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Abstract: This paper presents a transient analysis of a finite capacity queueing system with catastrophes 

and state-dependent environmental change parameter. The tendency of the Poisson rate at which the system 

moves from environmental state F to E increases or decreases as the number of customers in the queue. 

Also, at some random times, the number of customers is immediately reset to zero whenever a catastrophe 

occurs at the system. Transient solution is obtained by using the technique of probability generating function. 

The Steady state solution of the model is obtained by using the property of Laplace transform. Furthermore, 

we derive and discuss several particular cases of the queueing model, both with and without 

catastrophes. 
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I. Introduction: 

In queueing literature, analytical results for the transient behavior of queueing models are not 

as prevalent as those for steady-state conditions. Steady-state measures fail to provide insights into 

the system's transient behavior, which is crucial for understanding its dynamics over finite periods. 

While steady-state results are well-suited for assessing long-term performance measures, transient 

solutions are essential for analyzing how the system evolves over time. Among various methods 

available, the probability generating function technique is particularly effective for deriving transient 

solutions. However, even for a simple M/M/1/N queue, obtaining analytical expressions for transi ent 

behavior proves to be quite challenging. In this context, we have successfully derived the transient 

solution for a finite capacity queueing system characterized by a state -dependent environmental 

change parameter, taking into account the effects of catastrophes. 

Recently, numerous authors have introduced a new class of queueing systems that incorporate  

the effects of catastrophes. In particular, birth and death models have been extended to include the 

assumption that the number of customers is instantly reset to zero at certain random times. These 

catastrophes occur at the service facility as a Poisson process with a specified rate  . When a 

catastrophe happens, all customers present are immediately removed, the server is temporarily 

inactivated, and it becomes available for service only when a new customer arrives  in the system. 

The queueing system with catastrophes was first examined by Krishna Kumar and 

Arivudainambi [9] in 2000, followed by a study in 2003 by Crescenzo et al.  [5], who derived the 

transient probabilities for the M/M/1 queue model with catastrophes. Jain and Kanethia  [8] explored 

the transient analysis of a queue influenced by environmental and catastrophic effects.  Kumar, D. [11] 

further explores a queueing system that incorporates catastrophes, state-dependent input parameters, 

and environmental changes to assess their impact on the system behavior. Liu and Liu [16] 
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investigated the transient probabilities of an M/PH/1 queue model with catastrophes, which serves as 

a generalization of the M/M/1 queue model under similar conditions. Additionally, a substantial 

number of research papers have addressed population processes affected by catastrophes. Notable 

contributions in this area include studies by Brockwell  [1,2], Kyriakidis [12], and Swift [13], who 

have all discussed various birth and death models incorporating the effects of catastrophes. 

In this paper, we introduce an additional factor of environmental change, whereby the changes 

in the environment influence the state of the queueing system. Specifically, the state of the queueing 

system is a function of these environmental change factors. When the environment shifts, the system 

transitions from environmental state E to state F at a certain rate  , while it moves from state F to 

state E at a rate of bn. 

The primary objective of this paper is to develop a finite capacity queueing system that 

incorporates the effects of catastrophes and a state-dependent environmental change parameter. In 

Section 2, we outline the assumptions and definitions related to the model. Section 3 provides a 

detailed analysis of the queueing model, while specific cases are explored in Section 4. Finally, 

Sections 5 and 6 present the steady-state results and discuss the applications of the model.  
   

II. Assumptions and Definitions of the Model: 

a) The customers arrive in the system one by one in accordance with a Poisson process at a 

single service station. The arrival pattern is non-homogeneous i.e., there may exists two arrival rates, 

namely 
1
 and 0 of which only one is operative at any instant.  

b)   The customers are served one by one at the single service channel. The service time is 

exponentially distributed. Further, corresponding to arrival rate 
1
 the Poisson service rate is 

1
 and 

the service rate corresponding to the arrival rate 0 is 
2
. The state of the system when operating with 

arrival rate 
1
 and service rate 

1
 is designated as E whereas the other with arrival rate 0 and service 

rate 
2
 is designated as F.       

c) The Poisson rate at which the system goes from environmental state E to F is denoted by . 

Also the Poisson rate b
n
, at which the system moves from environmental state F to E tends to increase 

or decrease according as the numbers in the queue (say n) increase or d ecrease from some fixed 

number (say N). We therefore define,   

  
ε

1
NnwithNnε1αbn   

    and Mn
ε

1
N0   

Where M denotes the size of the waiting space and   is a positive number such that 
N

1
. This 

restriction on M is necessary to avoid a negative value of bn. When n=N or  =0, bn gives the normal 

rate as . 

d) When the system is not empty, catastrophes occur according to a Poisson process with rate . 

