)-linear form 𝑇𝑚 on a C∗-algebra 𝐴 such that the (1 + 2𝜖) homogeneous polynomial 𝑃𝑚(𝑥) =
𝑇𝑚(𝑥, … , 𝑥), (∀𝑥 ∈ 𝐴) is orthogonally additive on 𝐴𝑠𝑎, the (2𝜖)-homogeneous polynomial 𝑅(𝑥) =
𝐴𝐵(𝑇𝑚)(1, 𝑥, … , 𝑥), (∀𝑥 ∈ 𝐴) is orthogonally additive on 𝐴𝑠𝑎, where 1 denotes the unit of 𝐴∗∗. The proof 

exhibited in this paper avoids the use of the above technical tool. Instead of using the Aron-Berner extension on 

the 𝐴∗∗ × … × 𝐴∗∗ we shall focus our attention on its restriction to the Cartesian product 𝑀(𝐴) × … × 𝑀(𝐴), 

where 𝑀(𝐴) denotes the multiplier algebra of 𝐴 in 𝐴∗∗. 

The following result, whose proof is essentially algebraic, is inspired by Proposition 2.4 in [23]. 

Lemma 3.1 (see [30]). Let 𝑃𝑚: 𝐴 → 𝕂 be an element in 𝒫1+2𝜖(𝐴) and let 𝑇𝑚: 𝐴 × ⋯ × 𝐴 → 𝕂 be its associate 

symmetric n-linear operator. Suppose that 𝑃𝑚 is orthogonally additive on 𝐴𝑠𝑎. Then for every 𝜖 > 0 and every 

𝑎1, … , 𝑎1+𝜖 , 𝑏1, … , 𝑏𝜖 in 𝐴𝑠𝑎 such that, for each 𝑖 and 𝑗, 𝑎𝑖  and 𝑏𝑗 are orthogonal we have 

𝑇𝑚(𝑎1, … , 𝑎1+𝜖, 𝑏1, … , 𝑏𝜖) = 0. 

Proof. Let 𝜖 > 0. We claim that for every 𝑎 and (𝑎 + 𝜖) in 𝐴𝑠𝑎 with 𝑎 ⊥ (𝑎 + 𝜖) we have 

𝑇𝑚(𝑎, 1 + 𝜖, 𝑎, 𝑎 + 𝜖, 𝜖, 𝑎 + 𝜖) = 0.    (3.2) 

Indeed, the equation 
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𝜆1+2𝜖𝑇𝑚(𝑎, … , 𝑎) + 𝜇1+2𝜖𝑇𝑚(𝑎 + 𝜖, … , 𝑎 + 𝜖) = 𝜆1+2𝜖𝑃𝑚(𝑎) + 𝜇1+2𝜖𝑃𝑚(𝑎 + 𝜖) = 𝑃𝑚(𝜆𝑎 + 𝜇(𝑎 + 𝜖))

= ∑  
0≤𝑘1,𝑘2≤1+2𝜖
𝑘1+𝑘2=1+2𝜖

 
(1 + 2𝜖)!

𝑘1! 𝑘2!
𝜆𝑘1𝜇𝑘2𝑇𝑚(𝑎, 𝑘1, 𝑎, 𝑎 + 𝜖, 𝑘2, 𝑎 + 𝜖) (by the symmetry of 𝑇𝑚 ),  

holds for every 𝜆 and 𝜇 in ℝ. Therefore, 

∑  
0<𝑘1,𝑘2<1+2𝜖
𝑘1+𝑘2=1+2𝜖

(1 + 2𝜖)!

𝑘1! 𝑘2!
𝜆𝑘1𝜇𝑘2𝑇𝑚(𝑎, 𝑘1, 𝑎, 𝑎 + 𝜖, 𝑘2, 𝑎 + 𝜖) = 0, 

for all 𝜆 and 𝜇 in ℝ, which in particular gives (3.2). 

Let 𝑎1, … , 𝑎1+𝜖 , 𝑏1, … , 𝑏𝜖 in 𝐴𝑠𝑎 be such that, for each 𝑖 and 𝑗, 𝑎𝑖 and 𝑏𝑗 are orthogonal. Having in mind that 

whenever we fix (1 + 𝜖) variables of 𝑇𝑚 we have another symmetric and continuous multilinear form, the 

polarization formula (3.1) yields 

𝑇𝑚 (𝑎1, … , 𝑎1+𝜖, ∑  

𝜖

𝑗=1

  𝜀𝑗𝑏𝑗 , … , ∑  

𝜖

𝑗=1

  𝜀𝑗𝑏𝑗)

=
1

21+𝜖(1 + 𝜖)!
∑  

𝜎𝑗=±1

 𝜎1 ⋯ 𝜎1+𝜖𝑇𝑚 (∑  

1+𝜖

𝑘=1

 𝜎𝑘𝑎𝑘 , … , ∑  

1+𝜖

𝑘=1

 𝜎𝑘𝑎𝑘 , ∑  

𝜖

𝑗=1

  𝜀𝑗𝑏𝑗 , … , ∑  

𝜖

𝑗=1

 𝜀𝑗𝑏𝑗) = 0,

 

where in the last equality we applied (3.2) and the fact that ∑𝑘=1
1+𝜖  𝜎𝑘𝑎𝑘 and ∑𝑗=1

𝜖  𝜀𝑗𝑏𝑗 are orthogonal. Finally, the 

formula (3.3) gives 

𝑇𝑚(𝑎1, … , 𝑎1+𝜖 , 𝑏1, … , 𝑏𝜖)

=
1

2𝜖(𝜖)!
∑  

𝜀𝑖=±1

  𝜀1 ⋅ … ⋅ 𝜀𝜖𝑇𝑚 (𝑎1, … , 𝑎1+𝜖, ∑  

𝜖

𝑗=1

  𝜀𝑗𝑏𝑗 , … , ∑  

𝜖

𝑗=1

  𝜀𝑗𝑏𝑗) = 0.
            (3.3) 

Proposition 3.1 (see [30]). Let 𝐴 be a 𝐶∗-algebra. Suppose that 𝑇𝑚: 𝐴 × … × 𝐴 → ℂ is a symmetric and 

continuous n-linear form on 𝐴 such that the (1 + 2𝜖)-homogeneous polynomial 𝑃𝑚(𝑥) = 𝑇𝑚(𝑥, … , 𝑥), ∀𝑥 ∈ 𝐴, 

is orthogonally additive on 𝐴𝑠𝑎. Then the polynomial 𝑅: 𝑀(𝐴) → ℂ, 𝑅(𝑥): = 𝐴𝐵(𝑇𝑚)(𝑥, … , 𝑥) is orthogonally 

additive on 𝑀(𝐴)𝑠𝑎. 

Proof. Let 𝑎 and (𝑎 + 𝜖) be two orthogonal elements in 𝑀(𝐴)𝑠𝑎. Since 𝑎
1

3 and (𝑎 + 𝜖)
1

3 are orthogonal, we 

deduce that, for each pair 𝑥, (𝑥 + 𝜖) in 𝐴, 𝑎
1

3𝑥𝑎
1

3 and (𝑎 + 𝜖)
1

3(𝑥 + 𝜖)(𝑎 + 𝜖)
1

3 also are orthogonal elements in 𝐴. 

The hypothesis of 𝑃𝑚 being orthogonally additive assures, via Lemma 3.1, that 

𝑇𝑚 (𝑎
1

3𝑥1𝑎
1

3 + (𝑎 + 𝜖)
1

3𝑦1(𝑎 + 𝜖)
1

3, … , 𝑎
1

3𝑥1+2𝜖𝑎
1

3 + (𝑎 + 𝜖)
1

3𝑦1+2𝜖(𝑎 + 𝜖)
1

3) = 𝑇𝑚 (𝑎
1

3𝑥1𝑎
1

3, … , 𝑎
1

3𝑥1+2𝜖𝑎
1

3)

+𝑇𝑚 ((𝑎 + 𝜖)
1

3𝑦1(𝑎 + 𝜖)
1

3, … , (𝑎 + 𝜖)
1

3𝑦1+2𝜖(𝑎 + 𝜖)
1

3) , for all 𝑥1, … 𝑥1+2𝜖 , 𝑦1, … , 𝑦1+2𝜖 ∈ 𝐴.
      

