Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 11 (2024) pp: 84-88 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

Q*-REGULAR SPACES

Hamant Kumar

Department of Mathematics V. A. Govt Degree College, Atrauli-Aligarh-202280, Uttar Pradesh (India)

Abstract: In this paper, we introduce and study a new class of generalized regular space is called Q^* -regular space which is weaker than regularity. The relationships among strongly rg-regular, g-regular, regular, Q^* -regular, almost regular and softly regular spaces are investigated. Some of basic properties and characterizations of Q^* -regular spaces in the terms of other separation and countability axioms such as semi-regular, Hausdorff, separable, second countable and Lindelof spaces are obtained.

Key words: regular open, Q^* -open sets; softly regular, almost-regular, Q^* -regular spaces 2020 Mathematics subject classification: 54B05, 54B10, 54B15, 54D10

Received 10 Nov., 2024; Revised 19 Nov., 2024; Accepted 22 Nov., 2024 © *The author(s) 2024. Published with open access at www.questjournas.org*

I. Introduction

In 1925, Urysohn [13] introduced and studied a new type of separation axiom, called Urysohn space. In 1926, Cartan [1] introduced and studied the concept of symmetric space. In topology, an R_0 -space is also known as a symmetric space. In 1937, Stone [12] introduced the notion of semi-regular spaces and obtained their characterizations. In 1958, Kuratowski [5] introduced a generalization of closed sets, called regularly-open and regularly-closed sets in general topology.

In 1963, Levine [6] introduced the concept of generalized closed sets and obtained their properties. In 1969, Singal and Arya [10] introduced a new class of separation axiom (namely almost regular space) in topological spaces which is weaker than regularity but it is equivalent to semi-regular spaces due to Stone [12] and investigated some basic properties with other separation axioms such as T_0 , T_1 , semi-regular, Hausdorff and k-spaces. In 1986, Munshi [7] introduced and studied some new class of separation axioms (named g-regular and g-normal spaces etc.) in topological spaces which are stronger than regularity and normality. In 1993, Palaniappan [9] introduced the concept of generalized closed sets, called regular generalized closed which is a weaker form of closed and g-closed sets and studied their properties. In 2010, Murugalingam and Lalitha [8] introduced and studied the concept of O^{*}-open sets and obtained some properties of O^{*}-open sets in topological spaces. In 2011, Gnanachandra and Thangavelu [2] introduced and studied the concepts of strongly rg-regular and strongly rg-normal spaces in topological spaces which are stronger than regularity and normality. In 2018, Kumar and Sharma [3] introduced and studied the concept of softly regular spaces in topological spaces which is a weak form of regularity and obtained some characterizations with regular, strongly rg-regular, weakly regular, almost regular, π -normal and quasi normal spaces. Recently, Kumar and Tomar [4] introduced and studied the concepts of Q*-normal spaces in topological spaces which is weaker than normality and obtained their characterizations.

II. Preliminaries

Throughout this paper, spaces (X, \mathfrak{I}) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by **cl**(A) and **int**(A) respectively. A subset A of a topological space (X, \mathfrak{I}) is said to be **regularly-open** [5] if it is the interior of its own closure or, equivalently, if it is the interior of some closed set or equivalently, A = int(cl(A)). A subset A is said to be **regularly-closed** [5] if it is the closure of some open set or equivalently, A = cl(int(A)). Clearly, a set is regularly-open iff its complement is regularly-closed. The finite union of regularly open sets is said to be π -open. The

complement of a π -open set is said to be π -closed. Every regularly open (resp. regularly closed) set is π -open (resp. π -closed).

2.1 Definition. A subset A of a space (X, \Im) is said to be **Q**^{*}-closed [8] if int(A) = ϕ and A is closed. The complement of a Q^{*}-closed set is said to be **Q**^{*}-open.

2.2 Definition. A subset A of a space (X, \Im) is said to be

(i) generalized closed (briefly g-closed) [6] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.

(ii) **regular generalized closed** (briefly rg-closed) [9] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular-open in X.

The complement of A is g-closed (resp. rg-closed) set is said to be **g-open** (resp. **rg-open**). The family of all Q*-closed (resp. Q*-open) sets of a space X is denoted by Q*-C(X) (resp. Q*-O(X)).