The effect of each catastrophe is to make the queue instantly empty. Simultaneously, the system 

becomes ready to accept the new customers.  

e) The queue discipline is first-come-first-served.  

f)   The capacity of the queueing  system is restricted to M. i.e., if at any instant there are M 

units in the queue then the units arriving at that instant will not be permitted to join the queue  and will 

be considered lost for the system.  

Define,  

P
n
 (t) = Joint probability that at time t the system is in state E  and n units        

are in the queue, including the one in service.   

Q
n
(t) = Joint probability that at time t the system is in state F and n  units          are in the 

queue, including the one in service.  

R
n
(t)= The probability that at time t there are n units  in the queue, including the one in service.  

Obviously, 

  R
n
(t) = P

n
(t) + Q

n
(t)  
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Let us measure time t from an instant when there are zero customers in the queue and the system is in 

the environmental state E so that the initial conditions associated with  P
n
(t) and Q

n
(t) becomes,  

 P
n
(0) = 



 

otherwise;0

0n;1
 

 Q
n
(0) = 0 ;     for all n.  

 

III. Formulation of the Queueing Model and Transient Analysis: 

The differential-difference equations governing the system are.  

            ;tPξtQbtPμtPξβλtP
dt

d M

0n

n0011010 


      n = 0  (1) 

            ;tQbtPλtPμtPξβμλtP
dt

d
nn1n11n1n11n    0 < n < M   (2) 

          ;tQbtPλtPξβμtP
dt

d
MM1M1M1M            n = M          (3) 

            ;tQξtβPtQμtQξbtQ
dt

d M

0n

n012000 




    

n = 0    (4) 

          ;tβPtQμtQξbμtQ
dt

d
n1n2nn2n  

     

0 < n < M    (5) 

        ;tβPtQξbμtQ
dt

d
MMM2M 

 

  n = M      (6) 

Define, the Laplace Transform as 

L.T. [f (t)] =    


 
0

st sfdttfe       (7) 

Now, taking the Laplace transforms of equations (1)–(6) and using the initial conditions, we get  

         



M

0n

n001101 sPξsQbsPμ1sPξβλs      (8) 

         tQbsPλsPμsPξβμλs nn1n11n1n11         (9) 

       sQbsPλsPξβμs MM1M1M1                               (10) 

         



M

0n

n01200 sQξsPβsQμsQξbs       (11) 

       sPβsQμsQξbμs n1n2nn2          (12) 

     sPβsQξbμs MMM2           (13) 

Define, the probability generating functions  

   



M

0n

n
n zsPs,zP          (14) 

   



M

0n

n
n zsQs,zQ          (15) 

   



M

0n

n
n zsRs,zR          (16) 

where  

     sQsPsR nnn       
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Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using equations 

(14)–(16), we have.  

          sz,Pμβξμλszzλsz,QzNε1αsz,Qzεα 111

2

1

2   

         


 
M

0n

n01M

1M

1 sPzξzsPz1μsP1zzλ     (17) 

Similarly, from equations (11)–(13) and using (14)–(16), we have  

         sz,Pzβsz,Q
2

μNε1αξ
2

μszsz,Q2zεα                    

     



M

0n

n02 sQzξsQ1zμ       (18)           

Eliminating P(z,s) from equations (17) and (18), we have  

 
 
 

 
 

         







 



M

0n

n6

M

0n

n5M403021

22

1 sQzsPzsPzsPzsQzz
zη

1
sz,Q

zη

zη
sz,Q

 

 (19) 

where   

       212312

2

32

3

121 μμzμaμazaaεN1αβzλazη   

   zaμzλαεzzη 11

2

1

2

2   

 
2

1 zβz   

   13

2

122 μzazλ1zμz   

  z1zβμz 13   

  1zzλβz 2M

14  
 

 
2

5 zξβz   

  13

2

16 μzazλξzz   

  ξλμsa 111   

   εN1αξμsa 22   

  ξβμλsa 113   

 

In equation (19), the co-efficient of Q(z,s) can be re-written as  

 
  22

1

11

2

1

11

1

2

11

2

1

a(z)X

D

μzazλ

az2λ

2λ

C

z

B

z

A

zη

zη















      (20) 

where  

A
αε

a
A 2

1   

2

1

5141

αεμ

aaaμ
A


  

