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Abstract 
The Kasparov absorption (or stabilization) theorem states that any countably generated Hilbert 𝐶∗-module is 

isomorphic to a direct summand in the standard module of square summable sequences in the base 𝐶∗-algebra. 

This result be generalized byJens Kaad [Jka10] by incorporating a densely defined derivation on the base 𝐶∗-

algebra. It following the perfect densely method of Jens Kaad[Jka10] leads to a differentiable version of the 

Kasparov absorption theorem. The extra compatibility assumptions needed are minimal: It will only be required 

that there exists a sequence of generators with mutual inner products in the domain of the derivation. The 

differentiable absorption theorem is then applied to construct densely defined connections (or correspondences) 

on Hilbert 𝐶∗-modules. These connections can in turn be used to define selfadjoint and regular ”lifts” of 

unbounded operators which act on an auxiliary Hilbert 𝐶∗- module. 

Keywords: Hilbert 𝐶∗-modules, derivations, differentiable absorption, Grassmann connections, regular 

unbounded operators. 
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I. Introduction 

The famous Kasparov absorption theorem states that any countably generated Hilbert 𝐶∗-module 𝑋 

over any 𝐶∗-algebra 𝐴𝑟 is a direct summand in a free Hilbert 𝐶∗-module, [KAS80A, MIPH84, LAN95]. One 

may thus think of Hilbert 𝐶∗-modules as a natural generalization of finitely generated projective modules over 

𝐶∗-algebras. 

Jens Kaad [Jka10] prove a version of the Kasparov absorption theorem which takes into account any 

differentiable structure which may exist on the base 𝐶∗-algebra 𝐴𝑟. Following the scheme of noncommutative 

geometry, this extra differentiable structure will be encoded in a densely defined derivation 𝛿 which is 

compatible with the adjoint operation, [CON94]. 

One of the main applications of the Kasparov absorption theorem is to the construction of the interior 

Kasparov product in 𝐾𝐾-theory, [KAS80B, BLA98, JETH91]. Consequently, we expect that the differentiable 

absorption theorem will play an important role for the current investigations of the unbounded version of the 

interior Kasparov product, [KALE13, Mes14]. 

Among the challenges which arise during the construction of the unbounded Kasparov product one 

encounters the following: Consider an unbounded (selfadjoint and regular) operator 𝐷𝑟  acting on an auxiliary 

Hilbert 𝐶∗-module 𝑌 which carries an action of 𝐴𝑟. Suppose that 𝐷𝑟  implements the densely defined derivation 

on 𝐴𝑟 by taking commutators. Is it then possible to construct (see [Jka10]): 

(1) A Hermitian connection ∇ which is densely defined on  ? 

(2) An unbounded operator 1⊗∇ 𝐷𝑟 which is densely defined on the interior tensor product of 𝑋 and 𝑌 and 

which has the formal expression 𝑐(∇) + 1⊗𝐷𝑟 , where 𝑐 denotes the "Clifford action"? 

The second purpose is to provide a detailed discussion of these problems. 

http://www.questjournals.org/
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We state the Kasparov absorption theorem. For𝐻𝐴𝑟  denote the standard module consisting of square summable 

sequences in 𝐴𝑟. 

Theorem 𝟏. 𝟏 (Continuous absorption). There exists a bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟 . 

Let 𝑃:= 𝑊𝑊∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  denote the associated orthogonal projection and let us choose a dense ∗-subalgebra 

𝒜 ⊆ 𝐴𝑟 which is included in the domain of the derivation 𝛿. Suppose now that 𝑃 is represented by an infinite 

matrix {𝑃𝑖𝑗} of elements in 𝒜. We are then interested in analyzing (the operator norm of) the derivative 𝛿(𝑃):=

{𝛿(𝑃𝑖𝑗)}. Our first remark is that it is known from examples that 𝛿(𝑃) need not be a bounded operator, see 

[BMS13, Proposition 6.18] for the concrete case of the ( 𝜃-deformed) Hopf fibration and [KAA13] for a general 

discussion in the commutative case. 

The main idea of the differentiable absorption theorem is to introduce an extra bounded operator which 

regularizes the growth of the derivative 𝛿(𝑃). We will accomplish this task under the following minimal 

assumption(see [Jka10]): 

Assumption 1.1. There exists a square sequence {𝜉𝑛
2} of generators for 𝑋 such that the inner product ⟨𝜉𝑛

2, 𝜉𝑚
2 ⟩ 

lies in 𝒜 for all 𝑛,𝑚 ∈ ℕ. 

Now, let us introduce the notation 𝒦(𝐻𝐴𝑟) for the compact operators on the standard module 𝐻𝐴𝑟  and 𝒦(𝐻𝐴𝑟)𝛿
 

for the differentiable compact operators. The latter Banach *-algebra agrees with the completion of the finite 

matrices over 𝒜 with respect to the norm ∥⋅∥𝛿: =∥⋅∥ +∥ 𝛿(⋅) ∥. 

Theorem 1.2 (Differentiable absorption). There exists a bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟  and a 

positive selfadjoint bounded operator 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟such that 

(1) 𝐾𝑟𝑃 = 𝑃𝐾𝑟 

(2) 𝑊∗𝐾𝑟𝑊:𝑋 → 𝑋 has dense image. 

(3) 𝑃𝐾𝑟 ∈ 𝒦(𝐻𝐴𝑟) 

(4) 𝑃𝐾r
2 ∈ 𝒦(𝐻𝐴𝑟)𝛿

 

where 𝑃:= 𝑊𝑊∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  is the associated orthogonal projection. 

Our first main application of the differentiable absorption theorem is to construct a densely defined Grassmann 

connection. To explain this result, let Ω𝛿(𝐴𝑟) ⊆ ℒ(𝑌) denote the smallest 𝐶∗-subalgebra which contains 𝐴𝑟 and 

the image of the derivation 𝛿:𝒜 → ℒ(𝑌). We think of Ω𝛿(𝐴𝑟) as an analogue of the continuous forms on a 

manifold. The Grassmann connection is then formally given by the formula ∇𝛿: = 𝑃𝛿𝑃. We show that this 

expression makes sense and yields a densely defined ℂ-linear map on the direct summand 𝑃𝐻𝐴𝑟 with values in 

the interior tensor product 𝑃𝐻𝐴𝑟 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟). This relies heavily on the differentiable absorption theorem. For 

the properties of theGrassmann connection we introduce the following pairing(see [Jka10]): 

(⋅,⋅): 𝑋 × 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) → Ω𝛿(𝐴𝑟) (𝜉2, 𝜂2 ⊗𝜔2): = ⟨𝜉2, 𝜂2⟩ ⋅ 𝜔2 

Theorem 1.3. There exists a dense 𝒜 − submodule 𝒳 ⊆ 𝑋 and a ℂ-linear map ∇𝛿:𝒳 → 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) which 

satisfies the Leibniz rule and is Hermitian, in the sense that 

(1) ∇𝛿(𝜉
2 ⋅ 𝑎𝑟) = ∇𝛿(𝜉

2) ⋅ 𝑎𝑟 + 𝜉2 ⊗𝛿(𝑎𝑟) 

(2) 𝛿(⟨𝜉2, 𝜂2⟩) = (𝜉2, ∇𝛿(𝜂
2)) − (𝜂2, ∇𝛿(𝜉

2))∗ 

for all 𝜉2, 𝜂2 ∈ 𝒳 and all 𝑎𝑟 ∈ 𝒜. 
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We would like to emphasize that our notion of connection is different from previous notions of connections in 

noncommutative geometry, see [CUQU95, Section 8], [CON85, Part II, Definition 18] and [KAR87, Definition 

1.7]. One of the maindifferences is here that the range of the connection, thus the Hilbert 𝐶∗-module 

𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) is not defined algebraically (we have passed to a completion of the algebraic tensor product 

𝑋 ⊗𝐴𝑟
Ω𝛿(𝐴𝑟)). This is an important difference which allows us to deal with Hilbert 𝐶∗-modules which are not 

necessarily finitely generated projective. Notice also that the context of Hilbert 𝐶∗-modules also allows us to 

formulate the second condition of Hermitianness for our connections. 

With the Grassmann connection ∇𝛿 in hand we can make sense of the following operator at the algebraic 

level(see [Jka10]): 

1⊗ ∇∇𝐷𝑟: 𝒳 ⊗𝒜 𝒟(𝐷𝑟) → 𝑋 ⊗̂𝐴𝑟 𝑌 1⊗∇ 𝐷𝑟: 𝜉
2 ⊗𝜂2 ↦ ∇𝛿(𝜉

2)(𝜂2) + 𝜉2 ⊗𝐷𝑟(𝜂
2) 

thus ⊗𝒜  denotes the tensor product of modules over 𝒜, whereas ⊗̂𝐴𝑟  denotes the interior tensor product of 

Hilbert 𝐶∗-modules. Let now 𝑌∞ denote the Hilbert 𝐶∗ module of square-summable sequences in 𝑌. In order to 

have a well-defined (and more manageable) unbounded operator we replace 1⊗∇ 𝐷𝑟 with the contraction 

𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄: 𝒟(diag(𝐷𝑟)𝑄) → 𝑄𝑌∞ 

where 𝑄:= 𝑃 ⊗ 1: 𝑌∞ → 𝑌∞ is an orthogonal projection induced by 𝑃:𝐻𝐴𝑟 → 𝐻𝐴𝑟 and diag(𝐷𝑟): diag(𝐷𝑟) →

𝑌∞ is the diagonal operator induced by 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑌 We are interested in understanding the properties of the 

contraction 𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄. More precisely, we investigate two fundamental questions: 

(1) Is the closure of the contraction 𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄 selfadjoint? 

(2) Is the closure of the contraction 𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄 regular? 

In general, the contraction need not be essentially selfadjoint: Indeed, by analyzing our construction for the half-

line, we see that 𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄 provides a symmetricextension of the Dirac operator 𝑖
𝑑

𝑑𝑡
: 𝐶𝑐

∞((0,∞)) →

𝐿2((0,∞)). This Dirac operator has no selfadjoint extensions due to a mismatch of the deficiency indices. We 

do not have a counterexample to regularity but we strongly believe that such an example exists. 

In order to solve this lack of selfadjointness (and possibly also of regularity) we modify the contraction 𝑄 ⋅
diag(𝐷𝑟) ⋅ 𝑄 by multiplying it from the left and from the right with the positive selfadjoint bounded operator 

with dense image, Δ:= 𝑄(𝐾r
2 ⊗ 1)𝑄: 𝑄𝑌∞ → 𝑄𝑌∞. We then obtain our third main result: 

Theorem 1.4(see [Jka10]). Suppose that 𝑊:𝑋 → 𝐻𝐴𝑟  and 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  satisfy the properties stated in the 

differentiable absorption theorem. Then the closure of the unbounded operator 

Δ𝑄 ⋅ diag(𝐷𝑟) ⋅ 𝑄Δ:𝒟(diag(𝐷𝑟)𝑄Δ) → 𝑄𝑌∞ 

is selfadjoint and regular. 

Jens Kaad provide a novel proof of the Kasparov absorption theorem. The usual proof consists of first 

stabilizing 𝑋 with the standard module 𝐻𝐴𝑟  and then construct a bounded adjointable operator 𝑇𝑟: 𝐻𝐴𝑟 → 𝑋⊕

𝐻𝐴𝑟  such that both 𝑇𝑟 and 𝑇𝑟
∗ have dense image. This yields a unitary isomorphism 𝐻𝐴𝑟 ≅ 𝑋⊕𝐻𝐴𝑟  by taking 

polar decompositions, see for example [RATH03, Theorem 2.3 ] or [MıP H84, Theorem 1.4]. Another (and 

slightly more concrete) possibility is to apply a version of the Gram-Schmidt orthonormalization procedure to 

the generators of the Hilbert𝐶∗-module (after stabilizing with the standard module), see for example [KAS80A, 

Theorem 2]. With both of these methods, it seems impossible to obtain any control on the growth of the 

derivative of the associated orthogonal projection 𝑃. Our new proof is straightforward and basically consists of 

choosing better and better approximations to the inverse of the infinite matrix 

𝐺𝑟 = {⟨𝜉𝑖
2, 𝜉𝑗

2⟩}: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  
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induced by the square sequence of generators. With this procedure, we do not need to stabilize 𝑋 by adding the 

standard module 𝐻𝐴𝑟 . 

Hegive a proof of the differentiable absorption theorem. As noted above, this is only possible because our 

construction of the bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟  is more explicit than the usual construction. The 

extra bounded operator 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  also has a simple description in terms of the generators of the Hilbert 𝐶∗-

module (it is basically nothing but the operator). And apply the differentiable absorption theorem to construct a 

densely defined Grassmann connection on the Hilbert 𝐶∗-module 𝑋, see Theorem 1.3. 

He investigate the properties of the associated symmetric lift 1⊗∇ 𝐷𝑟 and we show that it need not be 

selfadjoint in general. And analyze the following general question: Given a selfadjoint and regular operator 

𝐷𝑟: 𝒟(𝐷𝑟) → 𝑋 and a bounded selfadjoint operator 𝑥2: 𝑋 → 𝑋, what can we then say about the selfadjointness 

and regularity of the product 𝑥2𝐷𝑟𝑥
2 ? This part relies on our earlier investigations with M. Lesch which led to 

a local-global principle for regular unbounded operators, see [KALE12]. And provide a proof of Theorem 

1.4(for further interest see [BLE97, BLE96]). 

II. Continuous Absorption 

For𝑋 be a countably generated Hilbert 𝐶∗-module over an arbitrary 𝐶∗-algebra 𝐴𝑟. 

Recall that the assumption "  is countably generated" means that there exists a square sequence {𝜉𝑛
2}𝑛=1

∞  of 

elements in 𝑋 such that the 𝐴𝑟-span 

span𝐴𝑟 {𝜉𝑛
2 ∣ 𝑛 ∈ ℕ}:= {∑  

𝑁

𝑛=1

∑

𝑟

 𝜉𝑛
2 ⋅ 𝑎𝑛

r ∣ 𝑁 ∈ ℕ, 𝑎𝑛
r ∈ 𝐴𝑟} 

is dense in 𝑋. 

We fix such a square sequence {𝜉𝑛
2}. We may assume that the norm-estimate 

∥∥𝜉𝑛
2∥∥ ≤

1

𝑛
                                                          (2.1) 

holds for all 𝑛 ∈ ℕ. 

We denote the standard module over 𝐴𝑟 by 𝐻𝐴𝑟 . Recall that 𝐻𝐴𝑟  consists of the sequences {𝑎𝑛
𝑟 }𝑟,𝑛=1

∞  in 𝐴𝑟 such 

that the sequence {∑𝑟,𝑛=1
𝑁  (𝑎𝑟)𝑛

∗ 𝑎𝑛
𝑟 }

𝑁=1

∞
 converges in the norm on 𝐴𝑟. The inner product on 𝐻𝐴𝑟  is given by 

⟨{𝑎𝑛
𝑟 }, {𝑏𝑛

𝑟}⟩𝑟,𝑛=1∑𝑟,𝑛=1
∞  (𝑎𝑟)𝑛

∗ ⋅ 𝑏𝑛
𝑟  and the right action is given by {𝑎𝑛

𝑟 } ⋅ 𝑎𝑟: = {𝑎𝑛
𝑟 ⋅ 𝑎𝑟}. 