(3.4) 

Now, Goldstine's theorem (cf. Theorem V.4.2.5 in [10]) guarantees that the closed unit ball of 𝐴𝑠𝑎 is weak*-

dense in the closed unit ball of 𝐴𝑠𝑎
∗∗ . Therefore there exist two bounded nets (𝑥𝜆) and (𝑦𝜇) in 𝐴𝑠𝑎, converging in 

the weak*-topology of 𝐴∗∗ to 𝑎
1

3 and (𝑎 + 𝜖)
1

3, respectively. In our setting the Aron-Berner extension of 𝑇𝑚 is 

separately weak*-continuous. Thus, by replacing, in equation (3.4), 𝑥1 and 𝑦1 with (𝑥𝜆) and (𝑦𝜇), respectively, 

and taking weak*-limits, we have: 



Orthogonality Preservers Revisited by Closedness Adjacent Elements 

DOI: 10.35629/0743-10110115                                 www.questjournals.org                                            7 | Page 

𝐴𝐵(𝑇𝑚) (2𝑎 + 𝜖, 𝑎
1

3𝑥2𝑎
1

3 + (𝑎 + 𝜖)
1

3𝑦2(𝑎 + 𝜖)
1

3, … , 𝑎
1

3𝑥1+2𝜖𝑎
1

3 + (𝑎 + 𝜖)
1

3𝑦1+2𝜖(𝑎 + 𝜖)
1

3)

= 𝐴𝐵(𝑇𝑚) (𝑎, 𝑎
1

3𝑥2𝑎
1

3, … , 𝑎
1

3𝑥1+2𝜖𝑎
1

3) + 𝐴𝐵(𝑇𝑚) (𝑎 + 𝜖, (𝑎 + 𝜖)
1

3𝑦2(𝑎 + 𝜖)
1

3, … , (𝑎 + 𝜖)
1

3𝑦1+2𝜖(𝑎 + 𝜖)
1

3) ,
 

for all 𝑥2, … 𝑥1+2𝜖 , 𝑦1, … , 𝑦1+2𝜖 ∈ 𝐴. When the above argument is repeated for 𝑥2, 𝑦2, … , 𝑥1+2𝜖 , 𝑦1+2𝜖 we derive 

𝑅(2𝑎 + 𝜖) = 𝐴𝐵(𝑇𝑚)(2𝑎 + 𝜖, … ,2𝑎 + 𝜖)

= 𝐴𝐵(𝑇𝑚)(𝑎, … , 𝑎) + 𝐴𝐵(𝑇𝑚)(𝑎 + 𝜖, … , 𝑎 + 𝜖) = 𝑅(𝑎) + 𝑅(𝑎 + 𝜖),
 

which finishes the proof. 

We observe that 𝑀(𝐴) is always unital, so Proposition 3.1 allows us to apply the final argument in the proof of 

Theorem 2.8 in [20] but avoiding some technical and laborious results needed in its original proof(see [30]). 

Theorem 3.1. [20] Let 𝐴 be a 𝐶∗-algebra, (1 + 2𝜖) ∈ ℕ and 𝑃𝑚 an n-homogeneous scalar polynomial on 𝐴. The 

following are equivalent. 

(a) There exists 𝜑𝑚 ∈ 𝐴∗ such that, for every 𝑥 ∈ 𝐴, 

𝑃𝑚(𝑥) = 𝜑𝑚(𝑥1+2𝜖). 

(b) 𝑃𝑚 is additive on elements having zero-products. 

(c) 𝑃𝑚 is orthogonally additive on 𝐴𝑠𝑎. 

Proof. The implications (𝑎) ⇒ (𝑏) ⇒ (𝑐) are clear. To see that (𝑐) ⇒ (𝑎) we proceed by induction on (1 +
2𝜖). When 𝜖 = 0 the result is trivial. We suppose that the statement is true for (2𝜖). 

Let 𝑇𝑚: 𝐴 × … × 𝐴 → ℂ be the unique symmetric and continuous (1 + 2𝜖)-linear form on 𝐴 associated to 𝑃𝑚. 

Proposition 3.1 guarantees that the polynomial 𝐴𝐵(𝑃𝑚)associated to 𝐴𝐵(𝑇𝑚) is orthogonally additive on 

𝑀(𝐴)𝑠𝑎. 

Let 𝜃 be defined by 𝜃(𝑥2, … , 𝑥1+2𝜖): = 𝐴𝐵(𝑇𝑚)(1, 𝑥2, … , 𝑥1+2𝜖), (𝑥2, … , 𝑥1+2𝜖 ∈ 𝑀(𝐴)). We claim that the 

polynomial 𝑅 associated to 𝜃 is orthogonally additive on 𝑀(𝐴)𝑠𝑎. Indeed, let 𝑎 and (𝑎 + 𝜖) be two orthogonal 

elements in 𝑀(𝐴)𝑠𝑎 and let 𝐶 denote C∗ subalgebra of 𝑀(𝐴) generated by 𝑎, (𝑎 + 𝜖) and 1 . Clearly 𝐶 is a unital 

abelian C∗-algebra and 𝑃𝑚|𝐶  is orthogonally additive. Thus, Theorem 2.1 in [23] assures the existence of a 

functional 𝜓𝐶 ∈ 𝐶∗ such that 

𝐴𝐵(𝑇𝑚)|𝐶(𝑦1, … , 𝑦1+2𝜖) = 𝜓𝑎+2𝜖(𝑦1 … 𝑦1+2𝜖) 

for all 𝑦1 , … , 𝑦1+2𝜖 ∈ 𝐶𝑥. In particular 

𝑅(2𝑎 + 𝜖) = 𝜃(2𝑎 + 𝜖, … ,2𝑎 + 𝜖) = 𝐴𝐵(𝑇𝑚)|𝐶(1,2𝑎 + 𝜖, … ,2𝑎 + 𝜖)

= 𝜓𝐶((2𝑎 + 𝜖)2𝜖) = 𝜓𝐶(𝑎2𝜖 + (𝑎 + 𝜖)2𝜖) = 𝜓𝐶(𝑎2𝜖) + 𝜓𝐶((𝑎 + 𝜖)2𝜖)

= 𝐴𝐵(𝑇𝑚)|𝐶(1, 𝑎, … , 𝑎 + 𝜖) + 𝐴𝐵(𝑇𝑚)|𝐶(1, 𝑎 + 𝜖, … , 𝑎 + 𝜖) = 𝑅(𝑎) + 𝑅(𝑎 + 𝜖),

 

which proves the claim. 

By the induction hypothesis, there exists 𝜑𝑚 ∈ 𝑀(𝐴)∗ such that 

𝑅(𝑥) = 𝜑𝑚(𝑥2𝜖) 

for all 𝑥 ∈ 𝑀(𝐴). 

On the other hand, for every 𝑥 ∈ 𝑀(𝐴)𝑠𝑎, let 𝐶𝑥 be the abelian C∗-subalgebra of 𝑀(𝐴) generated by 1 and 𝑥, 

and let (𝑇𝑚)∣𝐶𝑥
: 𝐶𝑥 × … × 𝐶𝑥 → ℂ be the restriction of 𝑇𝑚. Clearly the polynomial associated to (𝑇𝑚)∣𝐶𝑥

 also is 
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orthogonally additive. Therefore, Theorem 2.1 of [23] guarantees the existence of a measure 𝜓𝑥 ∈ (𝐶𝑥)∗ with 

∥∥𝜓𝑥∥∥ = ∥∥(𝑇𝑚)∣𝐶𝑥∥∥ such that 

(𝑇𝑚)∣𝐶𝑥
(𝑦1, … , 𝑦1+2𝜖) = 𝜓𝑥(𝑦1 … 𝑦1+2𝜖) 

for all 𝑦1 , … , 𝑦1+2𝜖 ∈ 𝐶𝑥. 