2.3 Remark. We have the following implications for the properties of subsets:

 $\begin{array}{ccc} \text{regular closed} & \Rightarrow & \pi\text{-closed} \\ & & & \downarrow \\ Q^*\text{-closed} & \Rightarrow & \text{closed} & \Rightarrow & \pi\text{g-closed} & \Rightarrow & \text{rg-closed} \end{array}$

Where none of the implications is reversible as can be seen from the following examples:

2.4 Example. Let $X = \{a, b, c\}$ and $\Im = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (i) regular closed sets are : ϕ , X, $\{a, c\}, \{b, c\}$. (ii) π -closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$. (iii) closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$. (iv) Q*-closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$. (v) g-closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$. (vi) π g-closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$. (vi) π g-closed sets are : ϕ , X, $\{c\}, \{a, c\}, \{b, c\}$.

2.5 Example. In R with usual metric, finite sets are Q^* -closed but not regular closed. [0, 1] is regular closed but not Q^* -closed. Hence regular closed and Q^* -closed sets are independent of each other.

2.6 Definition. A space X is said to be a **Urysohn space** [13] if for every pair of distinct points x and y, there exist open sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \phi$.

2.7 Definition. A space X is said to symmetric space (or R_0 -space) [1] if for any two distinct points x and y of X, $x \in cl(\{y\})$ implies that $y \in cl(\{x\})$.

2.8 Definition. A topological space X is called T_{Q*} -space if every Q^* -closed set in it is closed set.

2.9 Definition. A space X is said to be **g-normal** [7] if for every pair of disjoint g-closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subset U$ and $B \subset V$.

2.10 Definition. A space X is said to be **strongly rg-normal** [2] if for every pair of disjoint rg-closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subset U$ and $B \subset V$.

2.11- Definition. A space X is said to be Q^* -normal [4] if for every pair of disjoint Q^* -closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subset U$ and $B \subset V$.

By the definitions stated above, we have the following diagram:

rg-normality \Rightarrow g-normality \Rightarrow normality \Rightarrow Q^{*}-normality Where none of the implications are reversible.

III. Q^{*}-regular spaces

3.1 Definition. A space (X, \mathfrak{I}) is said to be **Q**^{*}-regular if for every Q^{*}-closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$.

3.2 Definition. A space (X, \mathfrak{I}) is said to be **softly regular** [3] if for every π -closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $x \in U, A \subset V$, and $U \cap V = \phi$.

3.3 Definition. A space (X, \Im) is said to be **almost regular** [10] if for every regularly closed set A and a point x \notin A, there exist open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$.

3.4 Definition. A space (X, \mathfrak{I}) is said to be **g-regular** [7] if for every g-closed set A and a point $x \notin A$, there exist open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$.

3.5 Definition. A space (X, \mathfrak{I}) is said to be **strongly rg-regular** [2] if for every rg-closed set A and a point $x \notin A$, there exist open sets U and V such that $x \in U, A \subset V$, and $U \cap V = \phi$.

3.6 Definition. A space (X, \Im) is said to be **semi-regular** [12] if for each point x of the space and each open set U containing x, there is an open set V such that $x \in V \subset Int(Cl(V)) \subset U$.

3.7 Theorem. Every regular space is Q^{*}-regular.

Proof. Let X be a regular space. Let F be any Q^{*}-closed set in X and a point $x \in X$ such that $x \notin F$. Since we know that every Q^{*}-closed set is closed. So, F is closed and $x \notin F$. Since X is a regular space, there exists a pair of disjoint open sets G and H such that $F \subset G$ and $x \in H$. Hence X is a Q^{*}-regular space.