For each 𝑁 ∈ ℕ define the compact operator Φ𝑁
r : 𝑋 → 𝐻𝐴𝑟 , Φ𝑁

r : 𝜂2 ↦ {⟨𝜉𝑛
2, 𝜂2⟩}𝑛=1

𝑁 . 

The adjoint is given by (Φr)𝑁
∗ : 𝐻𝐴𝑟 → 𝑋, (Φr)𝑁

∗ : {𝑎𝑛
𝑟 }𝑛=1

∞ ↦ ∑𝑛=1
𝑁  𝜉𝑛

2 ⋅ 𝑎𝑛
𝑟 . 

Lemma 2.1 (see [Jka10]). The sequence {Φ𝑁
𝑟 }𝑁=1

∞  converges in operator norm to a compact operator Φr: 𝑋 →
𝐻𝐴𝑟 . The adjoint (Φr)∗: 𝐻𝐴𝑟 → 𝑋 coincides with the norm limit of the sequence {(Φr)𝑁

∗ }𝑁=1
∞ . 

Proof. It is enough to show that the sequence {Φ𝑁
𝑟 }𝑟,𝑁=1

∞  is a Cauchy sequence in operator norm. Thus, let 

𝑁,𝑀 ∈ ℕ with 𝑀 ≥ 𝑁 be given. For each 𝜂2 ∈ 𝑋 we have that 

∥∥Φ𝑀
r (𝜂2) − Φ𝑁

r (𝜂2)∥∥
2

= ∥∥{⟨𝜉𝑛
2, 𝜂2⟩}𝑛=𝑁+1

𝑀 ∥∥
2

=
∥
∥
∥
∥
∥
∑  

𝑀

𝑛=𝑁+1

  ⟨𝜂2, 𝜉𝑛
2⟩ ⋅ ⟨𝜉𝑛

2, 𝜂2⟩
∥
∥
∥
∥
∥
≤∥ 𝜂2 ∥2⋅ ∑  

𝑀

𝑛=𝑁+1

 
1

𝑛2
 

where we have applied the norm estimate in (2.1). This computation shows that 
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∥∥Φ𝑀
r −Φ𝑁

𝑟 ∥∥ ≤ √ ∑  

𝑀

𝑛=𝑁+1

 
1

𝑛2
 

The sequence {Φ𝑁
𝑟 }𝑟,𝑁=1

∞  is therefore a Cauchy sequence in operator norm. 

Define the positive compact operator 

𝐺𝑟: = Φr(Φr)∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  

For each 𝑛 ∈ ℕ define the positive selfadjoint operator 

𝐺𝑛
r: = (𝐺𝑟 + 1/𝑛)−1: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  

To ease the notation later on, let also 𝐺0
r: = 0. 

Lemma 2.2 (see [Jka10]). The sequence {(Φr)∗𝐺𝑛
rΦr}𝑟,𝑛=1

∞  converges strongly to the identity operator on 𝑋. 

Proof. Let 𝑘 ∈ ℕ and let 𝑎𝑟 ∈ 𝐴𝑟. Apply the notation 𝑒𝑘 ⋅ 𝑎
𝑟 ∈ 𝐻𝐴𝑟 for the sequence with zeroes everywhere 

except for the element 𝑎𝑟  in position 𝑘. 

For each 𝑛 ∈ ℕ, we have that 

((Φr)∗𝐺𝑛
rΦr)(𝜉𝑘

2 ⋅ 𝑎𝑟)

= ((Φr)∗𝐺𝑛
𝑟) (∑  

∞

𝑟,𝑗=1

  𝑒𝑗 ⋅ ⟨𝜉𝑗
2, 𝜉𝑘

2⟩ ⋅ 𝑎𝑟) = ((Φr)∗𝐺𝑛
𝑟𝐺𝑟)(𝑒𝑘 ⋅ 𝑎

𝑟)

= ((Φr)∗(𝐺𝑟 + 1/𝑛)−1𝐺𝑟)(𝑒𝑘 ⋅ 𝑎
𝑟) = (Φr)∗(𝑒𝑘 ⋅ 𝑎

𝑟) − 1/𝑛 ⋅ ((Φr)∗(𝐺𝑟 + 1/𝑛)−1)(𝑒𝑘 ⋅ 𝑎
𝑟)

= 𝜉𝑘
2 ⋅ 𝑎𝑟 − 1/𝑛 ⋅ ((Φr)∗(𝐺𝑟 + 1/𝑛)−1)(𝑒𝑘 ⋅ 𝑎

𝑟)

 

Thus, in order to show that ((Φr)∗𝐺𝑛
rΦr)(𝜉𝑘

2 ⋅ 𝑎𝑟) → 𝜉𝑘
2 ⋅ 𝑎𝑟  it suffices to show that 

∥∥1/𝑛 ⋅ (Φr)∗(𝐺𝑟 + 1/𝑛)−1∥∥ → 0 

To this end, we simply notice that 

∥∥1/𝑛 ⋅ (Φr)∗(𝐺𝑟 + 1/𝑛)−1∥∥
2
≤

1

𝑛2
⋅ ∥∥(𝐺𝑟 + 1/𝑛)−1 ⋅ 𝐺𝑟 ⋅ (𝐺𝑟 + 1/𝑛)−1∥∥ ≤ 1/𝑛 

for all 𝑛 ∈ ℕ. We have thus proved that ((Φr)∗𝐺𝑛
rΦr)(𝜂2) → 𝜂2 for all 𝜂2 ∈ span𝐴𝑟{𝜉𝑘

2 ∣ 𝑘 ∈ℕ}. 

Therefore, since the 𝐴𝑟-span of the square sequence {𝜉𝑘
2}𝑘=1

∞  is dense in 𝑋 it is enough to show that the sequence 
{(Φr)∗𝐺𝑛

rΦr}𝑟,𝑛=1
∞  is bounded in operator norm. But this follows from the estimate 

∥∥(Φr)∗𝐺𝑛
rΦr∥∥ = ∥∥(𝐺

𝑟)𝑛
1/2

Φr(Φr)∗(𝐺𝑟)𝑛
1/2

∥∥ = ∥∥𝐺𝑟 ⋅ (1/𝑛 + 𝐺𝑟)−1∥∥ ≤ 1 

which is valid for all 𝑛 ∈ ℕ. 

For each 𝑛 ∈ ℕ define the compact operator Ψ𝑛
r: = (𝐺𝑛

r − 𝐺𝑛−1
𝑟 )1/2Φr: 𝑋 → 𝐻𝐴𝑟 . Remark that the difference 

𝐺𝑛
r − 𝐺𝑛−1

𝑟  is positive and invertible for all 𝑛 ∈ ℕ, indeed 

𝐺𝑛
r − 𝐺𝑛−1

𝑟 = (𝐺𝑟 + 1/𝑛)−1 − (𝐺𝑟 + 1/(𝑛 − 1))−1

= (𝐺𝑟 + 1/𝑛)−1 ⋅
1

𝑛 ⋅ (𝑛 − 1)
⋅ (𝐺𝑟 + 1/(𝑛 − 1))−1

 



A strong Differentiable Absorption of Hilbert 𝐶∗-Modules with Connections, and Lifts of .. 

DOI: 10.35629/0743-10111639                                 www.questjournals.org                                            21 | Page 

for all 𝑛 ≥ 2. Notice also that the adjoint of Ψ𝑛
r: 𝑋 → 𝐻𝐴𝑟  is given by (Ψr)𝑛

∗ = (Φr)∗ ⋅ (𝐺𝑛
r − 𝐺𝑛−1

𝑟 )1/2: 𝐻𝐴𝑟 → 𝑋 

for all 𝑛 ∈ ℕ. 

For each Hilbert 𝐶∗-module 𝑌 over a 𝐶∗-algebra 𝐵𝑟 , let 𝑌∞ denote the Hilbert 𝐶∗-module over 𝐵𝑟  which 

consists of all square sequences {𝜂𝑛
2}𝑛=1

∞  of elements in 𝑌 such that the sum ∑𝑛=1
∞  ⟨𝜂𝑛

2 , 𝜂𝑛
2⟩ is convergent in 𝐵𝑟 . 

The inner product on 𝑌∞ is given by ⟨{𝜂𝑛
2}, {𝜁𝑛

2}⟩: = ∑𝑛=1
∞  ⟨𝜂𝑛

2 , 𝜁𝑛
2⟩. The right-module structure is given by {𝜂𝑛

2} ⋅
𝑏𝑟: = {𝜂𝑛

2 ⋅ 𝑏𝑟}. For each 𝜂2 ∈ 𝑌 and each 𝑛 ∈ ℕ, we denote the sequence in 𝑌∞ with 𝜂2 in position 𝑛 and 

zeroes elsewhere by 𝑒𝑛 ⋅ 𝜂
2. 

Lemma 2.3 (see [Jka10]). The sequence {∑𝑛=1
𝑁 ∑𝑟   𝑒𝑛 ⋅ Ψ𝑛

r(𝜂2)}𝑁=1
∞  converges in 𝐻𝐴𝑟

∞  for all 𝜂2 ∈ 𝑋. 

Proof. Let 𝜂2 ∈ 𝑋. We need to prove that the sequence {∑𝑛=1
𝑁 ∑𝑟   𝑒𝑛 ⋅ Ψ𝑛

r(𝜂2)}𝑁=1
∞  is a Cauchy sequence in 

𝐻𝐴𝑟
∞ . 

Thus, let 𝑀,𝑁 ∈ ℕ with 𝑀 ≥ 𝑁 be given. We may then compute as follows, 

∥
∥
∥
∥
∥
∑  

𝑀

𝑛=𝑁+1

 ∑

𝑟

𝑒𝑛 ⋅ Ψ𝑛
r(𝜂2)

∥
∥
∥
∥
∥
2

=
∥
∥
∥
∥
∥
∑  

𝑀

𝑛=𝑁+1

∑

𝑟

  ⟨Ψ𝑛
r(𝜂2),Ψ𝑛

r(𝜂2)⟩
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∑  

𝑀

𝑛=𝑁+1

 ∑

𝑟

⟨𝜂2, (Φr)∗(𝐺𝑛
r − 𝐺𝑛−1

𝑟 )Φr(𝜂2)⟩
∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∑

𝑟

⟨𝜂2, (Φr)∗(𝐺𝑀
r − 𝐺𝑁

𝑟 )Φr(𝜂2)⟩
∥
∥
∥
∥
 

The result of the present lemma now follows by an application of Lemma 2.2. 

Define the A-linear map Ψr: 𝑋 → 𝐻𝐴𝑟
∞ , Ψr: 𝜂2 ↦ ∑𝑛=1

∞  ∑𝑟 𝑒𝑛 ⋅ Ψ𝑛
r(𝜂2). Remark that it follows from Lemma 

2.3 that the sum in the definition of Ψr makes sense. 

Proposition 2.4(see [Jka10]). 

⟨Ψr(𝜉2), Ψr(𝜂2)⟩ = ⟨𝜉2, 𝜂2⟩  for all 𝜉2, 𝜂2 ∈ 𝑋 

Proof. Let 𝜉2, 𝜂2 ∈ 𝑋. By Lemma 2.2 we have that 

⟨Ψr(𝜉2), Ψr(𝜂2)⟩ = ∑  

∞

𝑛=1

 ∑

𝑟

⟨Ψ𝑛
r(𝜉2), Ψ𝑛

r(𝜂2)⟩ = ∑  

∞

𝑛=1

 ∑

𝑟

⟨𝜉2, (Φr)∗(𝐺𝑛
r − 𝐺𝑛−1

𝑟 )Φr(𝜂2)⟩

= lim
𝑁→∞

 ∑

𝑟

⟨𝜉2, ((Φr)∗𝐺𝑁
rΦr)(𝜂2)⟩ = ⟨𝜉2, 𝜂2⟩

 

This proves the proposition. 

It follows from the above proposition that Ψr: 𝑋 → 𝐻𝐴𝑟
∞  is bounded (it is in fact an isometry). To construct the 

adjoint, define the 𝐴𝑟-linear map(Ψr)∗:⊕𝑟,𝑛=1
∞ 𝐻𝐴𝑟 → 𝑋, (Ψr)∗: ∑𝑛=1

∞  𝑒𝑛 ⋅ 𝑥𝑛
2 ↦ ∑𝑛=1

∞  ∑𝑟 (Ψr)𝑛
∗ (𝑥𝑛

2), where 

⊕𝑟,𝑛=1
∞ 𝐻𝐴𝑟  denotes the dense 𝐴𝑟-submodule in 𝐻𝐴𝑟

∞  consisting of all finite sequences in 𝐻𝐴𝑟 . It then follows 

from the above proposition that 

∥
∥
∥
∥
⟨∑

𝑟

(Ψr)∗ (∑  

∞

𝑛=1

 𝑒𝑛 ⋅ 𝑥𝑛
2) , 𝜉2⟩

∥
∥
∥
∥
=
∥
∥
∥
∥
⟨∑  

∞

𝑛=1

  𝑒𝑛 ⋅ 𝑥𝑛
2,∑

𝑟

Ψr(𝜉2)⟩
∥
∥
∥
∥
≤
∥
∥
∥
∥
∑  

∞

𝑛=1

 𝑒𝑛 ⋅ 𝑥𝑛
2

∥
∥
∥
∥
⋅∥ 𝜉2 ∥ 

for all ∑𝑛=1
∞  𝑒𝑛 ⋅ 𝑥𝑛

2 ∈⊕𝑟,𝑛=1
∞ 𝐻𝐴𝑟  and all 𝜉2 ∈ 𝑋. This implies that (Ψr)∗:⊕𝑟,𝑛=1

∞ 𝐻𝐴𝑟 → 𝑋 extends to a bounded 

𝐴𝑟-linear map (Ψr)∗: 𝐻𝐴𝑟
∞ → 𝑋 and it is not hard to see that this operator is the adjoint of Ψr: 𝑋 → 𝐻𝐴𝑟

∞ . 

The next proposition now follows immediately from Proposition 2.4. 
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Proposition 2.5. 

(Ψr)∗Ψr = 1𝑋: 𝑋 → 𝑋 

Let 𝛼𝑟: ℕ → ℕ × ℕ, 𝛼𝑟(𝑛) = (𝛼1
r(𝑛), 𝛼2

r(𝑛)) be a bijection. We then have an associated unitary isomorphism of 

Hilbert 𝐶∗-modules 𝑈𝛼𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟
∞  defined by 

𝑈𝛼𝑟: 𝑒𝑛 ⋅ 𝑎
𝑟 ↦ 𝑒𝛼1r(𝑛) ⋅ (𝑒𝛼2r(𝑛) ⋅ 𝑎

𝑟)                            (2.2) 

The continuous absorption theorem can now be stated and proved: 

Theorem 2.1 (see [Jka10]). There exists a bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟 . 

Proof. Define the bounded adjointable operator 𝑊:= 𝑈𝛼𝑟
∗ Ψr: 𝑋 → 𝐻𝐴𝑟 . The result of the theorem then follows 

immediately from Proposition 2.5. 

Notice that 𝑃:= 𝑊𝑊∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  is an orthogonal projection and that 𝑊 induces a unitary isomorphism of 

Hilbert 𝐶∗-modules 𝑊:𝑋 → 𝑃𝐻𝐴𝑟  where 𝑃𝐻𝐴𝑟 ⊆ 𝐻𝐴𝑟  has inherited the structure of a Hilbert 𝐶∗-module from 

𝐻𝐴𝑟 . 