Now, we claim that, for every 𝑥 ∈ 𝑀(𝐴)𝑠𝑎, 𝜓𝑥 = 𝜑𝑚∣𝐶𝑥
. Indeed, let us fix 𝑥 ∈ 𝑀(𝐴)𝑠𝑎 and pick a positive 

element (𝑥 + 2𝜖) ∈ 𝐶𝑥. There is no loss of generality in assuming that ∥ 𝑥 + 2𝜖 ∥= 1. The positivity of (𝑥 +
2𝜖) implies the existence of a positive normone element (𝑥 + 𝜖) ∈ 𝐶𝑥 satisfying (𝑥 + 𝜖)2𝜖 = 𝑥 + 2𝜖. 

We therefore have 

𝜓𝑥(𝑥 + 2𝜖) = 𝜓𝑥((𝑥 + 𝜖)2𝜖) = 𝐴𝐵((𝑇𝑚)∣𝐶𝑥
)(1, 𝑥 + 𝜖, … , 𝑥 + 𝜖) = 𝐴𝐵(𝑇𝑚)(1, 𝑥 + 𝜖, … , 𝑥 + 𝜖)

= 𝜃(𝑥 + 𝜖, … , 𝑥 + 𝜖) = 𝑅(𝑥 + 𝜖) = 𝜑𝑚((𝑥 + 𝜖)2𝜖) = 𝜑𝑚(𝑥 + 2𝜖).
 

Since (𝑥 + 2𝜖) is an arbitrary positive norm-one element in 𝐶𝑥 we deduce, by linearity, 

that 𝜓𝑥 = 𝜑𝑚∣𝐶𝑥
. 

Thus, for each 𝑥 ∈ 𝑀(𝐴)𝑠𝑎, we have 

𝐴𝐵(𝑃𝑚)(𝑥) = 𝐴𝐵(𝑇𝑚)(𝑥, … , 𝑥) = 𝜓𝑥(𝑥1+2𝜖) = 𝜑𝑚(𝑥1+2𝜖). 

The polarization formula given in (3.1) applies to prove that 𝐴𝐵(𝑃𝑚)(𝑥) = 𝜑𝑚(𝑥1+2𝜖) for all 𝑥 ∈ 𝑀(𝐴). 

The following vector-valued version of the above theorem was established in [20], Corollary 3.1. 

Theorem 3.2. [20] Let A be a 𝐶∗-algebra, 𝑋 a complex Banach space, (1 + 2𝜖) ∈ ℕ and 𝑃𝑚: 𝐴 → 𝑋 an n-

homogeneous polynomial. The following are equivalent. 

(a) There exists an operator 𝑇𝑚: 𝐴 → 𝑋 such that, for every 𝑥 ∈ 𝐴, 

𝑃𝑚(𝑥) = 𝑇𝑚(𝑥1+2𝜖). 

(b) 𝑃𝑚 is additive on elements having zero-products. 

(c) 𝑃𝑚 is orthogonally additive on 𝐴𝑠𝑎. 

IV. Orthogonality Preservers Between 𝐂∗-Algebras and 𝐉𝐁∗-Algebras 

Let 𝐽 be an arbitrary JB∗-algebra. One of the main results stated in [7] describes the orthogonality preserving 

operators from 𝐽 to a JB∗-triple whose second transpose maps the unit in 𝐴∗∗ to a tripotent in 𝐸∗∗. This section 

contains most of the novelties in this paper. We shall present a complete description of all orthogonality 

preserving operators from a JB∗-algebra to a JB∗-triple, without assuming any additional condition. 

We recall that two elements 𝑎, (𝑎 + 𝜖) in a JB∗-triple are said to be orthogonal (written ⊥ 𝑎 + 𝜖 ) if 𝐿(𝑎, 𝑎 +
𝜖) = 0. Lemma 1 in [7] shows that 𝑎 ⊥ 𝑎 + 𝜖 if and only if one of the following statements holds: 

{𝑎, 𝑎, 𝑎 + 𝜖} = 0; 𝑎 ⊥ 𝑟(𝑎 + 𝜖); 𝑟(𝑎) ⊥ 𝑟(𝑎 + 𝜖);

𝐸2
∗∗(𝑟(𝑎)) ⊥ 𝐸2

∗∗(𝑟(𝑎 + 𝜖)); 𝑟(𝑎) ∈ 𝐸0
∗∗(𝑟(𝑎 + 𝜖)); 𝑎 ∈ 𝐸0

∗∗(𝑟(𝑎 + 𝜖));

𝑎 + 𝜖 ∈ 𝐸0
∗∗(𝑟(𝑎)); 𝐸𝑎 ⊥ 𝐸𝑎+𝜖 {𝑎 + 𝜖, 𝑎 + 𝜖, 𝑎} = 0.

           (4.1) 

The Jordan identity (JB1) and the above reformulations assure that 

𝑎 ⊥ {𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} whenever 𝑎 is orthogonal to 𝑥, 𝑥 + 𝜖 and (𝑥 + 2𝜖).                 (4.2) 
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If 𝐴 is a C∗-algebra, it can be checked from the above reformulations, that two elements 𝑎, 𝑎 + 𝜖 in 𝐴 are 

orthogonal for the C∗-algebra product (i.e. (𝑎 + 𝜖)∗ = 0 = (𝑎 + 𝜖)∗𝑎 ) if and only if they are orthogonal when 

𝐴 is considered as a JB∗-triple. 

The equivalent reformulations of orthogonality given in (4.1) admit another 

equivalent statement in the setting of JB∗-algebra when one of the elements is positive. 

Lemma 4.1 (see [30]). Let ℎ𝑚 and 𝑥 be elements in a 𝐽𝐵∗-algebra 𝐽 with ℎ𝑚 positive. Then 𝑥 ⊥ ℎ𝑚 if and only 

if ℎ𝑚 ∘ 𝑥 = 0. 

Proof. Having in mind that ℎ𝑚 ∘ 𝑥 = {1, ℎ𝑚 , 𝑥}, where 1 denotes the unit element in 𝐽∗∗, it is clear that ℎ𝑚 ∘ 𝑥 =
0 whenever ℎ𝑚 ⊥ 𝑥. We shall show that 𝑥 ⊥ ℎ𝑚 whenever ℎ𝑚 ∘ 𝑥 = 0. Given a positive element ℎ𝑚 in 𝐽, there 

exists another positive element (𝑎 + 𝜖) satisfying (𝑎 + 𝜖)2 = ℎ𝑚. Since the triple product {𝑎 + 𝜖, 𝑎 + 𝜖, 𝑥} 

coincides with (𝑎 + 𝜖)2 ∘ 𝑥 = ℎ𝑚 ∘ 𝑥 = 0, the equivalent reformulations of orthogonality given in (4.1) 

guarantee that (𝑎 + 𝜖) ⊥ 𝑥, or equivalently, 𝑥 ∈ 𝐽0
∗∗(𝑟(𝑎 + 𝜖)). It is not hard to check that for a positive (𝑎 +

𝜖), the range tripotents 𝑟(𝑎 + 𝜖) and 𝑟((𝑎 + 𝜖)2) = 𝑟(ℎ𝑚) both coincide with the range projection of (𝑎 + 𝜖) in 

𝐽∗∗ and hence 𝑟(𝑎 + 𝜖) = 𝑟((𝑎 + 𝜖)2) = 𝑟(ℎ𝑚). Again, the equivalences stated in (4.1) assure that 𝑥 ⊥ ℎ𝑚. 

Let 𝐸 and 𝐹 be JB∗-triples. An operator 𝑇𝑚: 𝐸 → 𝐹 is said to be orthogonality preserving if 𝑇𝑚(𝑎) ⊥ 𝑇𝑚(𝑎 + 𝜖) 

whenever 𝑎 ⊥ (𝑎 + 𝜖) in 𝐸. This concept extends the usual definition of orthogonality preserving linear 

operator between C∗-algebras. 

