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Abstract: In this paper, based on projection technique Solodove and Svaiter (Reformulation: Nonsmooth, 

piecewise smooth, semismooth and smoothing methods; 355-369,1995 ), we propose a decent improved three-

term derivative free approach for solving nonlinear monotone equations with convex constraints. The algorithm 

combines the spectral gradient parameter with a newly PRPlike CG coefficient in the search direction. The global 

convergence of the proposed approach established under standard conditions. Additionally, using some 

benchmark problems, the numerical results highlight the outstanding performance of this approach compared to 

popular conjugate gradient methods. The experiments also show its effectiveness in solving large-scale nonlinear 

equations with convex constraints.  
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I. Introduction 

 

 

http://www.questjournals.org/


A descent improved three-term derivative-free spectral gradient projection approach for .. 

DOI: 10.35629/0743-10114052                                 www.questjournals.org                                            41 | Page 

 

 

 



A descent improved three-term derivative-free spectral gradient projection approach for .. 

DOI: 10.35629/0743-10114052                                 www.questjournals.org                                            42 | Page 

II. THE APPROACH 
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III. Convergence analysis 
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IV. Experimental Results 
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Results for the Numerical experiments conducted are reported in table 1 − 6. To make it more clearer, 

data from these tables are represented in figure 1 − 3. In this analysis, an algorithm with higher percentage is 

considered most effective. In summary, all the competing algorithms were able to solve the employed problems 

with regards to fixed metrics (Number of iterations, Function evaluations and CPU time) 100% Successfully. In 

figure 1, number of iterations were presented in which our new algorithm 1 achieved 57% success rate compared 

to PCG and ETCG with 15% and 28% success rate rates. Figure 2 expresses that, Algorithm 1 has 51% success 

rate of the functions evaluation, whereas PCG and ETCG had gotten 24% and 25% respectively. CPU time 

performance was presented in figure 3, where the proposed Algorithm 1 won average score of 32% in comparison 

with PCG algorithm with 28% and ETCG algorithm with 40% winning rate. Generally, figure 1−3 suggests that, 

our proposed Algorithm 1 is more efficient and reliable when it comes to solving a monotone nonlinear 

equation(1).  

 

V. Conclusion Statement 
In this paper, we proposed a novel three-term derivative-free method for solving nonlinear monotone 

equations with convex constraints, inspired by the projection technique developed by Solodov and Svaiter. The 

key innovation lies in the combination of a spectral gradient parameter with a newly introduced PRP-like 

conjugate gradient CG coefficient, which integrate the search direction while maintaining a derivative-free 

framework. The global convergence of the proposed algorithm has been rigorously established under standard 

assumptions. Our method is not only theoretically sound but also demonstrated exceptional numerical 

performance on benchmark problems which validate the superior efficiency and reliability of our algorithm in 

comparison to popular conjugate gradient methods. In particular, the approach has proven to be highly effective 

in handling large-scale nonlinear monotone equations with convex constraints. 
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