The result of Theorem 2.1 can be strengthened slightly. Indeed, we have the following proposition (which is 

non-trivial since we are in a non-unital setting): 

Proposition 2.6 (see [Jka10]). There exists a square sequence {𝜁𝑘
2}𝑘=1

∞  of elements in 𝑋 such that 

𝑊(𝜂2) = {⟨𝜁𝑘
2, 𝜂2⟩}𝑘=1

∞  for all 𝜂2 ∈ 𝑋 

Proof. It suffices to fix an 𝑛 ∈ ℕ and find a sequence {𝜈𝑚
𝑟 }𝑟,𝑚=1

∞  in 𝑋 such that 

Ψ𝑛
r(𝜂2) = {⟨𝜈𝑚

𝑟 , 𝜂2⟩}𝑟,𝑚=1
∞  for all 𝜂2 ∈ 𝑋 

To find the elements 𝜈𝑚
𝑟 ∈ 𝑋, let us also fix an 𝑚 ∈ ℕ and consider the bounded adjointable operator 𝑃𝑚: 𝐻𝐴𝑟 →

𝐴𝑟 , 𝑃𝑚: ∑𝑟,𝑘=1
∞  𝑒𝑘𝑎𝑘

r ↦ 𝑎𝑚
𝑟 . We then have that 

𝑃𝑚Ψ𝑛
r = 𝑃𝑚√𝐺𝑛

r − 𝐺𝑛−1
𝑟 Φr 

Notice now that the bounded adjointable operator 𝑃𝑚√𝐺𝑛
r − 𝐺𝑛−1

𝑟 Φr: 𝑋 → 𝐴𝑟 is compact (since Φr: 𝑋 → 𝐻𝐴𝑟  is 

compact). As a consequence, there exists an element 𝜈𝑚
𝑟 ∈ 𝑋 with 

(𝑃𝑚√𝐺𝑛
r − 𝐺𝑛−1

𝑟 Φr)(𝜂2) = ⟨𝜈𝑚
𝑟 , 𝜂2⟩  for all 𝜂2 ∈ 𝑋 

This proves the proposition. 

Remark 2.7. The sequence {𝜁𝑘
2}𝑘=1

∞  in 𝑋 which implements 𝑊:𝑋 → 𝐻𝐴𝑟  is a "standard normalized tight frame" 

in the terminology of M. Frank and D. R. Larson, see [FrLa02, Definition 2.1] (notice however that we never 

assume that 𝐴𝑟 is unital). 

III. Differentiable Absorption 

For𝑋 be a countably generated Hilbert 𝐶∗-module over a 𝐶∗-algebra 𝐴𝑟.Furthermore, let 𝐵𝑟  be a 𝐶∗-algebra and 

let 𝜌: 𝐴𝑟 → 𝐵𝑟  be an injective ∗-homomorphism. 

The "differentiable structure" on 𝐴𝑟 will come in the form of a dense ∗-subalgebra 𝒜 ⊆ 𝐴𝑟 and a linear map 

𝛿:𝒜 → 𝐵𝑟 such that 

𝛿(𝑎1
r ⋅ 𝑎2

𝑟) = 𝛿(𝑎1
𝑟) ⋅ 𝜌(𝑎2

𝑟) + 𝜌(𝑎1
𝑟) ⋅ 𝛿(𝑎2

𝑟)  and 𝛿((𝑎𝑟)∗) = −𝛿(𝑎𝑟)∗ 
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for all 𝑎𝑟 , 𝑎1
𝑟 , 𝑎2

r ∈ 𝒜. The derivation 𝛿:𝒜 → 𝐵𝑟  is required to be closed. Thus, whenever {𝑎𝑛
𝑟 } is a sequence in 

𝒜 such that 𝛿(𝑎𝑛
𝑟) → 𝑏𝑟 and 𝑎𝑛

r → 0 for some 𝑏𝑟 ∈ 𝐵𝑟  we may conclude that 𝑏𝑟 = 0. 

We let (𝐴𝑟)𝛿  denote the completion of 𝒜 with respect to the norm 

∥⋅∥𝛿:𝒜 → [0,∞) ∥ 𝑎𝑟 ∥𝛿: =∥ 𝑎
𝑟 ∥ +∥ 𝛿(𝑎𝑟) ∥ 

It follows by closedness that 𝛿:𝒜 → 𝐵𝑟  extends to a well-defined derivation 𝛿 ∶  (𝐴𝑟)𝛿 → 𝐵𝑟. Remark that 

∥∥(𝑎𝑟)∗∥∥𝛿 =∥ 𝑎
𝑟 ∥𝛿  for all 𝑎𝑟 ∈ (𝐴𝑟)𝛿 , but that the 𝐶∗-identity does not hold for the norm ∥⋅∥𝛿. 

The countably generated Hilbert 𝐶∗-module 𝑋 is assumed to be compatible with the differentiable structure on 

𝐴𝑟 by the following condition: There exists a sequence {𝜉𝑛
2}𝑛=1

∞  in 𝑋 such that 

⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩ ∈ 𝒜  for all 𝑛,𝑚 ∈ ℕ 

and such that span𝐴𝑟 {𝜉𝑛
2 ∣ 𝑛 ∈ ℕ} is dense in 𝑋. 

Without loss of generality, we may then assume that 

∥∥⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩∥∥𝛿 ≤
1

𝑛2⋅𝑚2  for all 𝑛,𝑚 ∈ ℕ                                       (3.1) 

The conditions stated above will remain in effect throughout this section. 

Let 𝑀∞(𝒜) denote the ∗-algebra of all finite matrices over 𝒜. We will think of 𝑀∞(𝒜) as a dense ∗-subalgebra 

of the compact operators 𝒦(𝐻𝐴𝑟) on the Hilbert 𝐶∗-module 𝐻𝐴𝑟 . There is a unique injective ∗-homomorphism 

𝜌:𝒦(𝐻𝐴𝑟) → 𝒦(𝐻𝐵𝑟) such that 𝜌({𝑎𝑖𝑗
𝑟 }) = {𝜌(𝑎𝑖𝑗

𝑟 )} for all finite matrices {𝑎𝑖𝑗
𝑟 } ∈ 𝑀∞(𝒜). 

Likewise, we may extend 𝛿:𝒜 → 𝐵𝑟 to a closed derivation 𝛿:𝑀∞(𝒜) → 𝒦(𝐻𝐵𝑟). 

We will apply the notation 𝒦(𝐻𝐴𝑟)𝛿
 for the Banach ∗-algebra obtained as the completion of 𝑀∞(𝒜) with 

respect to the norm ∥⋅∥𝛿: 𝑎
𝑟 ↦∥ 𝑎𝑟 ∥ +∥ 𝛿(𝑎𝑟) ∥. 

The unitalization of 𝒦(𝐻𝐴𝑟)𝛿
 is denoted by �̂�(𝐻𝐴𝑟)𝛿

̃ . This unital *-algebra becomes a unital Banach ∗-algebra 

when equipped with the norm ∥⋅∥𝛿:𝒦(𝐻𝐴𝑟)𝛿
̃ → [0,∞), ∥ (𝑎𝑟 , 1 + 𝜖) ∥𝛿: =∥ 𝑎

𝑟 + 1 + 𝜖 ∥ +∥ 𝛿(𝑎𝑟) ∥. Here we 

are thinking of 𝑎𝑟 + 1 + 𝜖 as a bounded adjointable operator on the standard module 𝐻𝐴𝑟 . Notice that our ∗-

homomorphism 

𝜌:𝒦(𝐻𝐴𝑟) → 𝒦(𝐻𝐵𝑟) can be extended uniquely to a unital ∗-homomorphism 

𝜌:𝒦(𝐻𝐴𝑟)
̃̂ → ℒ(𝐻𝐵𝑟) and that our derivation 𝛿:𝑀∞(𝒜) → 𝒦(𝐻𝐵𝑟) can be extended uniquely to a closed 

derivation 𝛿:𝒦(𝐻𝐴𝑟)𝛿
̃̂ → ℒ(𝐻𝐵𝑟) such that 𝛿((0,1 + 𝜖)) = 0 for all (1 + 𝜖) ∈ ℂ. 

We are now prove the first result: 

Lemma 3.1 (see [Jka10]). The sequence of finite matrices {{⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑁 }

𝑁=1

∞
 converges to an element 𝐺𝑟 ∈

𝒦(𝐻𝐴𝑟)𝛿
̃̂  with positive spectrum. 

Proof. We first remark that {⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑁  determines a positive element in the 𝐶∗-algebra 𝑀𝑁(𝐴𝑟) for all 𝑁 ∈

ℕ. 

Next, we notice that the spectrum of an element 𝑎𝑟  in the unital Banach algebra 𝑀𝑁((𝐴𝑟)𝛿)̃̂  agrees with the 

spectrum of 𝑎𝑟  as an element in the unital 𝐶∗-algebra 𝑀𝑁(𝐴𝑟)̃ . 
̂
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This is a consequence of spectral invariance, see [BLCU91, Proposition 3.12]. 

These observations imply that {⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑁 ∈ 𝑀𝑁((𝐴𝑟)𝛿)̃̂  has positive spectrum for all 𝑁 ∈ ℕ. It is therefore 

enough to show that the sequence {{⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑁 }

𝑁=1

∞
 is Cauchy in𝒦(𝐻𝐴𝑟)𝛿

̃ . 

To this end, let 𝑁,𝑀 ∈ ℕ with 𝑀 ≥ 𝑁 be given and notice that 

∥∥{⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑀 − {⟨𝜉𝑛

2, 𝜉𝑚
2 ⟩}𝑛,𝑚=1

𝑁 ∥∥
𝛿

≤ ∑  

𝑀

𝑛=𝑁+1

  ∑  

𝑀

𝑚=1

  ∥∥⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩∥∥𝛿 +∑  

𝑁

𝑛=1

  ∑  

𝑀

𝑚=𝑁+1

  ∥∥⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩∥∥𝛿

≤ 2 ⋅ ∑  

∞

𝑚=1

 
1

𝑚2
⋅ ∑  

𝑀

𝑛=𝑁+1

 
1

𝑛2

 

where the last inequality follows by (3.1). This shows that the sequence {{⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩}𝑛,𝑚=1
𝑁 }

𝑁=1

∞
 is Cauchy in 

𝒦(𝐻𝐴𝑟)𝛿
̃ . 

For each 𝑛 ∈ ℕ, we define the element 

𝐻𝑛 : = (1/𝑛 + 𝐺𝑟)−1 − (1/(𝑛 − 1) + 𝐺𝑟)−1

= (1 + 𝑛 ⋅ 𝐺𝑟)−1 ⋅ (1 + (𝑛 − 1) ⋅ 𝐺𝑟)−1
 

in 𝒦(𝐻𝐴𝑟)𝛿
̃̂ , where 𝐻1: = (1 + 𝐺𝑟)−1. Since the spectrum of 𝐻𝑛 is strictly positive, it has a well-defined square 

root in 𝒦(𝐻𝐴𝑟)𝛿
̃̂ , 

√𝐻𝑛 = (1 + 𝑛 ⋅ 𝐺𝑟)−1/2 ⋅ (1 + (𝑛 − 1) ⋅ 𝐺𝑟)−1/2 

Lemma 3.2 (see [Jka10]). We have the expression 

𝛿((1 +𝑛𝐺𝑟)−1/2)

= −
𝑛

𝜋
⋅ ∫  

∞

0

∑

𝑟

  (1 + 𝜖)−
1

2 ⋅ 𝜌((2 + 𝜖 + 𝑛𝐺𝑟)−1) ⋅ 𝛿(𝐺𝑟) ⋅ 𝜌((2 + 𝜖 + 𝑛 ⋅ 𝐺𝑟)−1)𝑑(1 + 𝜖)
 

where the integral converges in the operator norm on ℒ(𝐻𝐵𝑟). 

Proof. The element (1 + 𝑛𝐺𝑟)−1/2 ∈ 𝒦(𝐻𝐴𝑟)𝛿
̃̂  can be rewritten as the integral 

1

𝜋
⋅ ∫  

∞

0

∑

𝑟

(1 + 𝜖)−
1

2 ⋅ (2 + 𝜖 + 𝑛 ⋅ 𝐺𝑟)−1𝑑(1 + 𝜖) 

which converges absolutely in the norm ∥⋅∥𝛿:𝒦(𝐻𝐴𝑟)𝛿
̃̂ → [0,∞). It is therefore enough to check that 

𝛿((2 + 𝜖 + 𝑛 ⋅ 𝐺𝑟)−1) = −𝜌((2 + 𝜖 + 𝑛𝐺𝑟)−1) ⋅ 𝑛 ⋅ 𝛿(𝐺𝑟) ⋅ 𝜌((2 + 𝜖 + 𝑛 ⋅ 𝐺𝑟)−1) 

But this follows from a standard computation, using that 𝛿:𝒦(𝐻𝐴𝑟)𝛿
̃̂ → ℒ(𝐻𝐵𝑟) is a derivation with respect to 

𝜌:𝒦(𝐻𝐴𝑟)
̃̂ → ℒ(𝐻𝐵𝑟). 

The estimate in the following lemma is of central importance for the differentiable absorption theorem. 

Lemma 3.3 (see [Jka10]). Let 𝜀 ∈ (0,1/2). There exists a constant 𝐶𝜀 > 0 such that 
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∥∥𝛿(√𝐻𝑛 ⋅ (𝐺
𝑟)2)∥∥ ≤ 𝐶𝜀 ⋅

1

𝑛1−𝜀
 

for all (2 + 𝜖) ∈ ℕ. 

Proof. Let 𝜖 ≥ 0. Using that 𝛿:𝒦(𝐻𝐴𝑟)𝛿
̃̂ → ℒ(𝐻𝐵𝑟

) is a derivation we obtain that 

𝛿(√𝐻2+𝜖 ⋅ (𝐺
𝑟)2) = 𝛿(𝐺𝑟) ⋅ √𝐻2+𝜖 ⋅ 𝐺

𝑟 + 𝐺𝑟 ⋅ √𝐻2+𝜖 ⋅ 𝛿(𝐺
𝑟)

+𝐺𝑟 ⋅ 𝛿((1 + (2 + 𝜖)𝐺𝑟)−1/2) ⋅ (1 + (1 + 𝜖)𝐺𝑟)−1/2 ⋅ 𝐺𝑟

+𝐺𝑟 ⋅ (1 + (2 + 𝜖)𝐺𝑟)−1/2 ⋅ 𝛿((1 + (1 + 𝜖)𝐺𝑟)−1/2) ⋅ 𝐺𝑟

     (3.2) 

where we have suppressed the unital∗-homomorphism 𝜌:𝒦(𝐻𝐴𝑟)
̃̂ → ℒ(𝐻𝐵𝑟

). 

 Now , since 𝐺𝑟 ∈ 𝒦(𝐻𝐴𝑟)𝛿
 determines a positive element in the unital 𝐶∗-algebra 𝒦(𝐻𝐴𝑟)

̃̂ , we have that 

∥∥𝐺𝑟 ⋅ (2 + 𝜖 + (2 + 𝜖)𝐺𝑟)−1∥∥ ≤
1

2 + 𝜖
 

for all 𝜖 ≥ −1. 