Lemma 4.2 (see [30]). Let 𝑇𝑚: 𝐽 → 𝐸 be an orthogonality preserving operator from a 𝐽𝐵∗ algebra to a 𝐽𝐵∗-triple, 

then 𝑇𝑚
∗∗|𝑀(𝐽): 𝑀(𝐽) → 𝐸∗∗ is orthogonality preserving. 

Proof. Let 𝑎, (𝑎 + 𝜖) ∈ 𝑀(𝐽). By (4.1), 𝑎[
1

3
]
 and (𝑎 + 𝜖)[

1

3
]
 are orthogonal elements in 𝑀(𝐽). Thus, we deduce 

that for each pair 𝑥, (𝑥 + 𝜖) in 𝐽, 𝑄 (𝑎[
1

3
]) 𝑥 and 𝑄 ((𝑎 + 𝜖)[

1

3
]) (𝑥 + 𝜖) are two orthogonal elements in 𝐽. Now, 

Goldstine's theorem guarantees that the closed unit ball of 𝐽 is weak*-dense in the closed unit ball of 𝐽∗∗. 

Therefore there exist two bounded nets (𝑥𝜆) and (𝑦𝜇) in 𝐽, converging in the weak*-topology of 𝐽∗∗ to 𝑎[
1

3
]
 and 

(𝑎 + 𝜖)[
1

3
]
, respectively. 

Since the triple product of any JBW∗-triple is separately weak ∗ continuous ([4]) and 𝑇𝑚
∗∗ is weak ∗-

continuous, we deduce that, for each 𝑥, (𝑥 + 𝜖) in 𝐽, the net 0 =

{𝑇𝑚 (𝑄 (𝑎[
1

3
]) 𝑥𝜆) , 𝑇𝑚 (𝑄 (𝑎[

1

3
]) 𝑥) , 𝑇𝑚 (𝑄 ((𝑎 + 𝜖)[

1

3
]) (𝑥 + 𝜖))} converges to 

{𝑇m
∗∗(𝑎), 𝑇𝑚 (𝑄 (𝑎[

1

3
]) 𝑥) , 𝑇𝑚 (𝑄 ((𝑎 + 𝜖)[

1

3
]) (𝑥 + 𝜖))} in the weak*-topology of 𝐸∗∗. Therefore 

{𝑇m
∗∗(𝑎), 𝑇𝑚 (𝑄 (𝑎[

1

3
]) 𝑥) , 𝑇𝑚 (𝑄 ((𝑎 + 𝜖)[

1

3
]) (𝑥 + 𝜖))} = 0, 

for all 𝑥, (𝑥 + 𝜖) ∈ 𝐽. Similarly, {𝑇m
∗∗(𝑎), 𝑇m

∗∗(𝑎), 𝑇𝑚 (𝑄 ((𝑎 + 𝜖)[
1

3
]) (𝑥 + 𝜖))} = 0, for all (𝑥 + 𝜖) ∈ 𝐽. 

Finally, 0 = {𝑇m
∗∗(𝑎), 𝑇m

∗∗(𝑎), 𝑇𝑚 (𝑄 ((𝑎 + 𝜖)[
1

3
]) 𝑦𝜇)} → {𝑇m

∗∗(𝑎), 𝑇m
∗∗(𝑎), 𝑇m

∗∗(𝑎 + 𝜖)}, in the weak*-topology 

of 𝐸∗∗, and hence 𝑇m
∗∗(𝑎) ⊥ 𝑇m

∗∗(𝑎 + 𝜖). 

Let 𝐴 be a C∗-algebra and let 𝑋 be a complex Banach space. A continuous sesquilinear mapping Φ: 𝐴 × 𝐴 → 𝑋 

is said to be orthogonal if Φ(𝑎, 𝑎 + 𝜖) = 0 for every 𝑎, (𝑎 + 𝜖) ∈ 𝐴 such that 𝑎 ⊥ (𝑎 + 𝜖). By a celebrated 

result due to [13] (see [14] for an alternative proof), for every continuous sesquilinear orthogonal form 𝑉: 𝐴 ×
𝐴 → ℂ, there exist two functionals 𝜔1, 𝜔2 ∈ 𝐴∗ satisfying that 

𝑉(𝑥, 𝑥 + 𝜖) = 𝜔1(𝑥(𝑥 + 𝜖)∗) + 𝜔2((𝑥 + 𝜖)∗𝑥), 

for all 𝑥, (𝑥 + 𝜖) ∈ 𝐴. Denoting 𝜙 = 𝜔1 + 𝜔2 and 𝜓 = 𝜔1 − 𝜔2, we have 
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𝑉(𝑥, 𝑥 + 𝜖) = 𝜙(𝑥 ∘ (𝑥 + 𝜖)∗) + 𝜓([𝑥, (𝑥 + 𝜖)∗]), 

for all 𝑥, (𝑥 + 𝜖) ∈ 𝐴, where 𝑎 ∘ (𝑎 + 𝜖): =
1

2
(𝑎(𝑎 + 𝜖) + (𝑎 + 𝜖)𝑎), [𝑎, 𝑎 + 𝜖]: =

1

2
(𝑎(𝑎 + 𝜖) − (𝑎 + 𝜖)𝑎). In 

particular, 𝑉(𝑥, 𝑥 + 𝜖) = 𝑉(𝑥 + 𝜖, 𝑥) whenever [𝑥, (𝑥 + 𝜖)∗] = 0 and 𝑥 ∘ (𝑥 + 𝜖)∗ = 𝑥∗ ∘ (𝑥 + 𝜖). The 

following lemma follows straightforwardly from the above remarks and the Hahn-Banach theorem. 

Lemma 4.3. Let 𝐴 be a 𝐶∗-algebra, 𝑋 a Banach space and Φ: 𝐴 × 𝐴 → 𝑋 a continuous sesquilinear orthogonal 

operator. Then Φ(𝑥, 𝑥 + 𝜖) = Φ(𝑥 + 𝜖, 𝑥) whenever [𝑥, (𝑥 + 𝜖)∗] = 0 and 𝑥 ∘ (𝑥 + 𝜖)∗ = 𝑥∗ ∘ (𝑥 + 𝜖). 

Let us recall that two elements 𝑎 and (𝑎 + 𝜖) in a JB∗-algebra 𝐽 are said to operator commute in 𝐽 if the 

multiplication operators 𝑀𝑎 and 𝑀𝑎+𝜖 commute, where 𝑀𝑎 is defined by 𝑀𝑎(𝑥): = 𝑎 ∘ 𝑥. That is, 𝑎 and (𝑎 + 𝜖) 

operators commute if and only if (𝑎 ∘ 𝑥) ∘ (𝑎 + 𝜖) = 𝑎 ∘ (𝑥 ∘ (𝑎 + 𝜖)) for all 𝑥 in 𝐽. Self-adjoint elements 𝑎 and 

(𝑎 + 𝜖) in 𝐽 generate a JB∗-subalgebra that can be realized as a JC∗-subalgebra of some 𝐵(𝐻), [29], and, in this 

identification, 𝑎 and (𝑎 + 𝜖) commute in the usual sense whenever the operators commute in 𝐽 (compare 

Proposition 1 in [25]). Similarly, two elements 𝑎 and (𝑎 + 𝜖) of 𝐽𝑠𝑎 operator commute if and only if 𝑎2 ∘ (𝑎 +
𝜖) = {𝑎, 𝑎 + 𝜖, 𝑎} (i.e., 𝑎2 ∘ (𝑎 + 𝜖) = 2(𝑎 ∘ (𝑎 + 𝜖)) ∘ 𝑎 − 𝑎2 ∘ (𝑎 + 𝜖)). If (𝑎 + 𝜖) ∈ 𝐽 we use {𝑎 + 𝜖}′ to 

denote the set of elements in 𝐽 that operator commute with (𝑎 + 𝜖). (This corresponds to the usual notation in 

von Neumann algebras.) 