  
αε

B

αελ

1
aaaaεN1αβB

1

21321   

1

5

μ

a
B   

 
2

1

41511

αεμ

aμaaλ
C


  

1

1
1

2λ

Ca
DD   
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εαμ

aλ

εαμ

1
aaaμaD

1

51

2

1

51411   











21

1

121

1
2λ

a
zλX(z)  

21

1

1

2

1 μ
4λ

a
a 








  

  2132

1

1
234 aaaaεN1αβ

λ

a
μaa   

   212132

1

1
5 μμaaaaεN1αβ

λ

μ
a    

Using equation (20) in equation (19) and integrating (19) w. r. t. z, we have  

 
             

 zL

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,Q

M

0n

n6

M

0n

n5M403021 






 

 (21) 

where  

       






















z

B
exp

aX(z)

aX(z)
μzazλzzL 1

2aD

2λC

11

2

1

A

1

1
1  

  
 

  ;zdzL
zη

z
zL

Z

0 2

j

j     j =1, 2, 3, 4, 5, 6. 

Again eliminating s)(z,Q  from equations  (17) and (18), and using Q(z,s) from equation (21), we 

have  

 
             

   zLzB

(z)L(s)Q(z)L(s)PzLsPzLsPzLsQzL

sz,P
12

M

0n

n11

M

0n

n10M90807 






 

(22) 

where 

       zLzzgzLzL 17   

         zL1zμzgzLzL 228   

         zL1zμzgzLzL 139   

         zL1zzλzgzLzL 1M

1410  
 

       zLξzzgzLzL 511   

       zLξzzgzLzL 612   

     1zg 2  zzs   

  zaz 11

2

1zB    

Adding equations (21) and (22), we have  

 
             

   zLzB

(s)Q(z)C(s)P(z)CsPzCsPzCsQzCzC

sz,R

M

0n

n6

M

0n

n5M403021 






 

 (23) 

where  

C
i
 (z) = B (z) L

i
 (z) + L

i+6
 (z) ;  i=1, 2, 3, 4, 5, 6.  

Since,     



M

0n

n 1tR  
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Therefore,  

           



M

0n

n
s

1
sRs,1R  

Thus equation (23) for z=1, gives 

   s,zRlim
s

1
s,1R

1z
         (24) 

Also  

      s,zPlimsPs,0P
0z

0


         (25) 

and       s,zQlimsQs,0Q
0z

0


         (26) 

The equations (24), (25) and (26) on solution gives the values of 

      


M

0n

n

M

0n

nM00 (s)Qand(s)P,sP,sQ,sP . Let them be P
0
, Q

o
, P

M 


M

0n

n

M

0n

n QandP,  respectively then 

from relation (24), we have 

 
       

   zLzB

Q(z)CP(z)CPzCPzCQzCzC

sz,R

M

0n

M

0n

n6n5M403021  
 



    (27) 

 

The Laplace transform of various state probabilities for the number of customers in the queue, 

including the one in service can be obtained as the coefficients of different powers of z in the 

binomial expansion of equation (27).  

Again, since  

P(1,s)=Laplace transform of the probability that the system is in environmental state E. 

and 

Q(1,s)=Laplace transform of the probability that the system is in  environmental state F. 

We have from equations (21) and (22) on setting z=1 and  sP0  = P
0
,  sQ0  =Q

0
,  sPM  = P

M
, 





M

0n

n

M

0n

n

M

0n

n

M

0n

n Q(s)QandP(s)P  

 
       

 1L

Q(1)LP(1)LP1LP1LQ1L1L

s1,P

M

0n

n6

M

0n

n5M403021 




     (28) 

 
       

   1L1B

Q(1)LP(1)LP1LP1LQ1L1L

s1,Q

M

0n

n12

M

0n

n11M1009087 




    (29) 

These on inversions give the respective probabilities for the system to be in the environmental states 

E and F. 