Using the above estimate we obtain the following inequalities 

∥ 𝛿(𝐺𝑟) ⋅ √𝐻2+𝜖 ⋅ 𝐺
𝑟 + 𝐺𝑟 ⋅ √𝐻2+𝜖 ⋅ 𝛿(𝐺

𝑟) ∥

≤ 2 ⋅∥ 𝛿(𝐺𝑟) ∥⋅ ∥∥(1 + (1 + 𝜖)𝐺𝑟)−1/2(𝐺𝑟)1/2∥∥ ⋅ ∥∥(1 + (2 + 𝜖)𝐺𝑟)−1/2(𝐺𝑟)1/2∥∥

≤ 2 ⋅∥ 𝛿(𝐺𝑟) ∥⋅
1

√2 + 𝜖 ⋅ √1 + 𝜖

 

To continue, we apply Lemma 3.2 to compute as follows, 

𝐺𝑟 ⋅ 𝛿((1 + (2 + 𝜖)𝐺𝑟)−1/2) ⋅ (1 + (1 + 𝜖)𝐺𝑟)−1/2 ⋅ 𝐺𝑟

= −
1

𝜋
⋅ ∫  

∞

0

  (1 + 𝜖)−
1

2 ⋅ ((2 + 𝜖)𝐺𝑟) ⋅ (2 + 𝜖 + (2 + 𝜖)𝐺𝑟)−1 ⋅ 𝛿(𝐺𝑟)

⋅ (𝐺𝑟)
1

2
−𝜀 ⋅ (2 + 𝜖 + (2 + 𝜖)𝐺𝑟)−1𝑑(1 + 𝜖)

⋅ (𝐺𝑟)1/2+𝜀 ⋅ (1 + (1 + 𝜖)𝐺𝑟)−1/2

 

As a consequence, we obtain that 

∥∥𝐺𝑟 ⋅ 𝛿((1 + (2 + 𝜖)𝐺𝑟)−1/2) ⋅ (1 + (1 + 𝜖)𝐺𝑟)−1/2 ⋅ 𝐺𝑟∥∥

≤
1

𝜋
⋅ ∫  

∞

0

∑

𝑟

  (1 + 𝜖)
1

2 ⋅∥ 𝛿(𝐺𝑟) ∥⋅ (2 + 𝜖)−
1

2
−𝜀 ⋅ ∥∥

∥(𝐺𝑟)
1

2
−𝜀 ⋅ (2 + 𝜖 + (2 + 𝜖)𝐺𝑟)−

1

2
+𝜀
∥∥
∥ 𝑑(1 + 𝜖)

⋅ ∥∥(𝐺𝑟)𝜀∥∥ ⋅
1

√1 + 𝜖

 

≤∑

𝑟

∥ 𝛿(𝐺𝑟) ∥⋅ ∥(𝐺𝑟)𝜀∥ ⋅
1

(1 + 𝜖)
1

2 ⋅ (2 + 𝜖)
1

2
−𝜀 ⋅ 𝜋

⋅ ∫  
∞

0

(1 + 𝜖)−
1

2(2 + 𝜖)−
1

2
−𝜀𝑑(1 + 𝜖) 

A similar computation shows that 

∥∥𝐺𝑟 ⋅ (1 + (2 + 𝜖)𝐺𝑟)−1/2 ⋅ 𝛿((1 + (1 + 𝜖)𝐺𝑟)−1/2) ⋅ 𝐺𝑟∥∥

≤∑

𝑟

∥ 𝛿(𝐺𝑟) ∥⋅ ∥(𝐺𝑟)𝜀∥ ⋅
1

(1 + 𝜖)
1

2 ⋅ (2 + 𝜖)
1

2
−𝜀 ⋅ 𝜋

⋅ ∫  
∞

0

  (1 + 𝜖)−
1

2(2 + 𝜖)−
1

2
−𝜀𝑑(1 + 𝜖)
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A combination of all the above estimates and the identity in (3.2) proves the claim of the proposition. 

We have that the compact operators (Φr)∗: 𝐻𝐴𝑟 → 𝑋 and Φr: 𝑋 → 𝐻𝐴𝑟 are defined by (Φr)∗: {𝑎𝑘
𝑟}𝑟,𝑘=1

∞ ↦

∑𝑘=1
∞ ∑𝑟  𝜉𝑘

2 ⋅ 𝑎𝑘
𝑟  and Φr: 𝜂2 ↦ {⟨𝜉𝑘

2, 𝜂2⟩}𝑘=1
∞ . 

Furthermore, for each (2 + 𝜖) ∈ ℕ, we have the compact operators Ψ2+𝜖
r : = √𝐻2+𝜖Φ

r: 𝑋 → 𝐻𝐴𝑟 and (Ψr)2+𝜖
∗ : =

(Φr)∗√𝐻2+𝜖: 𝐻𝐴𝑟 → 𝑋. 

Finally, for each 𝑁 ∈ ℕ we have the compact operators 𝑉𝑁: 𝑋 → 𝐻𝐴𝑟
∞  and 𝑉𝑁

∗ : 𝐻𝐴𝑟
∞ → 𝑋 defined by 𝑉𝑁: 𝜂

2 ↦

{Ψ2+𝜖
r (𝜂2)}𝑟,𝜖=−1

𝑁  and 𝑉𝑁
∗: {𝑥2+𝜖

2 }𝜖=−1
∞ ↦ ∑𝑟,𝜖=−1

𝑁  (Ψr)2+𝜖
∗ (𝑥2+𝜖

2 ). It was proved in Section 2 that the sequence 

{𝑉𝑁}𝑁=1
∞  converges strongly to a bounded adjointable isometry Ψr: 𝑋 → 𝐻𝐴𝑟

∞ . The adjoint of Ψr is given by 

(Ψr)∗: ∑𝜖=−1
∞  𝑒2+𝜖 ⋅ 𝑥2+𝜖

2 ↦ ∑𝑟,𝜖=−1
∞  (Ψr)2+𝜖

∗ (𝑥2+𝜖
2 ). 

For each 𝑁 ∈ ℕ we define the compact operator 

𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗) ∈ 𝒦(𝐻𝐵𝑟

, 𝐻𝐵𝑟
∞) 𝛿(diag(𝐺𝑟) 𝑉𝑁(Φ

r)∗): 𝑥2 ↦ ∑  

𝑁

𝑟,𝜖=−1

𝑒2+𝜖 ⋅ 𝛿((𝐺
𝑟)2√𝐻2+𝜖)(𝑥

2) 

where diag(𝐺𝑟):𝐻𝐴𝑟
∞ → 𝐻𝐴𝑟

∞  refers to the (non-compact) diagonal operator diag(𝐺𝑟) : ∑𝜖=−1
∞  𝑒2+𝜖𝑥2+𝜖

2 ↦

∑𝜖=−1
∞ ∑𝑟   𝑒2+𝜖𝐺

𝑟(𝑥2+𝜖
2 ) induced by the (compact operator) 𝐺𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟 . 

We note the following consequence of the above Lemma 3.3: 

Lemma 3.4 (see [Jka10]). The sequence of compact operators {𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗)}𝑟,𝑁=1

∞  is a Cauchy 

sequence in 𝒦(𝐻𝐵𝑟 , 𝐻𝐵𝑟
∞). 

Proof. By Lemma 3.3 we may choose a constant 𝜖 ≥ 0 such that 

∥∥𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗)(𝑥2) − 𝛿(diag(𝐺𝑟)𝑉𝑀(Φ

r)∗)(𝑥2)∥∥
2
=
∥
∥
∥
∥
∥

∑  

𝑀

𝑟,𝑛=𝑁+1

  𝑒𝑛𝛿((𝐺
𝑟)2√𝐻𝑛)(𝑥

2)
∥
∥
∥
∥
∥
2

=
∥
∥
∥
∥
∥

∑  

𝑀

𝑟,𝑛=𝑁+1

  ⟨𝛿((𝐺𝑟)2√𝐻𝑛)𝑥
2, 𝛿((𝐺𝑟)2√𝐻𝑛)𝑥

2⟩
∥
∥
∥
∥
∥
≤ (1 + 𝜖) ∑  

𝑀

𝑛=𝑁+1

 
1

𝑛3/2
∥ 𝑥2 ∥2

 

for all 𝑁,𝑀 ∈ ℕ with 𝑀 ≥ 𝑁 and all 𝑥2 ∈ 𝐻𝐵𝑟 . This proves the lemma. 

The next lemma is a consequence of Lemma 2.3. 

Lemma 3.5 (see [Jka10]). The sequence of compact operators {𝑉𝑁(Φ
r)∗}𝑟,𝑁=1

∞  converges in operator norm to 

Ψr(Φr)∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟
∞ . 

Proof. This follows since Φr: 𝑋 → 𝐻𝐴𝑟  (and hence (Φr)∗: 𝐻𝐴𝑟 → 𝑋 ) is compact and since the bounded sequence 

{𝑉𝑁}𝑁=1
∞  converges strongly to Ψr: 𝑋 → 𝐻𝐴𝑟

∞ . 

Proposition 3.6 (see [Jka10]). The sequence {diag(𝐺𝑟)𝑉𝑁𝑉𝑁
∗}𝑟,𝑁=1
∞  in 𝒦(𝐻𝐴𝑟

∞) converges in operator norm to 

diag(𝐺𝑟)Ψr(Ψr)∗: 𝐻𝐴𝑟
∞ → 𝐻𝐴𝑟

∞ . 

Proof. Let 𝑁 ∈ ℕ and remark that 

{diag(𝐺𝑟)𝑉𝑁𝑉𝑁
∗}𝑛,𝑚 = (𝐺𝑟)2√𝐻𝑚 ⋅ √𝐻𝑛 = √𝐻𝑚Φ

r(Φr)∗Φr(Φr)∗√𝐻𝑛 

for all 𝑛,𝑚 ∈ {1, … , 𝑁}. It follows that diag(𝐺𝑟)𝑉𝑁𝑉𝑁
∗ = 𝑉𝑁(Φ

r)∗Φr𝑉𝑁
∗. The result of the proposition is now a 

consequence of Lemma 3.5. 
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In order to formulate our next result we reiterate the construction of the Banach *-algebra 𝒦(𝐻𝐴𝑟)𝛿
. Indeed, we 

may consider the finite matrices 𝑀∞ (𝒦(𝐻𝐴𝑟)𝛿
) as a dense ∗-subalgebra of the compact operators 𝒦(𝐻𝐴𝑟

∞) on 

the standard module 𝐻𝐴𝑟
∞ . The *-homomorphism 𝜌:𝒦(𝐻𝐴𝑟) → 𝒦(𝐻𝐵𝑟) can then be extended uniquely to a ∗-

homomorphism 𝜌:𝒦(𝐻𝐴𝑟
∞) → 𝒦(𝐻𝐵𝑟

∞) such that 𝜌{𝑥𝑖𝑗
2 } = {𝜌(𝑥𝑖𝑗

2 )} for all {𝑥𝑖𝑗
2 } ∈ 𝑀∞ (𝒦(𝐻𝐴𝑟)). Likewise, we 

may extend 𝛿 uniquely to a closed derivation 𝛿:𝑀∞ (𝒦(𝐻𝐴𝑟)𝛿
) → 𝒦(𝐻𝐵𝑟

∞) such that 𝛿{𝑥𝑖𝑗
2 }: = {𝛿(𝑥𝑖𝑗

2 )}. We 

denote the Banach *-algebra defined as the completion of 𝑀∞ (𝒦(𝐻𝐴𝑟)𝛿
) with respect to the norm ∥⋅∥𝛿: 𝑥

2 ↦∥

𝑥2 ∥ +∥ 𝛿(𝑥2) ∥ by 𝒦(𝐻𝐴𝑟
∞)

𝛿
. 

We note that we have an isometric isomorphism of Banach∗-algebras 𝒦(𝐻𝐴𝑟
∞)

𝛿
→ 𝒦(𝐻𝐴𝑟)𝛿

 defined by 

conjugasion with the unitary operator 𝑈𝛼𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟
∞  introduced in (2.2). 

Proposition 3.7 (see [Jka10]). The sequence {diag(𝐺𝑟)2𝑉𝑁𝑉𝑁
∗}𝑟,𝑁=1
∞  in 𝑀∞ (𝒦(𝐻𝐴𝑟)𝛿

) is Cauchy in 𝒦(𝐻𝐴𝑟
∞)

𝛿
. 

Proof. We know from Proposition 3.6 that diag(𝐺𝑟)2𝑉𝑁𝑉𝑁
∗ converges to diag(𝐺𝑟)2Ψr(Ψr)∗ in 𝒦(𝐻𝐴𝑟

∞). It is 

therefore enough to show that {𝛿(diag(𝐺𝑟)2𝑉𝑁𝑉𝑁
∗)}𝑟,𝑁=1

∞  is a Cauchy sequence in 𝒦(𝐻𝐵𝑟
∞ ). 

Let now 𝑁 ∈ ℕ and notice that 

(diag(𝐺𝑟) 𝑉𝑁(Φ
r)∗)(𝑥2) = ∑  

𝑁

𝑛=1

∑

𝑟

𝑒𝑛 ⋅ (𝐺
𝑟√𝐻𝑛𝐺

𝑟)(𝑥2) 

= ∑  

𝑁

𝑛=1

∑

𝑟

𝑒𝑛 ⋅ (√𝐻𝑛Φ
r(Φr)∗𝐺𝑟)(𝑥2) = (𝑉𝑁(Φ

r)∗𝐺𝑟)(𝑥2) 

for all 𝑥2 ∈ 𝐻𝐴𝑟 . We thus have that diag(𝐺𝑟)𝑉𝑁(Φ
r)∗ = 𝑉𝑁(Φ

r)∗𝐺𝑟 . 

We may therefore compute as follows, 

𝛿(diag(𝐺𝑟)2𝑉𝑁𝑉𝑁
∗)

= 𝛿(diag(𝐺𝑟) 𝑉𝑁(Φ
r)∗Φr𝑉𝑁

∗) = 𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗)Φr𝑉𝑁

∗ + diag(𝐺𝑟)𝑉𝑁(Φ
r)∗𝛿(Φr𝑉𝑁

∗)

= 𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗)Φr𝑉𝑁

∗ + 𝑉𝑁(Φ
r)∗𝛿(𝐺𝑟Φr𝑉𝑁

∗) − 𝑉𝑁(Φ
r)∗𝛿(𝐺𝑟)Φr𝑉𝑁

∗

= 𝛿(diag(𝐺𝑟)𝑉𝑁(Φ
r)∗)Φr𝑉𝑁

∗ − 𝑉𝑁(Φ
r)∗𝛿(diag(𝐺𝑟) 𝑉𝑁(Φ

r)∗)∗ − 𝑉𝑁(Φ
r)∗𝛿(𝐺𝑟)Φr𝑉𝑁

∗

 

The result of the proposition now follows by Lemma 3.5 and Lemma 3.4. 

Lemma 3.8 (see [Jka10]). The image of (Ψr)∗ diag(𝐺𝑟)Ψr: 𝑋 → 𝑋 is dense in 𝑋 and diag(𝐺𝑟)Ψr(Ψr)∗ =
Ψr(Ψr)∗diag(𝐺𝑟). 