3.8 Theorem [7]. Every g-regular space is regular hence Q^{*}-regular.

3.9 Theorem [2]. Every strongly rg-regular space is regular hence Q^{*}-regular.

By the definitions and results stated above, we have the following diagram:

 $\begin{array}{c} Q^*\text{-regular} \\ & \uparrow \\ strongly \ rg\text{-regular} \Rightarrow \ g\text{-regular} \Rightarrow \ softly \ regular \Rightarrow \ almost \ regular \end{array}$

Where none of the implications is reversible as can be seen from the following examples:

3.10 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b, c\}, X\}$. Consider the closed set $\{b, c\}$ and a point 'a' such that $a \notin \{b, c\}$. Then $\{b, c\}$ and $\{a\}$ are disjoint open sets such that $\{b, c\} \subset \{b, c\}$, $a \in \{a\}$ and $\{b, c\} \cap \{a\} = \phi$. Similarly, for the closed set $\{a\}$ and a point 'c' such that $c \notin \{a\}$. Then there exist open sets $\{a\}$ and $\{b, c\} \cap \{b, c\}$ such that $\{a\} \subset \{a\}, c \in \{b, c\}$ and $\{a\} \cap \{b, c\} = \phi$. It follows that (X, \mathfrak{I}) is regular as well as softly regular space.

3.11 Example. Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. If we take a point 'a' and an open set $V = \{a\}$, then $cl(V) = \{a, c\}$ and a regularly-open set U = X. So by the definition of weakly regular space $x \in V \subset cl(V) \subset U$, where V be an open set and U be a regularly-open set such that $a \in \{a\} \subset \{a, c\} \subset X$. Hence (X, \Im) is weakly regular. If we take a point 'a' and a regularly-closed set $A = \{b, c\}$ does not containing the point 'a' and a regularly-closed set $A = \{b, c\}$. Hence (X, \Im) is not almost-regular.

3.12 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, \mathfrak{I}) is weakly regular but not partly-regular. If we take a point 'a' and an open set $V = \{a\}$, then $cl(V) = \{a, c\}$. Let $U = \{a, b\}$ be any π -open set. So by the definition of partly-regular space $x \in V \subset cl(V) \subset U$, where V be an open set and U be a π -open set such that $a \in \{a\} \subset \{a, c\} \not\subset \{a, b\}$. Hence (X, \mathfrak{I}) is not partly-regular.

3.13 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, \mathfrak{I}) is weakly regular but not softly-regular. Let $A = \{c\}$ be any π -closed set doesnot containing a point 'a' i.e. $a \notin \{c\}$, there do not exist disjoint open sets containing the point 'a' and the π -closed set $A = \{c\}$. Hence (X, \mathfrak{I}) is not softly-regular.

3.14 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space (X, \Im) is almost regular but not strongly rg-regular. If we take a point 'a' and $F = \{b\}$ be any rg-closed set. Then there do not exist disjoint open sets containing the point 'a' and rg-closed set $F = \{b\}$. Hence (X, \Im) is not strongly rg-regular.

IV. Characterizations of Q*-regular spaces

4.1 Theorem. For a topological space (X, \mathfrak{I}) , the following properties are equivalent:

(a) (X, \mathfrak{I}) is Q^{*}-regular.

(b) For every $x \in X$ and every Q^* -open set U containing x, there exists an open set V such that $x \in V \subset cl(V) \subset U$.

(c) For every Q*-closed set A, the intersection of all the closed neighbourhood of A is A.

(d) For every set A and a Q^{*}-open set B such that $A \cap B \neq \phi$, there exists an open set F such that $A \cap F \neq \phi$ and $cl(F) \subset B$.

(e) For every nonempty set A and Q^{*}-closed set B such that $A \cap B = \phi$, there exist disjoint open sets L and M such that $A \cap L \neq \phi$ and $B \subset M$.

Proof.

(a) \Rightarrow (b). Suppose (X, \Im) is Q^{*}-regular. Let $x \in X$ and U be a Q^{*}-open set containing x so that X - U is Q^{*}-closed. Since (X, \Im) is Q^{*}-regular, there exist open sets V₁ and V₂ such that V₁ \cap V₂ = ϕ and $x \in V_1$, $X - U \subset V_2$. Take $V = V_1$. Since $V_1 \cap V_2 = \phi$, $V \subset X - V_2 \subset U$ that implies $cl(V) \subset cl(X - V_2) = X - V_2 \subset U$. Therefore $x \in V \subset cl(V) \subset U$.