Proposition 4.1 (see [30]). Let 𝐴 be a 𝐶∗-algebra, E a JB*-triple and 𝑇𝑚: 𝐴 → 𝐸 an orthogonality preserving 

operator. Then for ℎ𝑚 = 𝑇m
∗∗(1), the following assertions hold: 

a) {𝑇𝑚(𝑥), ℎ𝑚, ℎ𝑚} = {ℎ𝑚, 𝑇𝑚(𝑥∗), ℎ𝑚}, for all 𝑥 ∈ 𝐴. 

b) 𝑇𝑚(𝐴𝑠𝑎) ⊂ 𝐸2
∗∗(𝑟(ℎ𝑚))𝑠𝑎. 

c) For each 𝑎 ∈ 𝐴, 𝑇𝑚(𝑎) and ℎ𝑚 operator commute in the JB*-algebra 𝐸2
∗∗(𝑟(ℎ𝑚)). 

d) When ℎ𝑚 is a tripotent, then 𝑇𝑚: 𝐴 → 𝐸2
∗∗(𝑟(ℎ𝑚)) is a Jordan *-homomorphism, in particular 𝑇𝑚 is a triple 

homomorphism. 

Proof. a) By Lemma 4.2, 𝑇𝑚
∗∗|𝑀(𝐴): 𝑀(𝐴) → 𝐸∗∗ is orthogonality preserving. Therefore, the assignment (𝑥, 𝑥 +

𝜖) ↦ {𝑇m
∗∗(𝑥), 𝑇m

∗∗(𝑥 + 𝜖), ℎ𝑚}, defines a continuous sesquilinear orthogonal operator on 𝑀(𝐴) × 𝑀(𝐴). 

Lemma 4.3, applied to 𝑥 ∈ 𝐴𝑠𝑎 and (𝑥 + 𝜖) = 1 gives {𝑇𝑚(𝑥), ℎ𝑚, ℎ𝑚} = {ℎ𝑚 , 𝑇𝑚(𝑥), ℎ𝑚}. The desired 

statement follows by linearity. 

b) Let 𝑎 ∈ 𝐴𝑠𝑎. By the Peirce arithmetic and  𝑎) we have 

{(𝑃𝑚)2(𝑟(ℎ𝑚))𝑇𝑚(𝑎), ℎ𝑚, ℎ𝑚} + {(𝑃𝑚)1(𝑟(ℎ𝑚))𝑇𝑚(𝑎), ℎ𝑚, ℎ𝑚} = {𝑇𝑚(𝑎), ℎ𝑚 , ℎ𝑚}

= {ℎ𝑚, 𝑇𝑚(𝑎), ℎ𝑚} = {ℎ𝑚 , (𝑃𝑚)2(𝑟(ℎ𝑚))𝑇𝑚(𝑎), ℎ𝑚},
 

which implies that {(𝑃𝑚)1(𝑟(ℎ𝑚))𝑇𝑚(𝑎), ℎ𝑚, ℎ𝑚} = 0, and hence (𝑃𝑚)1(𝑟(ℎ𝑚))𝑇𝑚(𝑎) ⊥ ℎ𝑚. The equivalences 

in (4.1) imply that (𝑃𝑚)1(𝑟(ℎ𝑚))𝑇𝑚(𝑎) ∈ 𝐸0
∗∗(𝑟(ℎ𝑚)), which gives 

𝑇𝑚(𝐴𝑠𝑎) ⊆ 𝐸2
∗∗(𝑟(ℎ𝑚)) ⊕ 𝐸0

∗∗(𝑟(ℎ𝑚)).                                    (4.3) 

Consider now the mapping (𝑃𝑚)3: 𝑀(𝐴) → 𝐸∗∗, 

(𝑃𝑚)3(𝑥) = {𝑇m
∗∗(𝑥), 𝑇𝑚

∗∗(𝑥∗), 𝑇𝑚
∗∗(𝑥)}. 

It is clear that (𝑃𝑚)3 is a 3 -homogeneous polynomial on 𝑀(𝐴). Since, by Lemma 4.2, 𝑇𝑚
∗∗|𝑀(𝐴) is orthogonality 

preserving, (𝑃𝑚)3 is orthogonally additive on 𝑀(𝐴)𝑠𝑎. By Corollary 3.1 in [20] or Theorem 3.2, there exists an 

operator (𝐹𝑚)3: 𝑀(𝐴) → 𝐸∗∗ satisfying that 

(𝑃𝑚)3(𝑥) = (𝐹𝑚)3(𝑥3), 

for all 𝑥 in 𝑀(𝐴). If (𝑆𝑚)3: 𝑀(𝐴) × 𝑀(𝐴) × 𝑀(𝐴) → 𝐸∗∗ is the (unique) symmetric 3-linear operator associated 

to (𝑃𝑚)3, we have 
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(𝐹𝑚)3(< 𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖 >) = (𝑆𝑚)3(𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖) =< 𝑇𝑚
∗∗(𝑥), 𝑇𝑚

∗∗(𝑥 + 𝜖), 𝑇𝑚
∗∗(𝑥 + 2𝜖) >,           (4.4) 

for all 𝑥, (𝑥 + 𝜖), (𝑥 + 2𝜖) ∈ 𝑀(𝐴)𝑠𝑎. Now, taking 𝑎 ∈ 𝑀(𝐴)𝑠𝑎 and (𝑥 + 𝜖) = (𝑥 + 2𝜖) = 1 in (4.4), we 

deduce that 

(𝐹𝑚)3(𝑎) =< 𝑇𝑚
∗∗(𝑎), ℎ𝑚, ℎ𝑚 >=

2

3
{𝑇𝑚

∗∗(𝑎), ℎ𝑚, ℎ𝑚} +
1

3
{ℎ𝑚, 𝑇𝑚

∗∗(𝑎), ℎ𝑚}.           (4.5) 

Thus, for each 𝑎 ∈ 𝑀(𝐴)𝑠𝑎 we have 

{𝑇𝑚
∗∗(𝑎), 𝑇𝑚

∗∗(𝑎), 𝑇𝑚
∗∗(𝑎)} = (𝐹𝑚)3(𝑎3) =< ℎ𝑚 , ℎ𝑚, 𝑇𝑚

∗∗(𝑎3) >.             (4.6) 

Now, (4.3), (4.6) and the Peirce arithmetic show that 

𝑇𝑚(𝐴𝑠𝑎) ⊆ 𝐸2
∗∗(𝑟(ℎ𝑚)) ∩ 𝐸. 

We shall finally prove that 𝑇𝑚 is symmetric for the involution in 𝐸2
∗∗(𝑟(ℎ𝑚)). In order to simplify notation, we 

shall write 𝑟(ℎ𝑚) = 𝑟. Let us recall that 𝐸2
∗∗(𝑟) is a JB∗-algebra with Jordan product and involution given by 

𝑥 ∙𝑟 (𝑥 + 𝜖) = {𝑥, 𝑟, 𝑥 + 𝜖} and 𝑥♯ ̈ = {𝑟, 𝑥, 𝑟} = 𝑄(𝑟)(𝑥), respectively. The triple product in 𝐸2
∗∗(𝑟) is also 

determined by the expression 

{𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} = (𝑥 ∙𝑟 (𝑥 + 𝜖)♯) ∙𝑟 (𝑥 + 2𝜖) + ((𝑥 + 2𝜖) ∙𝑟 (𝑥 + 𝜖)♯) ∙𝑟 𝑥 − (𝑥 ∙𝑟 (𝑥 + 2𝜖)) ∙𝑟 (𝑥 + 𝜖)�̈�𝑟 . 