Proof. By Proposition 3.6 we know that diag(𝐺𝑟)Ψr(Ψr)∗ = lim𝑁→∞  diag(𝐺
𝑟)𝑉𝑁𝑉𝑁

∗ and that 

Ψr(Ψr)∗diag(𝐺𝑟) = lim𝑁→∞  𝑉𝑁𝑉𝑁
∗diag(𝐺𝑟). To show that diag(𝐺𝑟)(Ψr)∗ = Ψr(Ψr)∗diag(𝐺𝑟) is therefore 

suffices to show that 𝑉𝑁𝑉𝑁
∗diag(𝐺𝑟) = diag(𝐺𝑟)𝑉𝑁𝑉𝑁

∗ for all 𝑁 ∈ ℕ. But this follows by noting that 

(𝑉𝑁𝑉𝑁
∗diag(𝐺𝑟))𝑛,𝑚 = √𝐻𝑛𝐺

𝑟√𝐻𝑚𝐺
𝑟 = 𝐺𝑟√𝐻𝑛𝐺

𝑟√𝐻𝑚 = (diag(𝐺𝑟)𝑉𝑁𝑉𝑁
∗)𝑛,𝑚 

for all 𝑁 ∈ ℕ and all 𝑛,𝑚 ∈ {1, … , 𝑁}. 

In order to prove that the image of (Ψr)∗ diag(𝐺𝑟)Ψr: 𝑋 → 𝑋 is dense we note that 

span𝐴𝑟 {𝜉
2 ∈ Im((Φr)∗𝐺𝑟(𝐺𝑟 + 1/𝑛)−1) ∣ 𝑛 ∈ ℕ} ⊆ span𝐴𝑟 {𝜉

2 ∈ Im((Φr)∗𝐺𝑟√𝐻𝑛) ∣ 𝑛 ∈ ℕ}

⊆ Im((Ψr)∗diag(𝐺𝑟)) = Im((Ψr)∗ diag(𝐺𝑟)Ψr(Ψr)∗) ⊆ Im((Ψr)∗ diag(𝐺𝑟)Ψr)
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Since the image of (Φr)∗: 𝐻𝐴𝑟 → 𝑋 is dense by the standing conditions on our Hilbert 𝐶∗-module 𝑋 it therefore 

suffices to show that the sequence {(Φr)∗𝐺𝑟(1/𝑛 + 𝐺𝑟)−1}𝑟,𝑛=1
∞  of bounded adjointable operators converges in 

operator norm to (Φr)∗: 𝐻𝐴𝑟 → 𝑋. But this follows since 

1

𝑛
∥∥(Φr)∗(1/𝑛 + 𝐺𝑟)−1∥∥ ≤

1

√𝑛
 

for all 𝑛 ∈ ℕ. See the proof of Lemma 2.2. 

We now prove the differentiable absorption theorem. This is the first main result. 

Theorem 3.1 (see [Jka10]). There exists a bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟  and a positive selfadjoint 

bounded operator 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  such that 

(1) 𝐾𝑟𝑃 = 𝑃𝐾𝑟. 

(2) 𝑊∗𝐾𝑟𝑊:𝑋 → 𝑋 has dense image. 

(3) 𝑃𝐾𝑟 ∈ 𝒦(𝐻𝐴𝑟). 

(4) 𝑃𝐾r
2 ∈ 𝒦(𝐻𝐴𝑟)𝛿

. 

where 𝑃:= 𝑊𝑊∗: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  is the associated orthogonal projection. 

Proof. Let 𝑈𝛼𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟
∞  denote the unitary operator introduced in (2.2). The bounded adjointable operator 

𝑊:= 𝑈𝛼𝑟
∗ Ψr: 𝑋 → 𝐻𝐴𝑟  is then an isometry. Furthermore, define the positive selfadjoint bounded operator 𝐾𝑟 ∶=

𝑈𝛼𝑟
∗ diag(𝐺𝑟)𝑈𝛼𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟 . The result of the theorem then follows by Lemma 3.8, Proposition 3.6, and 

Proposition 3.7. 

Remark 3.9. As in Proposition 2.6, we may find a sequence {𝜁𝑘
2}𝑘=1

∞  of elements in 𝑋 which implements the 

isometry 𝑊:𝑋 → 𝐻𝐴𝑟  in the sense that 

𝑊(𝜂2) = {⟨𝜁𝑘
2, 𝜂2⟩}𝑘=1

∞  for all 𝜂2 ∈ 𝑋 

IV. Grassmann Connections 

We then let 𝑊:𝑋 → 𝐻𝐴𝑟  and 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  be fixed bounded adjointable operators which satisfy the properties 

stated in Theorem 3.1. Furthermore, we let {𝜁𝑘
2}𝑘=1

∞  be a sequence in 𝑋 which implements 𝑊, see Remark 3.9. 

We shall in this section see how to construct a dense (𝐴𝑟)𝛿-submodule of 𝒳 ⊆ 𝑋 together with a Hermitian 𝛿-

connection on 𝒳. 

In order to construct 𝒳 we recall the following, see [KALE13, Definition 3.3] and [Mes14, Page 119]: 

Definition 4.1. The standard module over (𝐴𝑟)𝛿 consists of all sequences {𝑎𝑛
𝑟 }𝑟,𝑛=1

∞  of elements in (𝐴𝑟)𝛿  such 

that 

{𝑎𝑛
𝑟 } ∈ 𝐻𝐴𝑟  and {𝛿(𝑎𝑛

𝑟 )} ∈ 𝐻𝐵𝑟 

The standard module over (𝐴𝑟)𝛿  is denoted by 𝐻(𝐴𝑟)𝛿
. 

The standard module 𝐻(𝐴𝑟)𝛿
 is a dense (𝐴𝑟)𝛿-submodule of the standard module 𝐻𝐴𝑟 . Furthermore, it was 

proved in [KALE13, Page 505] that 

⟨𝑥2, 𝑦2⟩ ∈ (𝐴𝑟)𝛿  for all 𝑥2, 𝑦2 ∈ 𝐻(𝐴𝑟)𝛿
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where ⟨⋅,⋅⟩: 𝐻𝐴𝑟 × 𝐻𝐴𝑟 → 𝐴𝑟 denotes the inner product on 𝐻𝐴𝑟 . 

The standard module becomes a Banach space when equipped with the norm 

∥⋅∥𝛿: {𝑎𝑛
𝑟} ↦ ∥∥{𝑎𝑛

𝑟}∥∥ + ∥∥{𝛿(𝑎𝑛
𝑟)}∥∥ 

Each element 𝑇𝑟 ∈ 𝒦(𝐻𝐴𝑟)𝛿
⊆ 𝒦(𝐻𝐴𝑟) restricts to a bounded operator 𝑇𝑟: 𝐻(𝐴𝑟)𝛿

→ 𝐻(𝐴𝑟)𝛿
. Indeed, the map 

𝑀∞((𝐴𝑟)𝛿) × 𝐻(𝐴𝑟)𝛿
→ 𝐻(𝐴𝑟)𝛿

({𝑎𝑖𝑗
𝑟 }, {𝑏𝑛

𝑟}) ↦ {∑  

∞

𝑛=1

∑

𝑟

 𝑎𝑖𝑛
r ⋅ 𝑏𝑛

𝑟} 

satisfies the inequality ∥ 𝐴𝑟 ⋅ 𝑏
𝑟 ∥𝛿≤∥ 𝐴𝑟 ∥𝛿⋅∥ 𝑏

𝑟 ∥𝛿 for all 𝐴𝑟 ∈ 𝑀∞((𝐴𝑟)𝛿) and 𝑏𝑟 ∈ 𝐻(𝐴𝑟)𝛿
. 

We may now define the (𝐴𝑟)𝛿-submodule 𝒳 ⊆ 𝑋 as the following image: 

𝒳:= Im(𝑊∗𝐾r
2: 𝐻(𝐴𝑟)𝛿

→ 𝑋)                                         (4.1) 

The properties of 𝒳 are summarized in the next lemma: 

Lemma 4.2 (see [Jka10]). The (𝐴𝑟)𝛿-submodule 𝒳 ⊆ 𝑋 is dense. Furthermore, 𝑊(𝜉2) ∈ 𝐻(𝐴𝑟)𝛿
 and ⟨𝜉2, 𝜂2⟩ ∈

(𝐴𝑟)𝛿  for all 𝜉2, 𝜂2 ∈ 𝒳. 

Proof. To see that 𝒳 ⊆ 𝑋 is dense, recall from Theorem 3.1 that 𝑊∗𝐾𝑟𝑊:𝑋 → 𝑋 has dense image. It follows 

that 

𝑊∗𝐾𝑟
2𝑊 = 𝑊∗𝐾𝑟𝑊𝑊∗𝐾𝑟𝑊:𝑋 → 𝑋 

has dense image as well. In particular, we obtain that 𝑊∗𝐾r
2: 𝐻𝐴𝑟 → 𝑋 has dense image, thus the density of 𝒳 ⊆

𝑋 follows since 𝐻(𝐴𝑟)𝛿
⊆ 𝐻𝐴𝑟  is dense. 

Consider now 𝜉2 = (𝑊∗𝐾𝑟
2)(𝑥2) with 𝑥2 ∈ 𝐻(𝐴𝑟)𝛿

. Then 𝑊(𝜉2) = (𝑊𝑊∗𝐾𝑟
2)(𝑥2). But 𝑊𝑊∗𝐾𝑟

2 ∈ 𝒦(𝐻𝐴𝑟)𝛿
 

by Theorem 3.1 and therefore (𝑊𝑊∗𝐾𝑟
2)(𝑥2) ∈ 𝐻(𝐴𝑟)𝛿

 by the observations preceding this lemma. This proves 

the second claim of the present lemma. 

Finally, let 𝜉2, 𝜂2 ∈ 𝒳. Since 𝑊:𝑋 → 𝐻𝐴𝑟  is an isometry, we obtain that ⟨𝜉2, 𝜂2⟩ = ⟨𝑊𝜉2,𝑊𝜂2⟩. But 

⟨𝑊𝜉2,𝑊𝜂2⟩ ∈ (𝐴𝑟)𝛿 since 𝑊𝜉2,𝑊𝜂2 ∈ 𝐻(𝐴𝑟)𝛿.
. 

In order to construct the Hermitian 𝛿-connection we recall the following concepts: 

Definition 4.3. The 𝐶∗-algebra of continuous 𝛿-forms is the smallest 𝐶∗-subalgebra of 𝐵𝑟  which contains 𝜌(𝑎0
𝑟) 

and 𝛿(𝑎1
𝑟) for all 𝑎0

𝑟 , 𝑎1
r ∈ (𝐴𝑟)𝛿. This 𝐶∗-algebra is denoted by Ω𝛿(𝐴𝑟). 

We remark that Ω𝛿(𝐴𝑟) can be viewed as a Hilbert 𝐶∗-module over Ω𝛿(𝐴𝑟) in the usual way (this holds for any 

𝐶∗-algebra). Furthermore, we have an injective *homomorphism 𝜌: 𝐴𝑟 → ℒ(Ω𝛿(𝐴𝑟)) given by 𝜌(𝑎𝑟)(𝜔2) =
𝜌(𝑎𝑟) ⋅ 𝜔2 for all 𝑎𝑟 ∈ 𝐴𝑟 and 𝜔2 ∈ Ω𝛿(𝐴𝑟). 

Definition 4.4. The Hilbert 𝐶∗-module of continuous 𝑋-valued 𝛿-forms is the interior tensor product 

𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟). 

Define the bounded operator 𝑊⊗ 1:𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) → 𝐻Ω𝛿(𝐴𝑟)
, 𝜉2 ⊗̂ 𝜔2 ↦ 𝑊(𝜉2) ⋅ 𝜔2. Remark that it is non-

obvious that 𝑊⊗ 1 is adjointable since we do not assume that the left action of 𝐴𝑟 on Ω𝛿(𝐴𝑟) is essential. This 

is none-the-less the case. Indeed, it suffices to recall that 𝑊:𝑋 → 𝐻𝐴𝑟  is implemented by the sequence {𝜁𝑘
2}𝑘=1

∞  

of elements in 𝑋. We state the result as a lemma: 

Lemma 4.5. The bounded operator 𝑊⊗ 1:𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) → 𝐻Ω𝛿(𝐴𝑟)
 is adjointable with adjoint 𝑊∗ ⊗

1:𝐻Ω𝛿(𝐴𝑟)
→ 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) induced by 
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𝑊∗ ⊗ 1:∑  

𝑁

𝑘=1

𝑒𝑘 ⋅ 𝜔𝑘
2 ↦ ∑  

𝑁

𝑘=1

𝜁𝑘
2 ⊗𝜔𝑘

2 

for all finite sequences ∑𝑘=1
𝑁  𝑒𝑘 ⋅ 𝜔𝑘

2 in 𝐻Ω𝛿(𝐴𝑟)
. 

We are now in position to define our Hermitian 𝛿-connection: 

Definition 4.6. The Grassmann𝛿-connection on 𝒳 is defined by 

∇𝛿: 𝒳 → 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) ∇𝛿: = (𝑊∗ ⊗ 1)𝛿𝑊 

where 𝛿: 𝐻(𝐴𝑟)𝛿
→ 𝐻Ω𝛿(𝐴𝑟)

 is given by {𝑎𝑛
𝑟 }𝑟,𝑛=1

∞ ↦ {𝛿(𝑎𝑛
𝑟)}𝑟,𝑛=1

∞ . 

The Grassmann𝛿-connection can also be expressed by the formula 

∇𝛿: 𝜂
2 ↦ ∑  

∞

𝑘=1

𝜁𝑘
2 ⊗ 𝛿(⟨𝜁𝑘

2, 𝜂2⟩) ∀𝜂2 ∈ 𝒳 

where the sum converges in the norm on 𝑋 ⊗̂𝐴𝑟
Ω𝛿(𝐴𝑟). 

We shall soon see that the Grassmann𝛿-connection satisfies the Leibniz rule and is Hermitian. But we need a 

preliminary observation: 

Observe that each element 𝜂2 ∈ 𝑋 defines a bounded adjointable operator (𝑇𝑟)𝜂2 : 

Ω𝛿(𝐴𝑟) → 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟), (𝑇𝑟)𝜂2: 𝜔
2 ↦ 𝜂2 ⊗𝜔2. The adjoint is given by (𝑇𝑟)𝜂2

∗ : 𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝐴𝑟) →

Ω𝛿(𝐴𝑟), (𝑇𝑟)𝜂2
∗ : 𝜉2 ⊗𝜔2 ↦ ⟨𝜂2, 𝜉2⟩ ⋅ 𝜔2. 

Theorem 4.1 (see [Jka10]). The Grassmann𝛿-connection ∇𝛿: 𝒳 → 𝑋⊗Ω𝛿(𝐴𝑟) is Hermitian and satisfies the 

Leibniz rule. Thus, 

(1) 𝛿(⟨𝜉2, 𝜂2⟩) = (𝑇𝑟)𝜉2
∗ ∇𝛿(𝜂

2) − ((𝑇𝑟)𝜂2
∗ ∇𝛿(𝜉

2))
∗

 for all 𝜉2, 𝜂2 ∈ 𝒳. 

(2) ∇𝛿(𝜂
2 ⋅ 𝑎𝑟) = ∇𝛿(𝜂

2) ⋅ 𝜌(𝑎𝑟) + 𝜂2 ⊗𝛿(𝑎𝑟) for all 𝜂2 ∈ 𝒳 and 𝑎𝑟 ∈ (𝐴𝑟)𝛿 . 