(b) \Rightarrow (c). Let A be Q^{*}-closed set and $x \notin A$. Since A is Q^{*}-closed, X - A is Q^{*}-open and $x \in X - A$. Therefore by (b) there exists an open set V such that $x \in V \subset cl(V) \subset X - A$. Thus $A \subset X - cl(V) \subset X - V$ and $x \notin X - V$. Consequently X - V is a closed neighborhood of A

 $(c) \Rightarrow (d)$. Let $A \cap B \neq \phi$ and B be Q^{*}-open. Let $x \in A \cap B$. Since B is Q^{*}-open, X - B is Q^{*}-closed and $x \notin X - B$. By our assumption, there exists a closed neighborhood V of X - B such that $x \notin V$. Let $X - B \subset U \subset V$, where U is open. Then F = X - V is open such that $x \in F$ and $A \cap F \neq \emptyset$. Also X - U is closed and $cl(F) = cl(X - V) \subset X - U \subset B$. This shows that $cl(F) \subset B$.

 $(d) \Rightarrow (e)$. Suppose $A \cap B = \phi$, where A is non-empty and B is Q^{*}-closed. Then X - B is Q^{*}-open and $A \cap (X - B) \neq \phi$. By (d), there exists an open set L such that $A \cap L \neq \phi$, and $L \subset cl(L) \subset X - B$. Put M = X - cl(L). Then $B \subset M$ and L, M are open sets such that $M = X - cl(L) \subset (X - L)$.

(e) \Rightarrow (a). Let B be Q^{*}-closed and $x \notin B$. Then $B \cap \{x\} = \phi$. By (e), there exist disjoint open sets L and M such that $L \cap \{x\} \neq \phi$ and $B \subset M$. Since $L \cap \{x\} \neq \phi$, $x \in L$. This proves that (X, \mathfrak{I}) is Q^{*}-regular.

4.2 Theorem. A topological space (X, \mathfrak{I}) is Q^{*}-regular if and only if for each Q^{*}-closed set F of (X, \mathfrak{I}) and each $x \in X - F$, there exist open sets U and V of (X, \mathfrak{I}) such that $x \in U$ and $F \subset V$ and $cl(U) \cap cl(V) = \phi$. **Proof:** Let F be a Q^{*}-closed set in (X, \mathfrak{I}) and $x \notin F$. Then there exist open sets U_x and V such that $x \in U_x$, $F \subset V$ and $U_x \cap V = \phi$. This Implies that $U_x \cap cl(V) = \phi$. Since cl(V) is closed and $x \notin cl(V)$. Since (X, \mathfrak{I}) is Q^{*}-regular, there exist open sets G and H of (X, \mathfrak{I}) such that $x \in G$, $cl(V) \subset H$ and $G \cap H = \phi$. This implies $cl(G) \cap H = \phi$. Take $U = U_x \cap G$. Then U and V are open sets of (X, \mathfrak{I}) such that $x \in U$ and $F \subset V$ and $cl(U) \cap cl(V) = \phi$, since $cl(U) \cap cl(V) \subset cl(G) \cap H =$.

Conversely, suppose for each Q^{*}-closed set F of (X, \Im) and each $x \in X - F$, there exist open sets U and V of (X, \Im) such that $x \in U, F \subset V$ and and $cl(U) \cap cl(V) = \phi$. Now $U \cap V \subset cl(U) \cap cl(V) = \phi$. Therefore $U \cap V = \phi$. Thus (X, \Im) is Q^{*}-regular.

4.3 Theorem. In a Q^* -regular space X, every pair consisting of a compact set A and a disjoint Q^* -closed set B can be separated by open sets.