Lemma 4.3 applied to the form Φ(𝑥, 𝑥 + 𝜖) = {𝑇m
∗∗(𝑥), 𝑇m

∗∗(𝑥 + 𝜖), 𝑥 + 2𝜖} guarantees that 

{𝑇m
∗∗(𝑥), ℎ𝑚, 𝑥 + 2𝜖} = {ℎ𝑚, 𝑇m

∗∗(𝑥), 𝑥 + 2𝜖} 

for every 𝑥 ∈ 𝑀(𝐴)𝑠𝑎 and (𝑥 + 2𝜖) ∈ 𝐸∗∗. Let us fix 𝑥 = 𝑎 ∈ 𝐴𝑠𝑎. By taking (𝑥 + 2𝜖) = 𝑟, the above identity 

gives ℎ𝑚 ∙𝑟 𝑇𝑚(𝑎)♯�̈�𝑟 = ℎ𝑚 ∙𝑟 𝑇𝑚(𝑎), that is, ℎ𝑚 ∙𝑟
𝑇𝑚(𝑎)−𝑇𝑚(𝑎)♯𝑟

2𝑖
= 0. Lemma 4.1 now applies to give (𝑇𝑚(𝑎) −

𝑇𝑚(𝑎)𝐸𝑟) ⊥ ℎ𝑚, and hence 𝑇𝑚(𝑎) − 𝑇𝑚(𝑎)∘𝑟 lies in 𝐸2
∗∗(𝑟) ∩ 𝐸0

∗∗(𝑟) = {0} (compare (4.1)). This implies 

𝑇𝑚(𝐴𝑠𝑎) ⊂ 𝐸2
∗∗(𝑟)𝑠𝑎. 

c) It follows by 𝑎 + 𝜖) that 𝑇𝑚(𝐴𝑠𝑎) ⊂ 𝐸2
∗∗(𝑟)𝑠𝑎 and hence the triple product in 𝑇𝑚(𝐴𝑠𝑎) is determined by the 

Jordan product of 𝐸2
∗∗(𝑟)𝑠𝑎. By 𝑎), for each 𝑎 ∈ 𝐴𝑠𝑎, we have {ℎ𝑚, ℎ𝑚, 𝑇𝑚(𝑎)} = {ℎ𝑚, 𝑇𝑚(𝑎), ℎ𝑚}. Thus, 

ℎ𝑚
2 ∙𝑟 𝑇𝑚(𝑎) = 2(ℎ𝑚 ∙𝑟 𝑇𝑚(𝑎)) ∙𝑟 ℎ𝑚 − ℎ𝑚

2 ∙𝑟 𝑇𝑚(𝑎), which gives the desired statement. 

d) Let us assume that ℎ𝑚 is a tripotent. In this case ℎ𝑚 = 𝑟(ℎ𝑚) = 𝑟. Statement 𝑎 + 𝜖) assures that 𝑇𝑚(𝐴𝑠𝑎) ⊂
𝐸2

∗∗(𝑟)𝑠𝑎. Thus, equation (4.5) guarantees that (𝐹𝑚)3(𝑎) = {𝑇m
∗∗(𝑎), ℎ𝑚 , ℎ𝑚} = {ℎ𝑚, 𝑇m

∗∗(𝑎), ℎ𝑚} = 𝑇m
∗∗(𝑎), for 

all 𝑎 ∈ 𝑀(𝐴)𝑠𝑎. Now, the formula established in (4.4) implies that 

< 𝑇m
∗∗(𝑎), 𝑇m

∗∗(𝑎 + 𝜖), 𝑇m
∗∗(𝑎 + 2𝜖) >= (𝐹𝑚)3(< 𝑎, 𝑎 + 𝜖, 𝑎 + 2𝜖 >) = 𝑇m

∗∗(< 𝑎, 𝑎 + 𝜖, 𝑎 + 2𝜖 >), 

for all 𝑎, (𝑎 + 𝜖), (𝑎 + 2𝜖) ∈ 𝑀(𝐴)𝑠𝑎. Taking 𝜖 =
1−𝑎

2
 in the above equation, we have 

𝑇m
∗∗(𝑎) ∙𝑟 𝑇m

∗∗(𝑎 + 𝜖) = {𝑇m
∗∗(𝑎), 𝑇m

∗∗(𝑎 + 𝜖), 𝑟} = 𝑇m
∗∗({𝑎, 𝑎 + 𝜖, 1}) = 𝑇m

∗∗(𝑎 ∘ (𝑎 + 𝜖)), 

for all 𝑎, (𝑎 + 𝜖) ∈ 𝑀(𝐴)𝑠𝑎. We have then shown that 𝑇m
∗∗|𝑀(𝐴): 𝑀(𝐴) → 𝐸2

∗∗(𝑟) is a unital Jordan *-

homomorphism, which proves  𝑑). 

It should be noticed that the main result in [27] is a direct consequence of statement) in the above proposition. 

Let 𝑇𝑚: 𝐽 → 𝐸 be an orthogonality preserving operator from a JB∗-algebra to a JB∗-triple and let ℎ𝑚 denote 

𝑇m
∗∗(1). Lemma 4.2 assures that 𝑇m

∗∗|𝑀(𝐽): 𝑀(𝐽) → 𝐸∗∗ also is orthogonality preserving. Since for each self-

adjoint element 𝑎 ∈ 𝑀(𝐽), the JB∗-subalgebra 𝐶{1,𝑎} of 𝑀(𝐽) generated by 𝑎 and 1 is JB∗-isomorphic to an 

abelian C∗-algebra (compare Theorem 3.2.4 in [15] ), the mapping 𝑇m
∗∗|{11,𝑎}: 𝐶{1,𝑎} → 𝐸∗∗ satisfies the 

hypothesis of Proposition 4.1 above. Therefore, 𝑇m
∗∗(𝑎) ∈ 𝐸2

∗∗(𝑟(ℎ𝑚))𝑠𝑎, 𝑇m
∗∗(𝑎) and ℎ𝑚 operator commute in 
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the JB∗-algebra 𝐸2
∗∗(𝑟(ℎ𝑚)) and if ℎ𝑚 is a tripotent then, 𝑇m

∗∗(𝑎2) = 𝑇m
∗∗(𝑎) ∙𝑟(ℎ𝑚) 𝑇m

∗∗(𝑎). We have proved the 

following result(see [30]). 

Corollary 4.1. Let 𝐽 be a 𝐽𝐵∗-algebra, 𝐸 a 𝐽𝐵∗-triple and 𝑇𝑚: 𝐽 → 𝐸 an orthogonality preserving operator. Then 

for ℎ𝑚 = 𝑇m
∗∗(1), the following assertions hold: 

a) {𝑇𝑚(𝑥), ℎ𝑚, ℎ𝑚} = {ℎ𝑚, 𝑇𝑚(𝑥∗), ℎ𝑚}, for all 𝑥 ∈ 𝐽. 

b) 𝑇𝑚(𝐽𝑠𝑎) ⊂ 𝐸2
∗∗(𝑟(ℎ𝑚))𝑠𝑎. 

c) For each 𝑎 ∈ 𝐽, 𝑇𝑚(𝑎) and ℎ𝑚 operator commute in the JB*-algebra 𝐸2
∗∗(𝑟(ℎ𝑚)). 

d) When ℎ𝑚 is a tripotent, then 𝑇𝑚: 𝐽 → 𝐸2
∗∗(𝑟(ℎ𝑚)) is a Jordan *-homomorphism, in particular 𝑇𝑚 is a triple 

homomorphism. 

The result describing orthogonality preserving operators from a JB*-algebra to a JB∗-triple can be now 

stated(see [30]). 

Theorem 4.1. Let 𝑇𝑚: 𝐽 → 𝐸 be an operator from a 𝐽𝐵∗-algebra to a JB*-triple and let ℎ𝑚 = 𝑇m
∗∗(1). The 

following are equivalent: 

a) 𝑇𝑚 is orthogonality preserving. 

b) There exists a (unital) Jordan *-homomorphism 𝑆𝑚: 𝑀(𝐽) → 𝐸2
∗∗(𝑟(ℎ𝑚)) such that 𝑆𝑚(𝑥) and ℎ𝑚 operator 

commute and 𝑇𝑚(𝑥) = ℎ𝑚 ∙𝑟(ℎ𝑚) 𝑆𝑚(𝑥), for every 𝑥 ∈ 𝐽. 