Proof. Let 𝜉2, 𝜂2 ∈ 𝒳 with 𝑊𝜉2 = {𝑎𝑛
𝑟}𝑟,𝑛=1

∞  and 𝑊𝜂2 = {𝑏𝑛
𝑟}𝑟,𝑛=1
∞ . To prove the first claim, we compute as 

follows: 

𝛿(⟨𝜉2, 𝜂2⟩) = 𝛿 (∑  

∞

𝑛=1

∑

𝑟

  (𝑎𝑟)𝑛
∗ 𝑏𝑛

𝑟) = ∑  

∞

𝑛=1

∑

𝑟

  ((𝑎𝑟)𝑛
∗ ⋅ 𝛿(𝑏𝑛

𝑟) − 𝛿(𝑎𝑛
𝑟)∗ ⋅ 𝑏𝑛

𝑟)

= ⟨𝑊𝜉2, 𝛿(𝑊𝜂2)⟩ − (∑  

∞

𝑛=1

 ∑

𝑟

(𝑏𝑟)𝑛
∗ ⋅ 𝛿(𝑎𝑛

𝑟))

∗

= (𝑇𝑟)𝜉2
∗ (𝑊∗ ⊗1)𝛿(𝑊𝜂2) − ⟨𝑊𝜂2, 𝛿(𝑊𝜉2)⟩∗

= (𝑇𝑟)𝜉2
∗ ∇𝛿(𝜂

2) − ((𝑇𝑟)𝜂2
∗ ∇𝛿(𝜉

2))
∗

 

Notice that we have suppressed the injective ∗-homomorphism 𝜌: 𝐴𝑟 → 𝐵𝑟  in the above computation. 

Let now 𝜂2 ∈ 𝒳 and 𝑎𝑟 ∈ (𝐴𝑟)𝛿 . To prove the second claim, we compute as follows: 

∇𝛿(𝜂
2 ⋅ 𝑎𝑟) 
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= (𝑊∗ ⊗ 1)𝛿𝑊(𝜂2 ⋅ 𝑎𝑟) = (𝑊∗ ⊗1)((𝛿𝑊)(𝜂2) ⋅ 𝑎𝑟) + (𝑊∗ ⊗1)(𝑊(𝜂2) ⋅ 𝛿(𝑎𝑟))

= ∇𝛿(𝜂
2) ⋅ 𝑎𝑟 + 𝜂2 ⊗ 𝛿(𝑎𝑟)

 

These two computations prove the theorem. 

V. Symmetric Lifts of Unbounded Operators 

For𝑌 be a Hilbert 𝐶∗-module over a 𝐶∗-algebra 𝐵𝑟  and let 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑌 be an unbounded selfadjoint and 

regular operator. We recall that the conditions of selfadjointness and regularity are equivalent to the following 

two conditions: 

(1) The unbounded operator 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑌 is symmetric. 

(2) The unbounded operators 𝐷𝑟 ± 𝑖:𝒟(𝐷𝑟) → 𝑌 are surjective. 

See [LAN95, Proposition 10.6]. 

Let 𝑋 be a Hilbert 𝐶∗-module over a 𝐶∗-algebra 𝐴𝑟 and suppose that 𝜌: 𝐴𝑟 → ℒ(𝑌) is an injective ∗-

homomorphism. Suppose furthermore that we have a dense *-subalgebra𝒜 ⊆ 𝐴𝑟 such that 

(1) 𝜌(𝑥2)𝜉2 ∈ 𝒟(𝐷𝑟) for all 𝑥2 ∈ 𝒜 and 𝜉2 ∈ 𝒟(𝐷𝑟) and [𝐷𝑟 , 𝜌(𝑥
2)]: 𝒟(𝐷𝑟) → 𝑌 extends to a bounded 

adjointable operator 𝛿(𝑥2) for all 𝑥2 ∈ 𝒜. 

(2) There exists a sequence {𝜉𝑛
2}𝑛=1

∞  in 𝑋 which generates 𝑋 as a Hilbert 𝐶∗ module and for which 

⟨𝜉𝑛
2, 𝜉𝑚

2 ⟩ ∈ 𝒜  for all 𝑛.𝑚 ∈ ℕ 

Remark that 𝛿((𝑥2)∗) = −𝛿(𝑥2)∗ since 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑌 is selfadjoint. 

We let 𝑊:𝑋 → 𝐻𝐴𝑟  and 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟 be as in Theorem 3.1. Furthermore, we choose a sequence {𝜁𝑘
2}𝑘=1

∞  in 𝑋 

such that 

𝑊(𝜂2) = {⟨𝜁𝑘
2, 𝜂2⟩}𝑘=1

∞  for all 𝜂2 ∈ 𝑋 

Let 𝑋 ⊗̂𝐴𝑟 𝑌 denote the interior tensor product of 𝑋 and 𝑌 over 𝐴𝑟. Define the bounded adjointable operator ⊗

1:𝑋 ⊗̂𝐴𝑟 𝑌 → 𝑌∞,𝑊 ⊗ 1: 𝜉2 ⊗ 𝜂2 ↦ {𝜌(⟨𝜁𝑘
2, 𝜉2⟩)(𝜂2)}𝑘=1

∞ . The adjoint of 𝑊⊗1 is given by 𝑊∗ ⊗ 1: 𝑌∞ →

𝑋 ⊗̂ 𝐴𝑟𝑌, 𝑊∗ ⊗1: {𝜂𝑘
2}𝑘=1

∞ ↦ ∑𝑘=1
∞  𝜁𝑘

2 ⊗ 𝜂𝑘
2, where the sum converges in the norm-topologyon 𝑋 ⊗̂𝐴𝑟 𝑌, see 

Lemma 4.5. We remark that 𝑊⊗ 1:𝑋 ⊗̂𝐴𝑟
𝑌 → 𝑌∞ is an isometry in the sense that (𝑊∗ ⊗ 1)(𝑊 ⊗ 1) =

1𝑋⊗̂𝐴𝑟𝑌
. 

Define the unbounded operator diag(𝐷𝑟): 𝒟(diag(𝐷𝑟)) → 𝑌∞ by diag(𝐷𝑟): {𝜂𝑘
2} ↦ {𝐷𝑟𝜂𝑘

2}, where the domain 

is given by 

𝒟(diag(𝐷𝑟)): = {{𝜂𝑘
2} ∈ 𝑌∞ ∣ 𝜂𝑘

2 ∈ 𝒟(𝐷𝑟) and {𝐷𝑟𝜂𝑘
2} ∈ 𝑌∞} 

The unbounded operator diag(𝐷𝑟) is then again selfadjoint and regular, indeed we have that (diag(𝐷𝑟) ±
𝑖)−1: {𝜂𝑘

2} ↦ {(𝐷𝑟 ± 𝑖)−1𝜂𝑘
2} for all {𝜂𝑘

2} ∈ 𝑌∞. 

Define the right 𝐵𝑟-submodule 𝒟(1⊗∇ 𝐷𝑟) ⊆ 𝑋 ⊗̂𝐴𝑟
𝑌 by 

𝒟(1⊗ ∇∇𝐷𝑟): = {𝜎 ∈ 𝑋 ⊗̂𝐴𝑟 𝑌 ∣ (𝑊 ⊗ 1)(𝜎) ∈ 𝒟(diag(𝐷𝑟))} 

Lemma 5.1 (see [Jka10]).𝒟(1⊗∇ 𝐷𝑟) is dense in 𝑋 ⊗̂𝐴𝑟
𝑌. 

Proof. Let 𝒳 ⊆ 𝑋 be as in (4.1) and let 𝒵 ⊆ 𝑋 ⊗̂𝐴𝑟 𝑌 denote the image of the algebraic tensor product 

𝒳⊗(𝐴𝑟)𝛿
𝒟(𝐷𝑟) in 𝑋 ⊗̂𝐴𝑟

𝑌. Remark that 𝒵 ⊆ 𝑋 ⊗̂𝐴𝑟
𝑌 is dense since 𝒳 ⊆ 𝑋 is dense and 𝒟(𝐷𝑟) ⊆ 𝑌 is 

dense. It is therefore enough to show that (𝑊 ⊗ 1)(𝜉2 ⊗𝜂2) ∈ 𝒟(diag(𝐷𝑟)) for all 𝜉2 ∈ 𝒳 and 𝜂2 ∈ 𝒟(𝐷𝑟). 

Let thus 𝜉2 ∈ 𝒳 and 𝜂2 ∈ 𝒟(𝐷𝑟). We first remark that 𝜌(⟨𝜁𝑘
2, 𝜉2⟩)(𝜂2) ∈ 𝒟(𝐷𝑟) for all 𝑘 ∈ ℕ since ⟨𝜁𝑘

2, 𝜉2⟩ ∈
(𝐴𝑟)𝛿 . It thus suffices to prove that {𝐷𝑟(𝜌(⟨𝜁𝑘

2, 𝜉2⟩)𝜂2)} ∈ 𝑌∞. 
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However, we have that 

{𝐷𝑟(𝜌(⟨𝜁𝑘
2, 𝜉2⟩)𝜂2)}𝑘=1

∞ = {𝛿(⟨𝜁𝑘
2, 𝜉2⟩)𝜂2}𝑘=1

∞ + {𝜌(⟨𝜁𝑘
2, 𝜉2⟩)𝐷𝑟𝜂

2}𝑘=1
∞

= {𝛿(⟨𝜁𝑘
2, 𝜉2⟩)𝜂2}𝑘=1

∞ + (𝑊 ⊗ 1)(𝜉2 ⊗𝐷𝑟𝜂
2)

= 𝛿(𝑊𝜉2)(𝜂2) + (𝑊 ⊗ 1)(𝜉2 ⊗𝐷𝑟𝜂
2)

 

We therefore only need to show that 𝛿(𝑊𝜉2)(𝜂2) ∈ 𝑌∞. 

However, by Lemma 4.2 we have that 𝛿(𝑊𝜉2) ∈ ℒ(𝑌)∞ for all 𝜉2 ∈ 𝒳. This implies the result of the lemma 

since each {(𝑇𝑟)𝑘}𝑟,𝑘=1
∞ ∈ ℒ(𝑌)∞ yields a bounded adjointable operator 𝑌 → 𝑌∞, 𝜂2 ↦ {(𝑇𝑟)𝑘𝜂

2}𝑟,𝑘=1
∞ . 

The above lemma allows us to define the following unbounded operator 

1⊗∇ 𝐷𝑟: = (𝑊∗ ⊗1)diag(𝐷𝑟)(𝑊 ⊗ 1): 𝒟(1 ⊗∇ 𝐷𝑟) → 𝑋 ⊗̂𝐴𝑟 𝑌 

which we refer to as the symmetric lift of 𝐷𝑟  with respect to the Grassmann𝛿 connection ∇. 

Proposition 5.2 (see [Jka10]). The unbounded operator 

1⊗∇ 𝐷𝑟: = (𝑊∗ ⊗1)diag(𝐷𝑟)(𝑊 ⊗ 1): 𝒟(1 ⊗∇ 𝐷𝑟) → 𝑋 ⊗̂𝐴𝑟 𝑌 

is symmetric. 

Proof. This follows since diag(𝐷𝑟): 𝒟(diag(𝐷𝑟)) → 𝑌∞ is selfadjoint. Indeed, 

⟨(1 ⊗∇ 𝐷𝑟)𝜎, 𝜃⟩ = ⟨diag(𝐷𝑟) (𝑊 ⊗ 1)𝜎, (𝑊 ⊗ 1)𝜃⟩ 

= ⟨𝜎, (𝑊∗ ⊗ 1)diag(𝐷𝑟)(𝑊 ⊗ 1)𝜃⟩ 

= ⟨𝜎, (1 ⊗∇ 𝐷𝑟)𝜃⟩ 

for all 𝜎, 𝜃 ∈ 𝒟(1 ⊗∇ 𝐷𝑟). 

We remark that the symmetric lift only depends on 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑌 and the bounded adjointable isometry 

𝑊:𝑋 → 𝐻𝐴𝑟 . It does not depend on the right (𝐴𝑟)𝛿− submodule 𝒳 ⊆ 𝑋 defined in (4.1). The existence of 𝒳 is 

however crucial for proving that the symmetric lift is densely defined. 

The final result of this section relates the symmetric lifts to the Grassmann𝛿 connection. Thus, let ∇𝛿: 𝒳 →

𝑋 ⊗̂𝐴𝑟 Ω𝛿(𝒜) denote the Grassmannconnection, see Definition 4.6. 

Lemma 5.3 (see [Jka10]). Let 𝜎 = 𝜉2 ⊗𝜂2 ∈ 𝒳 ⊗(𝐴𝑟)𝛿
𝒟(𝐷𝑟). Then 𝜎 ∈ 𝒟(1⊗∇ 𝐷𝑟) and (1 ⊗ ∇𝐷𝑟)(𝜎) =

∇𝛿(𝜉
2)(𝜂2) + 𝜉2 ⊗𝐷𝑟𝜂

2 

Remark that we have tacitly identitifed𝜎 with its image in 𝑋 ⊗̂𝐴𝑟 𝑌. 

Proof. By the proof of Lemma 5.1 we have that 𝜎 ∈ 𝒟(1⊗ ∇𝐷𝑟) and that 

(1⊗ ∇𝐷𝑟)(𝜎) = (𝑊∗ ⊗1)diag(𝐷𝑟)(𝑊 ⊗ 1)(𝜎)

= (𝑊∗ ⊗1)({𝛿(⟨𝜁𝑘
2, 𝜉2⟩)𝜂2}𝑘=1

∞ + (𝑊⊗ 1)(𝜉2 ⊗𝐷𝑟𝜂
2))

= ∑  

∞

𝑟,𝑘=1

  𝜁𝑘
2 ⊗ 𝛿(⟨𝜁𝑘

2, 𝜉2⟩)(𝜂2) + 𝜉2 ⊗𝐷𝑟𝜂
2

 

But this proves the lemma since ∑𝑘=1
∞  𝜁𝑘

2 ⊗𝛿(⟨𝜁𝑘
2, 𝜉2⟩)(𝜂2) = ∇𝛿(𝜉

2)(𝜂2). 