 

IV. Particular Case: 

Setting  =0 or n=N in equations (17) and (18), (i.e., when the rate of change of environmental state F 

to E is constant), we have  

          0zXs,zQzXs,zPzX 321        (30) 

          0zXs,zQzXs,zPzX 654        (31) 

where 

    111
2

11 szzzX   

  zzX2   

           







 




M

0n

nM
1M

1013 sPzzsPz1zsP1zzX  
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  zzX4   

    ξαμszμzX 225   

        







 



M

0n

n026 sQzsQ1zzX  

From equations (30) and (31), we have 

 
       
       zXzXzXzX

zXzXzXzX
s,zP

4251

5362




       (32) 

 
       
       zXzXzXzX

zXzXzXzX
s,zQ

4251

6134




       (33) 

Thus, we have  

 

                 

               

           

       



















2
87

22

45

M

0n

n45

M45
1M

1054

112

M

0n

n0122

zzXz1zXssz

zXzXsPzzXzXz

sPz1zXzXzsPzXzX

z1zXzXsQzsQzXzX1z

s,zR

 

(34) 

where 

     21211

23

17 μμz2ξβαμμλzzλzX   

       .μμξβμλμμαzξμαλzzX 21112121

2

8   

   
 ξβαss

ξαs
sPs1,P

M

0n

n







 

   
 





ss

sQs,1Q
M

0n

n
 

and 

         
s

1
sQsPsR

M

0n

n

M

0n

n

M

0n

n  


 

 

Relation (34) is a polynomial in z and holds for all values of z, including the three zeros of the 

denominator. Hence      sPandsQ,sP M00 are obtained by setting the numerator equal to zero 

and substituting the three zeros, 
1
, 

2
 and 

3
 (say) of the denominator (at each of which the 

numerator must vanish).    

Now, letting , 0 and setting 
1
=

2
= (say) in relation (34), we have 

  
       

  μξμλszzλ

z/sξzsPzλz1sRμz1
sz,r

1

2

1

M

1M

10








   (35) 

where 

      sQsPsR 000   

     sz,Rlimlimsz,r
α0β 

  

Relation (35) is a polynomial in z and exists for all values of z, including the two zeros of the 

denominator. Hence,    sPandsR M0  can be evaluated as before.   
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V. Steady State Results: 
This can be obtained by the well-known property of the Laplace transform given below: 

   sfslimtflim
0st 

 ,     If the limit on the left hand side exists.  

Thus if     



M

0n

n
n zRzR  

where,  

 sRslimR n
0s

n


  

Then         s,zRslimzR
0s

  

By employing this property, from equation (23) we have  

 
     

   zNzB

NQ(z)NP(z)NPzNPzNzNQ

zR
1

M

0n

n5

M

0n

n4M30210 




    (36) 

where, 

       
0s

z
7i

Lz
1i

Lz
1

Bz
i

N




  ;  i=1, 2, 3, 4, 5. 

    0s1 zBzB   

 
 

 












02

j

j zL
zη

z
zL  dz  ; j=2, 3, 4, 5, 6. 

    0skk zLzL    ; k=8, 9, 10, 11, 12. 

    0szLzN   

N' = the constant of integration.  

The unknown quantities Q
0
, P

0
, P

M
, 



M

0n

n

M

0n

n QandP can be evaluated as before.  

Particular case: 

Relation (34), on applying the theory of Laplace transforms gives  

 

    
          

          
         

    21211121

112121
2

21
3

22111
2

1

M22
1M

10221

01
2

1112

z

zz

zzz/z

Pzzz1zPzzz1

Qzzzz1

zR















  

   (37) 

or, we can write  

 
       

 zK

zMPzLPzNQzT
zR M00 
     (38) 

Where T(z), N(z) and L(z) are the co-efficient of Q
0
, P

0
 and P

M
 respectively in the numerator of 

equation (37) and K(z) is the denominator of equation (37).  

Equation (38) is a polynomial in z and holds for all values of z, including three zeros of the 

denominator. Hence Q
0
, P

0
 and P

M
 can be obtained by setting the numerator equal to zero. 

Substituting the three zeros b
1
, b

2
 and b

3
 (say) of the denominator (at each of which the numerator 

must vanish).  

Three equations determining the constants Q
0
, P

0
 and P

M
 are 
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       1M10101 bMPbLPbNQbT       (39) 

       2M20202 bMPbLPbNQbT       (40) 

       3M30303 bMPbLPbNQbT       (41) 

After solving these equations, we have  

     

A

AbMAbMAbM
Q 313212111

0


  

     

A

AbMAbMAbM
P 323222121

0


  

     

A

AbMAbMAbM
P 333232131

M


  

where 

     

     

     333

222

111

bLbNbT

bLbNbT

bLbNbT

A  

A
ij
 is the co-factor of the (i, j)

th
 element of A. 

By putting the values of Q
0
, P

0
 and P

M
 in equation (38), we have 

 

                 
          

 zKA

zMAAbMAbMAbMzL

AbMAbMAbMzNAbMAbMAbMzT

zR 333232131

323222121313212111







      (42) 

Mean Queue Length: 

Define,  

L
q
= Expected number of customers in the queue including the  one in service.  