Proof. The implication 𝑏) ⇒ 𝑎 ) is clear. 

𝑎) ⇒ 𝑏) Let 𝐶 denote the JB∗-subalgebra of 𝐸2
∗∗(𝑟(ℎ𝑚)) generated by ℎ𝑚 and 𝑟(ℎ𝑚). 

Let 𝜎(ℎ𝑚) ⊆ (0, ∥ ℎ𝑚 ∥] denote the spectrum of ℎ𝑚 in 𝐸2
∗∗(𝑟(ℎ𝑚)). It is known that 𝜎(ℎ𝑚) ∪ {0} is compact 

and 𝐶 is JB∗-isomorphic to 𝐶(𝜎(ℎ𝑚) ∪ {0}), and under this identification ℎ𝑚 corresponds to the function 𝑡 ↦ 𝑡 

(compare Theorem 3.2.4 in [15]). For each natural (1 + 2𝜖), let 𝑝(1+2𝜖) be the projection in 𝐶‾𝑤∗
 whose 

representation in 𝐶(𝜎(ℎ𝑚) ∪ {0})∗∗ is the characteristic function 𝜒
((𝜎(ℎ𝑚)∪{0})∩[

1

1+2𝜖
,1])

, and let (ℎ𝑚)1+2𝜖 =

𝑝1+2𝜖 ∙𝑟(ℎ𝑚) ℎ𝑚. We notice that (𝑝1+2𝜖) converges to 𝑟(ℎ𝑚) in the 𝜎(𝐸∗∗, 𝐸∗)-topology of 𝐸∗∗. 

By Corollary 4.1 𝑇𝑚
∗∗(𝑀(𝐽)𝑠𝑎) ⊂ 𝐸2

∗∗(𝑟(ℎ𝑚))𝑠𝑎 and 𝑇𝑚
∗∗(𝑀(𝐽)) ⊆ {ℎ𝑚}′. The separate weak*-continuity of the 

product of 𝐸2
∗∗(𝑟(ℎ𝑚)) implies that (𝑥 + 𝜖) and 𝑇𝑚

∗∗(𝑥) operator commute for all (𝑥 + 𝜖) ∈ 𝐶‾𝑤∗
 and 𝑥 ∈ 𝑀(𝐽). 

In particular, for each natural (1 + 2𝜖), 𝑝1+2𝜖 and 𝑇𝑚
∗∗(𝑥) operator commute, for all 𝑥 ∈ 𝑀(𝐽). Thus, the 

mapping (𝑆𝑚)1+2𝜖: 𝑀(𝐽) → 𝐸2
∗∗(𝑟(ℎ𝑚)), (𝑆𝑚)1+2𝜖(𝑥): = (ℎ𝑚

−1)1+2𝜖 ∙𝑟(ℎ𝑚) 𝑇𝑚
∗∗(𝑥) is an orthogonality preserving 

operator between two JB∗-algebras satisfying that (𝑆𝑚)1+2𝜖(1) = 𝑝1+2𝜖 is a tripotent. Corollary 4.1 assures that 

(𝑆𝑚)1+2𝜖 is a Jordan *-homomorphism and hence ∥∥(𝑆𝑚)1+2𝜖∥∥ ≤ 1, for all (1 + 2𝜖) ∈ ℕ. 

Let us take a free ultrafilter 𝒰 on ℕ. By the Banach-Alaoglu Theorem, any bounded set in 𝐸2
∗∗(𝑟(ℎ𝑚)) is 

relatively weak*-compact and hence the assignment (𝑥 + 2𝜖) ↦ 𝑆𝑚(𝑥 + 2𝜖): = 𝑤∗ − lim𝒰  (𝑆𝑚)1+2𝜖(𝑥 + 2𝜖) 

defines an operator 𝑆𝑚: 𝐽 → 𝐸2
∗∗(𝑟(ℎ𝑚)). 

For each natural (1 + 2𝜖), and each 𝑥 ∈ 𝑀(𝐽), ℎ𝑚 ∙𝑟(ℎ𝑚) (𝑆𝑚)1+2𝜖(𝑥) = ℎ𝑚 ∙𝑟(ℎ𝑚) ((ℎ𝑚
−1)1+2𝜖 ∙𝑟(ℎ𝑚) 𝑇𝑚

∗∗(𝑥)) =

𝑝1+2𝜖 ∙𝑟(ℎ𝑚) 𝑇𝑚
∗∗(𝑥). Since 𝑟(ℎ𝑚) = 𝑤∗ − lim(1+2𝜖)  𝑝(1+2𝜖), it follows from the separate weakcontinuity of the 

Jordan product of 𝐸2
∗∗(𝑟(ℎ𝑚)), that ℎ𝑚 ∙𝑟(ℎ𝑚) 𝑆𝑚(𝑥) = 𝑇𝑚

∗∗(𝑥), for all 𝑥 ∈ 𝑀(𝐽). We have already seen that 

(ℎ𝑚
−1)1+2𝜖, ℎ𝑚 and 𝑇𝑚

∗∗(𝑥) pairwise operator commute for every 𝑥 ∈ 𝑀(𝐽). Therefore, (𝑆𝑚)1+2𝜖(𝑥) and ℎ𝑚 

operator commute for every natural (1 + 2𝜖). The separate weak-continuity of the product assures that ℎ𝑚 and 

𝑆𝑚(𝑥) operator commute for all 𝑥 ∈ 𝑀(𝐽). 

Finally, let 𝑎 ∈ 𝑀(𝐽)𝑠𝑎. For each natural 1 + 2𝜖, (𝑆𝑚)1+2𝜖(𝑎) ∈ 𝐸2
∗∗(𝑟(ℎ𝑚))𝑠𝑎 and (𝑆𝑚)1+2𝜖(𝑎2) =

(𝑆𝑚)1+2𝜖(𝑎) ∙𝑟(ℎ𝑚) (𝑆𝑚)1+2𝜖(𝑎). Being 𝐸2
∗∗(𝑟(ℎ𝑚))𝑠𝑎 weak*-closed, it is clear that 𝑆𝑚(𝑎) ∈ 𝐸2

∗∗(𝑟(ℎ𝑚))𝑠𝑎. Let 

(1 + 2𝜖) and 𝑚 be two natural numbers. Since (ℎ𝑚
−1)1+2𝜖 , (ℎ𝑚

−1)𝑚0
, and 𝑇𝑚

∗∗(𝑎) are pairwise operator 

commuting, we have 
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(𝑆𝑚)1+2𝜖(𝑎) ∙𝑟(ℎ𝑚) (𝑆𝑚)𝑚0
(𝑎) 

= (ℎ𝑚
−1)1+2𝜖 ∙𝑟(ℎ𝑚) (ℎ𝑚

−1)𝑚0
∙𝑟(ℎ𝑚) 𝑇𝑚

∗∗(𝑎) ∙𝑟(ℎ𝑚) 𝑇𝑚
∗∗(𝑎) = (𝑆𝑚)min(1+2𝜖,𝑚)(𝑎)2 

= (𝑆𝑚)min(1+2𝜖,𝑚)(𝑎2). 

For a fixed natural 𝑚, taking 𝑤∗ − lim1+2𝜖≥𝑚,𝑢   in the above expressions, we deduce that 

𝑆𝑚(𝑎) ∙𝑟(ℎ𝑚) (𝑆𝑚)𝑚0
(𝑎) = (𝑆𝑚)𝑚0

(𝑎2), 

for all 𝑚 ∈ ℕ. The same argument gives 

𝑆𝑚(𝑎) ∙𝑟(ℎ𝑚) 𝑆𝑚(𝑎) = 𝑆𝑚(𝑎2). 