In order to give the reader some feeling for what might be expected from symmetric lifts, we end this section by 

giving a basic example. 
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5.1. Example [Jka10]: The half-line. Let us consider the case where 𝑋 = 𝐶0((0,∞)) consists of continuous 

functions on the half-line which vanish at 0 and at ∞. We may then give 𝑋 the structure of a Hilbert 𝐶∗-module 

over the 𝐶∗-algebra 𝐴𝑟 = 𝐶0(ℝ) of continuous functions on the real line which vanish at ±∞. On top of this, we 

let 𝐿2(ℝ) be the Hilbert space of (equivalence classes of) square integrable functions on the real line. This 

Hilbert space comes equipped with an injective ∗-homomorphism 𝜌: 𝐶0(ℝ) → ℒ(𝐿2(ℝ)) given by point-wise 

multiplication 𝜌(𝑓𝑟)(𝜉
2): = 𝑓𝑟 ⋅ 𝜉

2. Furthermore, we let 𝐷𝑟: 𝒟(𝐷𝑟) → 𝐿2(ℝ) denote the unbounded selfadjoint 

operator obtained as the closure of the Dirac operator 

𝑖
𝑑

𝑑𝑡
: 𝐶𝑐

∞(ℝ) → 𝐿2(ℝ) 

where 𝐶𝑐
∞(ℝ) ⊆ 𝐿2(ℝ) denotes the smooth compactly supported functions defined on ℝ. We define the dense 

∗-subalgebra (𝐴𝑟)𝛿 ⊆ 𝐴𝑟, by 

(𝐴𝑟)𝛿: = {𝑓𝑟 ∈ 𝐶0(ℝ) ∣ 𝑓𝑟 is differentiable with 
𝑑𝑓𝑟
𝑑𝑡

∈ 𝐶0(ℝ)} 

The Hilbert 𝐶∗-module 𝑋 = 𝐶0((0,∞)) is then generated by a single element. Indeed, we may choose a 

nowhere-vanishing differentiable function 𝜉2: (0,∞) → [0,1] such that 𝜉2,
𝑑𝜉2

𝑑𝑡
∈ 𝑋. We then have that 

𝑋 = cl{𝜉2 ⋅ 𝑓𝑟 ∣ 𝑓𝑟 ∈ 𝐴𝑟}  and ⟨𝜉2, 𝜉2⟩ = 𝜉4 ∈ (𝐴𝑟)𝛿 

where cl(⋅) refers to the closure in supremum-norm. We may finally arrange that 

∥ ⟨𝜉2, 𝜉2⟩ ∥𝛿= sup
𝑡∈ℝ

 |𝜉4(𝑡)| + 2sup
𝑡∈ℝ

  |(𝜉2 ⋅
𝑑𝜉2

𝑑𝑡
) (𝑡)| ≤ 1 

The bounded adjointable isometry 𝑊:𝑋 → 𝐻𝐴𝑟  is then given by 

𝑊:𝑔𝑟 ↦ {√𝐻𝑛 ⋅ ⟨𝜉
2, 𝑔𝑟⟩}𝑟,𝑛=1

∞
= {(1 + 𝑛𝜉4)−1/2(1 + (𝑛 − 1)𝜉4)−1/2𝜉2 ⋅ 𝑔𝑟}𝑟,𝑛=1

∞
 

and the bounded adjointable positive operator 𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  is given by 

𝐾𝑟: {(𝑓𝑟)𝑛}𝑟,𝑛=1
∞ ↦ {𝜉4 ⋅ (𝑓𝑟)𝑛}𝑟,𝑛=1

∞  

The dense (𝐴𝑟)𝛿-submodule 𝒳 ⊆ 𝑋 is defined as the image 𝒳 ∶= Im(𝑊∗𝐾r
2: 𝐻(𝐴𝑟)𝛿

→𝑋). It is then not hard to 

see that we have the inclusion 

𝐶𝑐
∞((0,∞)) ⊆ 𝒳 

The interior tensor product 𝑋 ⊗̂𝐴𝑟 𝐿
2(ℝ) is unitarily isomorphic to the Hilbert space 𝐿2((0,∞)) of square 

integrable functions on the half-line. Under this isomorphism the isometry 𝑊⊗ 1: 𝐿2((0,∞)) → 𝐻𝐿2(ℝ) is given 

by 

𝑊⊗ 1: 𝑔𝑟 ↦ {(1 + 𝑛𝜉4)−1/2(1 + (𝑛 − 1)𝜉4)−1/2𝜉2 ⋅ 𝑔𝑟}𝑟,𝑛=1
∞

 

We are interested in obtaining a better understanding of the symmetric lift 

1⊗⊗∇ 𝐷𝑟: = (𝑊∗ ⊗ 1)diag(𝐷𝑟)(𝑊 ⊗ 1):𝒟(1 ⊗ ∇𝐷𝑟) → 𝐿2((0,∞)) 

We first note that it follows by the proof of Lemma 5.3 and the inclusion 𝐶𝑐
∞((0,∞)) ⊆ 𝒳 that 

𝐶𝑐
∞((0,∞)) ⊆ 𝒟(1⊗ ∇𝐷𝑟) 

Now, for each 𝑔𝑟 ∈ 𝐶𝑐
∞((0,∞)) we may compute as follows: 
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(1 ⊗∇ 𝐷𝑟)(𝑔𝑟) 

= 𝑖∑  

∞

𝑛=1

 ∑

𝑟

𝜉2√𝐻𝑛

𝑑

𝑑𝑡
(𝜉2√𝐻𝑛𝑔𝑟) = 𝑖∑  

∞

𝑛=1

 ∑

𝑟

(𝜉4 ⋅ 𝐻𝑛 ⋅
𝑑𝑔𝑟
𝑑𝑡

+ 1/2 ⋅ 𝑔𝑟 ⋅
𝑑(𝜉4 ⋅ 𝐻𝑛)

𝑑𝑡
)

=∑

𝑟

𝑖
𝑑𝑔𝑟
𝑑𝑡

+ 𝑖/2 ⋅ lim
𝑁→∞

 (𝑔𝑟 ⋅
𝑑(𝜉4 ⋅ (𝜉4 + 1/𝑁)−1)

𝑑𝑡
)

=∑

𝑟

𝑖
𝑑𝑔𝑟
𝑑𝑡

− 𝑖/2 ⋅ lim
𝑁→∞

 (𝑔𝑟/𝑁 ⋅
𝑑((𝜉4 + 1/𝑁)−1)

𝑑𝑡
) = 𝑖

𝑑𝑔𝑟
𝑑𝑡

 

where the limit is taken in the norm on 𝐿2((0,∞)). 

Thus, we obtain that 1⊗∇ 𝐷𝑟 is a symmetric extension of the Dirac operator 

 

Now, it is easily verified that Ker(𝑖 + 𝒟∗) = ℂ ⋅ exp(−𝑡) and that Ker(𝑖 − 𝒟∗) = {0}. It thus follows by 

[RESI75, Chapter X.1, Corollary] that 1⊗∇ 𝐷𝑟  is not essentially selfadjoint, since 𝒟: 𝐶𝑐
∞((0,∞)) → 𝐿2((0,∞)) 

has no selfadjoint extensions. 

VI. Compositions of Regular Unbounded Operators 

Throughout this section, 𝑋 will be a Hilbert 𝐶∗-module over a 𝐶∗-algebra 𝐴𝑟, 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑋 will be a 

selfadjoint, regular operator on 𝑋, and 𝑥2 ∈ ℒ(𝑋) will be a bounded selfadjoint unbounded operator on 𝑋 such 

that: 

𝑥2𝜉2 ∈ 𝒟(𝐷𝑟) for all 𝜉2 ∈ 𝒟(𝐷𝑟) and [𝐷𝑟 , 𝑥
2]: 𝒟(𝐷𝑟) → 𝑋 is bounded 

The bounded extension of [𝐷𝑟 , 𝑥
2] will be denoted by 𝛿(𝑥2). 

We remark that 𝛿(𝑥2) is automatically adjointable with 𝛿(𝑥2)∗ = −𝛿(𝑥2). 

We study the regularity of the compositions 𝐷𝑟𝑥
2, cl(𝑥2𝐷𝑟), and cl(𝑥2𝐷𝑟𝑥

2), where cl(𝒟) refers to the closure 

of an unbounded closable operator 𝒟:𝒟(𝒟) → 𝑋. This regularity issue has been studied in detail by 𝑆. L. 

Woronowiczunder the assumption that 𝑥2 is invertible, see [WoR91, Section 2, Example 2 and 3]. 

Hence we obtain a better understanding of the symmetric lift introduced in Section 5. 

Our main tool is the local-global principle for regular operators, see [KALE12, Theorem 4.2]. Now we recall the 

statement of this result: Let 𝒟:𝒟(𝒟) → 𝑋 be a closed unbounded operator wih a densely defined adjoint 𝒟∗. For 

each state 𝜌: 𝐴𝑟 → ℂ we have the localization 𝑋𝜌 of 𝑋. This is the Hilbert space obtained as the completion of 

𝑋/𝑁𝜌 with respect to the inner product ⟨[𝜉2], [𝜂2]⟩𝜌: = 𝜌(⟨𝜉2, 𝜂2⟩), where 𝑁𝜌: = {𝜉2 ∈ 𝑋 ∣ 𝜌(⟨𝜉2, 𝜉2⟩) = 0}. 

The unbounded operator 𝒟 then induces an unbounded operator on 𝑋𝜌, 

𝒟𝜌: 𝒟(𝒟𝜌) → 𝑋𝜌 [𝜉2] ↦ [𝒟𝜉2] 

with domain 𝒟(𝒟𝜌) defined as the image of 𝒟( in 𝑋𝜌. The localization of 𝒟 at the state 𝜌 is the unbounded 

operator cl(𝒟𝜌). 

Theorem 6.1 (Local-global principle) (see [Jka10]). The closed unbounded operator 𝒟:𝒟(𝒟) → 𝑋 with 

densely defined adjoint 𝒟∗ is regular if and only if 

(𝒟𝜌)
∗
= cl((𝒟∗)𝜌) 

for all states 𝜌: 𝐴𝑟 → ℂ. 

We now study the regularity of the unbounded operator 𝐷𝑟𝑥
2: 𝒟(𝐷𝑟𝑥

2) → 𝑋 with domain 𝒟(𝐷𝑟𝑥
2): = {𝜉2 ∈

𝑋 ∣ 𝑥2𝜉2 ∈ 𝒟(𝐷𝑟)}. We remark that 𝐷𝑟𝑥
2 is already closed. The next to lemmas serve to compute the adjoint of 

𝐷𝑟𝑥
2. 
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Lemma 6.1 (see [Jka10]). 

𝐷𝑟𝑥
2 − 𝛿(𝑥2) ⊆ (𝐷𝑟𝑥

2)∗ 

Proof. Let 𝜉2, 𝜂2 ∈ 𝒟(𝐷𝑟𝑥
2). We then have that 

⟨𝐷𝑟𝑥
2𝜉2, 𝜂2⟩ 

= lim
𝑛→∞

 ⟨𝐷𝑟𝑥
2𝜉2, 𝑖(𝑖 + 𝐷𝑟/𝑛)

−1𝜂2⟩ = lim
𝑛→∞

 ⟨𝜉2, 𝑖𝑥2𝐷𝑟(𝑖 + 𝐷𝑟/𝑛)
−1𝜂2⟩

= −⟨𝜉2, 𝛿(𝑥2)𝜂2⟩ + lim
𝑛→∞

 ⟨𝜉2, 𝑖𝐷𝑟𝑥
2(𝑖 + 𝐷𝑟/𝑛)

−1𝜂2⟩

= −⟨𝜉2, 𝛿(𝑥2)𝜂2⟩ + ⟨𝜉2, 𝐷𝑟𝑥
2𝜂2⟩ + lim

𝑛→∞
 ⟨𝜉2, 𝑖𝐷𝑟/𝑛 ⋅ (𝑖 + 𝐷𝑟/𝑛)

−1𝛿(𝑥2)(𝑖 + 𝐷𝑟/𝑛)
−1𝜂2⟩

 

It therefore suffices to show that 

𝑖𝐷𝑟/𝑛 ⋅ (𝑖 + 𝐷𝑟/𝑛)
−1𝛿(𝑥2)(𝑖 + 𝐷𝑟/𝑛)

−1𝜂2 → 0 

But this follows easily since 

𝑖𝐷𝑟/𝑛 ⋅ (𝑖 + 𝐷𝑟/𝑛)
−1𝛿(𝑥2)(𝑖 + 𝐷𝑟/𝑛)

−1𝜂2

= 𝛿(𝑥2)𝑖(𝑖 + 𝐷𝑟/𝑛)
−1𝜂2 + (𝑖 + 𝐷𝑟/𝑛)

−1𝛿(𝑥2)(𝑖 + 𝐷𝑟/𝑛)
−1𝜂2

 

In order to prove the other inclusion (𝐷𝑟𝑥
2)∗ ⊆ 𝐷𝑟𝑥

2 − 𝛿(𝑥2), we remark that the adjoint of 𝑥2𝐷𝑟: 𝒟(𝐷𝑟) → 𝑋 

is precisely the unbounded operator 𝐷𝑟𝑥
2. This follows from the selfadjointness of 𝐷𝑟: 𝒟(𝐷𝑟) → 𝑋 and 𝑥2 ∈

ℒ(𝑋). 

Lemma 6.2 (see [Jka10]). 

(𝐷𝑟𝑥
2)∗ ⊆ 𝐷𝑟𝑥

2 − 𝛿(𝑥2) 

Proof. Notice that 𝑥2𝐷𝑟 + 𝛿(𝑥2) ⊆ 𝐷𝑟𝑥
2. But this implies that (𝐷𝑟𝑥

2)∗ ⊆ (𝑥2𝐷𝑟 + 𝛿(𝑥2))∗ = 𝐷𝑟𝑥
2 − 𝛿(𝑥2). 

We want to apply the local global principle for regular operators to show that 𝐷𝑟𝑥
2: 𝒟(𝐷𝑟𝑥

2) → 𝑋 is regular. 

Thus, we need to compute the localization cl((𝐷𝑟𝑥
2)𝜌) and its adjoint ((𝐷𝑟𝑥

2)𝜌)
∗
 for an arbitrary state 𝜌: 𝐴𝑟 →

ℂ. This is the content of the next lemma. 

To ease the notation, let 𝑦2 ⊗1 ∈ ℒ(𝑋𝜌) denote the closure of 𝑦𝜌
2 for a bounded adjointable operator 𝑦2: 𝑋 →

𝑋. 

Lemma 6.3 (see [Jka10]). Let 𝜌: 𝐴𝑟 → ℂ be a state. Then we have the identities cl((𝐷𝑟𝑥
2)𝜌) =

cl((𝐷𝑟)𝜌)(𝑥
2 ⊗1)  and ((𝐷𝑟𝑥

2)𝜌)
∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) − 𝛿(𝑥2) ⊗ 1 

Proof. Remark first that (𝐷𝑟𝑥
2)𝜌 ⊆ cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1). This implies the inclusion 

cl((𝐷𝑟𝑥
2)𝜌) ⊆ cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) 

Furthermore, since (cl((𝐷𝑟)𝜌)(𝑥
2 ⊗ 1))

∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) − 𝛿(𝑥2) ⊗ 1 by Lemma 6.1 and Lemma 6.2, 

we get that 

cl((𝐷𝑟)𝜌)(𝑥
2 ⊗ 1) − 𝛿(𝑥2) ⊗ 1 ⊆ ((𝐷𝑟𝑥

2)𝜌)
∗
 

To prove the reverse inclusions, note that 𝑥2𝐷𝑟 + 𝛿(𝑥2) ⊆ 𝐷𝑟𝑥
2. This implies that (𝑥2 ⊗1)(𝐷𝑟)𝜌 + 𝛿(𝑥2) ⊗

1 ⊆ (𝐷𝑟𝑥
2)𝜌. We may then deduce that 

((𝐷𝑟𝑥
2)𝜌)

∗
⊆ ((𝑥2 ⊗1)(𝐷𝑟)𝜌 + 𝛿(𝑥2) ⊗ 1)

∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗ 1) − 𝛿(𝑥2) ⊗ 1 
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We have thus proved the identity 

((𝐷𝑟𝑥
2)𝜌)

∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) − 𝛿(𝑥2) ⊗ 1 

But it then follows, since 𝑋𝜌 is a Hilbert space, that 

cl((𝐷𝑟𝑥
2)𝜌) = ((𝐷𝑟𝑥

2)𝜌)
∗∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) 

This proves the lemma. 