Then     L
q
 =  

1z
zR


   

Therefore, from equation (42), we have  

                   
                
                 

      

  2
333

232131323222121313

212111333232131

323222121313212111

q
1KA

1K1MAAbM

AbMAbM1LAbMAbMAbM1NAbM

AbMAbM1T1MAAbMAbMAbM1L

AbMAbMAbM1NAbMAbMAbM1T1K

L










  (43) 

where dashes denotes the first derivative with respect to z.   

Now, Relation (35) on applying the theory of Laplace transforms gives  

 
   

  






1
2

1

M
1M

10

zz

zPzz1Rz1
zr            (44) 

where  

   s,zrslimzr
0s

  

Equation (44) is a polynomial in z and holds for all values of z, including the two zeros of the 

denominator. Therefore, R
0
 and P

M
 can be found by setting the numerator equal to zero. Substituting 

the two zeros a
1
 and a

2
 (say) of the denominator (at each of which the numerator must also vanish). 

If 0  (i.e., Catastrophes are not allowed in the system): 

From equation (35), on applying the theory of Laplace transforms gives  

 
zλμ

PzλRμ
zr

1

M

1M

10








        (45) 
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The condition,   1zrlim
1z




 gives 

 1M10 λμPλRμ          (46) 

As r(z) is analytic, the numerator and denominator of equation (45) must vanish simultaneously for z= 

/1, which is a zero of its denominator. Equating the numerator of equation (45) to zero for z= /1 

we have  

1,PR 1M
M

0  
     (47)  

Relation (46) and (47) gives 

 
1M

M

M1M0
ρ1

ρρ1
P,

ρ1

ρ1
R

 







  

Now, from equation (45), we have   

 
 
























 z1

z1
.

1

1
zr

1M

1M
       (48) 

which is a well-known result of the M/M/1 queue with finite waiting space M.  

When there is an infinite waiting space, the corresponding expression for r(z) is obtained by letting M 

tends to infinity in equation (48), If (,|z|) 1. 

      
z1

1
zr




        (49) 

which is again a well-known result of  M/M/1 queue with infinite waiting space.  

 

Key Aspects of the M/M/1 Queue with Catastrophes: 

Kumar and Arivudainambi [9] explores an M/M/1 queueing model that incorporates the effects of 

catastrophes, which are sudden events causing the queue to drop to zero i.e., all customers in the 

system are removed and reset to zero at once. This approach is useful for modeling systems that may 

experience random, complete resets, such as in certain network or service systems where failures can 

clear out all ongoing tasks. 

Steady-state probabilities: 

In a queue with catastrophes, the steady-state distribution can still exist if the arrival rate  λ  and 

service rate μ are balanced in such a way that the system does not grow unbounded. The steady-state 

probabilities are altered by the rate of catastrophes with rate ξ. 

When a catastrophe occurs at the service facility with rate ξ, the steady-state distribution {pn;  n ≥ 0} 

of the M/M/1 queue with catastrophes corresponds to  

p0 = (1 − ρ)  ;   n = 0      (50) 

pn = (1 − ρ)ρn  ;   n =1, 2, 3, ……    (51) 
where 

ρ =
(λ+μ+ξ)−√λ2+μ2+ξ2+2λξ+2μξ−2λμ

2μ
    (52) 

Thus equations (50)-(52) provide the steady- state distribution for the queueing system. Obviously, 

the steady state distribution exists if and only if ρ < 1. It is also observed that the results of equations 

(50)-(52) agree with the model discussed above and with Chao, X [3]. 

 

VI. Application of the model: 
Queueing models with catastrophes and environmental change can be applied suitably to 

many practical situations in biological and agricultural sciences, etc. In agricultural scenario , if a crop 

has some sort of infection through one type of insects caused due to change in temperature i.e., 

environment; then for such type of infection some sort of chemical agent or comp ounds can be 

applied. The number of bacteria that destroy the crop, in the large part, depends on the effectiveness 

and quantity of chemical reagents used. It means that the application of these chemical reagents can 

lead to the elimination of all the insects or a segment of it. The impact these chemical reagents have 

on bacteria that makes them become zero instantaneously can be considered as the happening of a 

catastrophe.  
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VII. Conclusion: 
In this paper, we established a queueing model and obtained the transient solution of a limited 

capacity queueing system with catastrophes and state-dependent environmental change parameter. 

Further, we have derived the steady state result and the mean queue length of the model. We have also 

obtained some particular cases both with and without catastrophes.  
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