The description provided by the above Theorem generalizes Theorems 6 and 10 in [7]. Concretely, the just 

quoted theorems make use of the hypothesis of 𝑇𝑚
∗∗(1) being von Neumann regular, and this assumption is 

completely removed in Theorem 4.1. 

We recall that an operator 𝑇𝑚 between two JB∗-triples preserves zero-tripleproducts if {𝑇𝑚(𝑥), 𝑇𝑚(𝑥 +
𝜖), 𝑇𝑚(𝑥 + 2𝜖)} = 0 whenever {𝑥, 𝑥 + 𝜖, 𝑥 + 2𝜖} = 0. While an operator 𝑇𝑚 between two C∗-algebras is said to 

be zero-products preserving if 𝑇𝑚(𝑥)𝑇𝑚(𝑥 + 𝜖) = 0 whenever 𝑥(𝑥 + 𝜖) = 0. 

The authors in[8], [26], and [28] give a complete description of zero-product preserving bounded linear maps 

between C∗-algebras. 

The equivalent reformulations of orthogonality stated in (4.1) together with Theorem 4.1 above, give the 

following generalization of Corollary 18 in [7]. 

Corollary 4.2. Let 𝑇𝑚: 𝐽 → 𝐸 be an operator from a 𝐽𝐵∗-algebra to a JB*-triple. Then 𝑇𝑚 is orthogonality 

preserving if and only if 𝑇𝑚 preserves zero-triple-products. 

Example 4.1. Let 𝑇𝑚 be a bounded linear operator between two C∗-algebras. It was already noticed in [7] that in 

the case of 𝑇𝑚 being symmetric (i.e., 𝑇𝑚(𝑥∗) = 𝑇𝑚(𝑥)∗), 

then 𝑇𝑚 is orthogonality preserving on 𝐴𝑠𝑎 if and only if 𝑇𝑚 preserves zero-products on 𝐴𝑠𝑎. However, not 

every orthogonality preserving operator sends zero-products to zero-products. Consider, for example, 

𝑇𝑚: 𝑀2(ℂ) → 𝑀2(ℂ), 𝑇𝑚(𝑥) = 𝑢𝑥, where 𝑢 = (
0 −1
1 0

). Clearly 𝑇𝑚 is a triple homomorphism and hence 

orthogonality preserving, but taking 𝑥 = (
0 1
0 1

) , (𝑥 + 𝜖) = (
1 −1
0 0

), we have 𝑥(𝑥 + 𝜖) = (𝑥 + 𝜖)𝑥 = 0 and 

𝑇𝑚(𝑥)𝑇𝑚(𝑥 + 𝜖) ≠ 0. 

Theorem 17 in [7] follows now as a consequence of Theorem 4.1. 

Corollary 4.3 (see [30]). Let 𝑇𝑚: 𝐴 → 𝐵 be an operator between two 𝐶∗-algebras. For ℎ𝑚 = 𝑇m
∗∗(1) the 

following assertions are equivalent: 

a) 𝑇𝑚 is orthogonality preserving. 

b) There exists a triple homomorphism 𝑆𝑚: 𝐴 → 𝐵∗∗ satisfying ℎ𝑚
∗ 𝑆𝑚(𝑥 + 2𝜖) = 𝑆𝑚((𝑥 + 2𝜖)∗)∗ℎ𝑚, 

ℎ𝑚𝑆𝑚((𝑥 + 2𝜖)∗)∗ = 𝑆𝑚(𝑥 + 2𝜖)ℎ𝑚
∗ , and 

𝑇𝑚(𝑥 + 2𝜖) = 𝐿(ℎ𝑚, 𝑟(ℎ𝑚))(𝑆𝑚(𝑥 + 2𝜖)) =
1

2
(ℎ𝑚𝑟(ℎ𝑚)∗𝑆𝑚(𝑥 + 2𝜖) + 𝑆𝑚(𝑥 + 2𝜖)𝑟(ℎ𝑚)∗ℎ𝑚)

= ℎ𝑚𝑟(ℎ𝑚)∗𝑆𝑚(𝑥 + 2𝜖) = 𝑆𝑚(𝑥 + 2𝜖)𝑟(ℎ𝑚)∗ℎ𝑚,
 

for all (𝑥 + 2𝜖) ∈ 𝐴. 

Proof. The implication b)⇒ 𝑎) is clear. 
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𝑎) ⇒ 𝑏) By Theorem 4.1 there exists a (unital) Jordan *-homomorphism 𝑆𝑚: 𝑀(𝐴) → 𝐵2
∗∗(𝑟(ℎ𝑚)) such that 

𝑆𝑚(𝑥) and ℎ𝑚 operator commute in 𝐵2
∗∗(𝑟(ℎ𝑚)) and 𝑇𝑚(𝑥) = ℎ𝑚 ∙𝑟(ℎ𝑚) 𝑆𝑚(𝑥), for every 𝑥 ∈ 𝐴. In order to 

simplify notation we shall write 𝑟 = 𝑟(ℎ𝑚). Notice that 𝑟 is a partial isometry in 𝐵∗∗, with left and right 

projections given by 𝑟𝑟∗ and 𝑟∗𝑟, respectively. It is well known that 𝐵2
∗∗(𝑟) = 𝑟𝑟∗𝐵∗∗𝑟∗𝑟. 

It can be easily checked that 𝐿𝑟∗: 𝐵2
∗∗(𝑟) → 𝐵2

∗∗(𝑟∗𝑟), 𝑥 ↦ 𝑟∗𝑥, is a unital Jordan *-homomorphism and 

𝐵2
∗∗(𝑟∗𝑟) is a C∗-subalgebra of 𝐵∗∗ because 𝑟∗𝑟 is a projection. 

Take an element 𝑎 ∈ 𝐴𝑠𝑎. Since 𝑆𝑚(𝑎) and ℎ𝑚 operator commute in 𝐵2
∗∗(𝑟(ℎ𝑚))𝑠𝑎, 𝐿𝑟∗(ℎ𝑚) = 𝑟∗ℎ𝑚 and 

𝐿𝑟∗(𝑆𝑚(𝑎)) = 𝑟∗𝑆𝑚(𝑎) operator commute in 𝐵𝑠𝑎
∗∗. Equivalently, 𝑟∗ℎ𝑚 and 𝑟∗𝑆𝑚(𝑎) are two commuting 

elements in 𝐵∗∗. Therefore 

ℎ𝑚
∗ 𝑆𝑚(𝑎) = ℎ𝑚

∗ 𝑟𝑟∗𝑆𝑚(𝑎) = (𝑟∗ℎ𝑚)∗(𝑟∗𝑆𝑚(𝑎)) = (𝑟∗ℎ𝑚)(𝑟∗𝑆𝑚(𝑎)) = (𝑟∗𝑆𝑚(𝑎))(𝑟∗ℎ𝑚)

= (𝑟∗𝑆𝑚(𝑎))∗(𝑟∗ℎ𝑚) = 𝑆𝑚(𝑎)∗𝑟𝑟∗ℎ𝑚 = 𝑆𝑚(𝑎)∗ℎ𝑚,
 

and similarly ℎ𝑚𝑆𝑚(𝑎)∗ = 𝑆𝑚(𝑎)ℎ𝑚
∗ . The proof concludes by a linear argument. 

The general description of all orthogonality preserving operators between two JB∗-triples remains open. We can 

only prove the following local property. 

Corollary 4.4. Let 𝑇𝑚: 𝐸 → 𝐹 be an orthogonality preserving operator between two 𝐽𝐵∗-triples. Let 𝑥 be a 

norm-one element in 𝐸 and let ℎ𝑚 = 𝑇m
∗∗(𝑟(𝑥)). Then there exists a Jordan *-homomorphism 𝑆𝑚: 𝐸(𝑥) →

𝐹2
∗∗(𝑟(ℎ𝑚)), satisfying that 𝑇𝑚|𝐸(𝑥) = 𝐿(ℎ𝑚, 𝑟(ℎ𝑚)). 
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