Proof. Let X be Q^{*}-regular space and let A be a compact set, B be a Q^{*}-closed set with $A \cap B = \phi$. Since X is Q^{*}-regular space, for each $x \in A$, there exist disjoint open sets U_x and V_x such that $x \in U_x$, $B \subset V_x$. Clearly $\{U_x : x \in A\}$ is an open covering of the compact set A. Since A is compact, there exists a finite subfamily $\{U_{xi} : i = 1, 2, 3, ..., n\}$ which covers A. It follows that $A \subset \cup \{U_{xi} : i = 1, 2, 3, ..., n\}$ and $B \subset \cap \{V_{xi} : i = 1, 2, 3, ..., n\}$

....., n}. Put $U = \bigcup \{U_{xi} : i = 1, 2, 3,, n\}$ and $V = \bigcap \{V_{xi} : i = 1, 2, 3,, n\}$, then $U \cap V = \phi$. For, if $x \in U \cap V \Rightarrow x \in U_{xj}$ for some j and $x \in V_{xi}$ for every i. This implies that $x \in U_{xj} \cap V_{xi}$, which is a contradiction to $U_{xj} \cap V_{xi} = \phi$. Thus U and V are disjoint open sets containing A and B respectively.

V. Relations of Q^{*}-regular spaces with Some Separation Axioms

5.1 Theorem [10]. Every almost regular, semi-regular space is regular.

5.2 Corollary. Every almost regular, semi-regular space is Q^* -regular. **Proof.** Using the fact that every regular space is Q^* -regular.

5.3 Corollary. Every softly regular, semi-regular space is Q^{*}-regular. **Proof.** Using the fact that every softly regular space is almost regular.

5.4 Theorem [11]. Every normal, symmetric space is regular.

5.5 Corollary. Every normal, symmetric space is Q^{*}-regular. **Proof**. Using the fact that every regular space is Q^{*}-regular.

5.6 Corollary. Every g-normal, symmetric space is Q*-regular. **Proof.** Using the fact that every g-normal space is normal.

5.7 Corollary. Every rg-normal, symmetric space is Q^{*}-regular. **Proof**. Using the fact that every rg-normal space is normal.

5.8 Theorem [11]. Every compact Hausdorff space is regular.

5.9 Corollary. Every compact Hausdorff space is Q^{*}-regular. **Proof**. Using the fact that every regular space is Q^{*}-regular.

5.10 Corollary. Every compact Urysohn space is Q^{*}-regular. **Proof**. Using the fact that every Urysohn space is Hausdorff.

VI. Conclusion

In this paper, we introduce and study a new class of generalized regular space is called Q^* -regular space which is weaker than regularity. The relationships among strongly rg-regular, g-regular, regular, Q^* -regular, almost regular and softly regular spaces are investigated. Some of basic properties and characterizations of Q^* -regular spaces in the terms of other separation and countability axioms such as semi-regular, Hausdorff, separable, second countable and Lindelof spaces are obtained. This idea can be extended to topological ordered, bitopological, bitopological ordered and fuzzy topological spaces etc.

Acknowledgement: The author is thankful to Dr M. C. Sharma, NREC College Khurja, U. P. for his valuable suggestions and encouragement throughout preparation of this article.

REFERENCES

- E. Cartan, Surune Classe Remarquable d'espaces de Riemann, I", Bulletin de la Societe Mathematique de France, 54(1926), 214-216.
- P. Gnanachandra and P. Thangavelu, On strongly rg-regular and strongly rg-normal spaces, International Journal of Mathematical Archive-2(12), (2011), 2570-2577.
- [3]. H. Kumar and M. C. Sharma, Softly regular spaces in topological spaces Jour. of Emerging Tech. and Innov. Res. (JETIR), Vol. 5, Issue 11, (2018), 183-190.
- [4]. H. Kumar and N. K. Tomar, Q*-normal spaces, IJMTT (2024), (Communicated) C. Kuratowski, Topologie I, 4th ed., in French, Hafner, New York, 1958.
- [5]. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89 96.
- [6]. B. M. Munshi, Separation Axioms, Acta Ciencia Indica, Vol. 12, No. 2, (1986), 140-144.
- [7]. M. Murugalingam and N. Lalitha, Q*-closed sets, Bull. of Pure and Appl. Sci., Vol. 29 E, Issue 2 (2010), 369 376.
- [8]. N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211 219.
- [9]. M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Math., 4(24) (1969), 89-99.
- [10]. Stephen Willard, General Topology, Addison Wesley, 1970.
- [11]. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 375-481.
- [12]. P. Urysohn, Über die Machitigkeit der zusammenhangenden Mengen, Math. Ann. 94(1925), 262-295.