We now prove the following result: 

Proposition 6.4 (see [Jka10]). The closed unbounded operator 𝐷𝑟𝑥
2: 𝒟(𝐷𝑟𝑥

2) → 𝑋 is regular and the adjoint is 

given by (𝐷𝑟𝑥
2)∗ = 𝐷𝑟𝑥

2 − 𝛿(𝑥2): 𝒟(𝐷𝑟𝑥
2) → 𝑋. 

Proof. The formula for the adjoint(𝐷𝑟𝑥
2)∗ is a consequence of Lemma 6.1 and Lemma 6.2. 

Let now 𝜌: 𝐴𝑟 → ℂ be a state. By Theorem 6.1 we need only show that 

((𝐷𝑟𝑥
2)𝜌)

∗
= cl(((𝐷𝑟𝑥

2)∗)𝜌)                                       (6.1) 

Applying Lemma 6.3 we obtain that 

((𝐷𝑟𝑥
2)𝜌)

∗
= cl((𝐷𝑟)𝜌)(𝑥

2 ⊗1) − 𝛿(𝑥2) ⊗ 1 

By another application of Lemma 6.3 we get that 

cl(((𝐷𝑟𝑥
2)∗)𝜌) = cl((𝐷𝑟𝑥

2)𝜌 − 𝛿(𝑥2)𝜌) = cl((𝐷𝑟)𝜌)(𝑥
2 ⊗1) − 𝛿(𝑥2) ⊗ 1 

This proves the identity in (6.1) and thereby also the result of the proposition. 

We may now treat the regularity problem for the composition 𝑥2𝐷𝑟: 𝒟(𝐷𝑟) → 𝑋. This is carried out in the next 

proposition. We recall that (𝑥2𝐷𝑟)
∗ = 𝐷𝑟𝑥

2: 𝒟(𝐷𝑟𝑥
2) → 𝑋. This does however not imply the regularity of 

cl(𝑥2𝐷𝑟). Indeed, it is possible to construct a closed unbounded, non-regular operator 𝒟:𝒟(𝒟) → 𝑋 with a 

regular adjoint 𝒟∗: 𝒟(𝒟∗) → 𝑋, see [PAL99, Proposition 2.3] and [KALE12, Proposition 6.3]. Thus, the result 

in [LAN 95 , Corollary 9.6] is incorrect. Now we have the following: 

Proposition 6.5 (see [Jka10]). The closure cl(𝑥2𝐷𝑟) is regular and given by cl(𝑥2𝐷𝑟) = 𝐷𝑟𝑥
2 − 𝛿(𝑥2) : 

𝒟(𝐷𝑟𝑥
2) → 𝑋 

Proof. Let 𝜌: 𝐴𝑟 → ℂ be a state. By the local-global principle in Theorem 6.1, the regularity of cl(𝑥2𝐷𝑟) will 

follow from the identity 

((𝑐𝑙(𝑥2𝐷𝑟))𝜌)
∗
= cl(((𝑥2𝐷𝑟)

∗)𝜌)                                        (6.2) 

The left hand side of (6.2) can be rewritten as 

((cl(𝑥2𝐷𝑟))𝜌)
∗
= ((𝑥2 ⊗1)cl((𝐷𝑟)𝜌))

∗

= cl((𝐷𝑟)𝜌)(𝑥
2 ⊗ 1) 

where the first identity follows since (cl(𝑥2𝐷𝑟))𝜌 and (𝑥2 ⊗ 1)cl((𝐷𝑟)𝜌) agrees on the subspace 𝒟((𝐷𝑟)𝜌) ⊆

𝑋𝜌 and the second identity follows from the regularity and selfadjointness of 𝐷‾r: 𝒟(𝐷𝑟) → 𝑋. 

The right hand side of (6.2) can be computed using Lemma 6.3. We obtain that 

cl(((𝑥2𝐷𝑟)
∗)𝜌) = cl((𝐷𝑟𝑥

2)𝜌) = cl((𝐷𝑟)𝜌)(𝑥
2 ⊗1) 
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This proves the identity in (6.2) and thus that cl(𝑥2𝐷𝑟) is regular. 

Now, since cl(𝑥2𝐷𝑟) is regular we have that cl(𝑥2𝐷𝑟) = (𝑥2𝐷𝑟)
∗∗ = (𝐷𝑟𝑥

2)∗ = 𝐷𝑟𝑥
2 − 𝛿(𝑥2), see [LAN95, 

Corollary 9.4]. This proves the last part of the proposition. 

We conclude by showing that 𝑥2𝐷𝑟𝑥
2: 𝒟(𝐷𝑟𝑥

2) → 𝑋 is essentially selfadjoint and regular, thus the closure 

cl(𝑥2𝐷𝑟𝑥
2) is selfadjoint and regular. 

Proposition 6.6 (see [Jka10]). The closure cl(𝑥2𝐷𝑟𝑥
2) is selfadjoint and regular and given by cl(𝑥2𝐷𝑟𝑥

2) =
𝐷𝑟𝑥

4 − 𝛿(𝑥2)𝑥2: 𝒟(𝐷𝑟𝑥
4) → 𝑋. 

Proof. By Proposition 6.4, 𝐷𝑟𝑥
2: 𝒟(𝐷𝑟𝑥

2) → 𝑋 is regular with (𝐷𝑟𝑥
2)∗ = 𝐷𝑟𝑥

2 − 𝛿(𝑥2) : 𝒟(𝐷𝑟𝑥
2) → 𝑋. This 

fact is equivalent to the selfadjointness and regularity of the anti-diagonal unbounded operator 

(
0 𝐷𝑟𝑥

2 − 𝛿(𝑥2)

𝐷𝑟𝑥
2 0

) : 𝒟(𝐷𝑟𝑥
2) ⊕ 𝒟(𝐷𝑟𝑥

2) → 𝑋 ⊕ 𝑋 

see [KALE12, Lemma 2.3]. It therefore follows by Proposition 6.5 that 

(
0 cl(𝑥2𝐷𝑟𝑥

2) − 𝑥2𝛿(𝑥2)

cl(𝑥2𝐷𝑟𝑥
2) 0

) : 𝒟(cl(𝑥2𝐷𝑟𝑥
2)) ⊕ 𝒟(cl(𝑥2𝐷𝑟𝑥

2)) → 𝑋 ⊕ 𝑋 

is regular. Furthermore, we have that 

(
0 cl(𝑥2𝐷𝑟𝑥

2) − 𝑥2𝛿(𝑥2)

cl(𝑥2𝐷𝑟𝑥
2) 0

) = (
0 𝐷𝑟𝑥

4 − 𝛿(𝑥2)𝑥2

𝐷𝑟𝑥
4 0

) − (
0 𝑥2𝛿(𝑥2)

𝛿(𝑥2)𝑥2 0
) 

We may thus conclude that cl(𝑥2𝐷𝑟𝑥
2) = 𝐷𝑟𝑥

4 − 𝛿(𝑥2)𝑥2: 𝒟(𝐷𝑟𝑥
4) → 𝑋. It then follows by Proposition 6.4 

that cl(𝑥2𝐷𝑟𝑥
2) is regular. Furthermore, the adjoint is given by 

(𝑥2𝐷𝑟𝑥
2)∗ = (𝐷𝑟𝑥

4)∗ + 𝑥2𝛿(𝑥2) = 𝐷𝑟𝑥
4 − 𝛿(𝑥4) + 𝑥2𝛿(𝑥2) = 𝐷𝑟𝑥

4 − 𝛿(𝑥2)𝑥2 

This shows that cl(𝑥2𝐷𝑟𝑥
2) is also selfadjoint and the proposition is proved. 

VII. Selfadjointness and Regularity of Lifts 

We will now return to the setting described in the beginning of Section 5. Furthermore, we let 𝑊:𝑋 → 𝐻𝐴𝑟  and 

𝐾𝑟: 𝐻𝐴𝑟 → 𝐻𝐴𝑟  be as in Theorem 3.1, and as in Remark 3.9 we let {𝜁𝑘
2}𝑘=1

∞  be a square sequence in 𝑋 such that 

𝑊(𝜂2) = {⟨𝜁𝑘
2, 𝜂2⟩}𝑘=1

∞  for all 𝜂2 ∈ 𝑋. 

We recall that 𝑊∗𝐾𝑟𝑊:𝑋 → 𝑋 has dense image and it thus follows that 

Δ:= (𝑊∗𝐾𝑟𝑊)2 ⊗1 = (𝑊∗𝐾𝑟
2𝑊)⊗ 1: 𝑋 ⊗̂𝐴𝑟

𝑌 → 𝑋 ⊗̂𝐴𝑟
𝑌 

has dense image as well. 

We are interested in proving that the composition 

Δ(1 ⊗∇ 𝐷𝑟)Δ: 𝒟(diag(𝐷𝑟)(𝑊 ⊗ 1)Δ) → 𝑋 ⊗̂𝐴𝑟
𝑌 

is an essentially selfadjointand regular unbounded operator. 

We first notice that the map𝜄:𝑀∞(ℒ(𝑌)) → ℒ(𝑌∞) given by 
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𝜄({(𝑇𝑟)𝑖𝑗})({𝜂𝑛
2}): = {∑  

∞

𝑟,𝑗=1

  (𝑇𝑟)𝑖𝑗(𝜂𝑗
2)}

𝑖=1

∞

{(𝑇𝑟)𝑖𝑗} ∈ 𝑀∞(ℒ(𝑌)), {𝜂𝑛
2} ∈ 𝑌∞ 

induces an injective ∗-homomorphism 𝜄:𝒦(𝐻ℒ(𝑌)) → ℒ(𝑌∞). In particular, we have that ∥ 𝜄(𝑇𝑟) ∥=∥ 𝑇𝑟 ∥ for all 

𝑇𝑟 ∈ 𝒦(𝐻ℒ(𝑌)). This enables us to prove the following: 

Lemma 7.1 (see [Jka10]). Let 𝑇𝑟 ∈ 𝒦(𝐻𝐴𝑟)𝛿
. Then 𝜄(𝜌(𝑇𝑟)) ∈ ℒ(𝑌∞) preserves the domain of diag(𝐷𝑟) and 

𝜄(𝛿(𝑇𝑟)) ∈ ℒ(𝑌∞) is an extension of the commutator 

[diag(𝐷𝑟), 𝜄(𝜌(𝑇𝑟))]: 𝒟(diag(𝐷𝑟)) → 𝑌∞ 

Proof. Let 𝜂2 = {𝜂𝑛
2} ∈ 𝒟(diag(𝐷𝑟)). 

Suppose first that 𝑇𝑟 ∈ 𝑀∞(𝒜). Then clearly 𝜄(𝜌(𝑇𝑟))(𝜂
2) = {∑𝑗=1

∞  𝜌(𝑥𝑖𝑗
2 )𝜂𝑗

2} ∈ 𝒟(diag(𝐷𝑟)) and furthermore 

[diag(𝐷𝑟), 𝜄(𝜌(𝑇𝑟))](𝜂
2) = {∑  

∞

𝑟,𝑗=1

  [𝐷𝑟 , 𝜌(𝑥𝑖𝑗
2 )](𝜂𝑗

2)} = 𝜄(𝛿(𝑇𝑟))(𝜂
2) 

This proves the claim of the lemma in this case. 

For a general 𝑇𝑟 ∈ 𝒦(𝐻𝐴𝑟)𝛿
, we may choose a sequence {(𝑇𝑟)𝑚} in 𝑀∞(𝒜) such that (𝑇𝑟)𝑚 → 𝑇𝑟 in the norm ∥

⋅∥𝛿:𝒦(𝐻𝐴𝑟)𝛿
→ [0,∞). We then use the fact that diag(𝐷𝑟): 𝒟(diag(𝐷𝑟)) → 𝑌∞ is closed to conclude that 

𝜄(𝜌(𝑇𝑟))(𝜂
2) ∈ 𝒟(diag(𝐷𝑟)) with 

𝒟(diag(𝐷𝑟))(𝜄(𝜌(𝑇𝑟))(𝜂
2)) = 𝜄(𝜌(𝑇𝑟))(diag(𝐷𝑟)(𝜂

2)) + 𝜄(𝛿(𝑇𝑟))(𝜂
2) 

This proves the lemma. 

We consider the bounded positive selfadjoint operator 

Δ𝑊: = (𝑊 ⊗ 1)Δ(𝑊∗ ⊗ 1): (𝑃 ⊗ 1)𝑌∞ → (𝑃 ⊗ 1)𝑌∞ 

where 𝑃 ⊗ 1:= (𝑊 ⊗ 1)(𝑊∗ ⊗ 1): 𝑌∞ → 𝑌∞ is the orthogonal projection associated with the isometry (𝑊 ⊗

1): 𝑋 ⊗̂𝐴𝑟 𝑌 → 𝑌∞, see Section 5 . 

We then remark that Δ(1 ⊗∇ 𝐷𝑟)Δ: 𝒟(diag(𝐷𝑟)(𝑊 ⊗ 1)Δ) → 𝑋 ⊗̂ 𝐴𝑟𝑌 and 

Δ𝑊diag(𝐷𝑟)Δ𝑊: 𝒟(diag(𝐷𝑟)Δ𝑊) → (𝑃 ⊗ 1)𝑌∞ 

are unitarily equivalent unbounded operators. Furthermore, we have that 

Δ𝑊 = (𝑊⊗ 1)(𝑊∗𝐾𝑟
2𝑊⊗1)(𝑊∗ ⊗ 1)

= 𝜄(𝜌(𝑃𝐾𝑟
2))|

(𝑃⊗1)𝑌
: (𝑃 ⊗ 1)𝑌∞ → (𝑃 ⊗ 1)𝑌∞

 

Proposition 7.2 (see [Jka10]). The unbounded operator Δ𝑊diag(𝐷𝑟)Δ𝑊: 𝒟(diag(𝐷𝑟)Δ𝑊) → (𝑃 ⊗ 1)𝑌∞ is 

essentially selfadjoint and regular. 

Proof. It is enough to show that 

𝜄(𝑃𝐾𝑟
2)diag(𝐷𝑟)𝜄(𝑃𝐾𝑟

2): 𝒟(diag(𝐷𝑟)Δ𝑊) + ((1 − 𝑃)⊗ 1)𝑌∞ → 𝑌∞ 

is essentially selfadjoint and regular. Now, by the differentiable absorption theorem (Theorem 3.1), we have that 

𝑃𝐾𝑟
2 ∈ 𝒦(𝐻𝐴𝑟)𝛿

. By Lemma 7.1, the pair consisting of the unbounded selfadjoint regular operator 
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diag(𝐷𝑟): 𝒟(diag(𝐷𝑟)) → 𝑌∞ and the bounded selfadjoint operator 𝜄(𝜌(𝑃𝐾𝑟
2)): 𝑌∞ → 𝑌∞ therefore satisfies the 

assumptions applied in Section 6. 

This proves the current lemma by an application of Proposition 6.6. 

The main result now follows immediately: 

Theorem 7.1 (see [Jka10]). The unbounded operator Δ(1 ⊗ ∇𝐷𝑟)Δ: 𝒟((1 ⊗ ∇𝐷𝑟)Δ) → 𝑋 ⊗̂ 𝐴𝑟𝑌 is 

essentially selfadjoint and regular. 
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