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I. Introduction and Preliminaries  

The fixed theory is most demanded and interesting in solving many problems in area of research in 

mathematics. A lot of work was dedicated to the theory of fixed point. In 1922, Banach [2] introduced Banach 

Contraction Principle that is “A self-mapping in a complete metric space satisfying the contraction conditions 

has a unique fixed point.” 

 In 1965, Zadeh [15] introduced the theory of partial fuzzy set. The fuzzy logic is applied in the 

processing of students evaluation, human behavior. In 1988, Kramosil and Michalek [9] introduced the concept 

of fuzzy metric spaces (FM-Space) which is the generalization of probabilistic theory. After that, the concept of 

metric fuzziness was given by George and Veeramani [6]. In 1988, Grabiec [7] was the first who proved the 

Banach Contraction Principle in fuzzy metric space. 

In 1986, Jungek [8] introduced weakly compatible mappings. In 2002, Aamri et al. [1] generalized the concept 

of non-compatibility and gave the new contraction by defining E.A property. 

 

Definition 1.1. [15] Let 𝑋be any set. A fuzzy set 𝐴of 𝑋is a function from domain 𝑋and values in[0,1]. 
Example1.2. Consider 𝑋 =  {𝑎, 𝑏, 𝑐, 𝑑}and𝐴: 𝑋 →  [0,1]defined as𝐴(𝑎)  =  0, 𝐴(𝑏)  =  0.5, 𝐴(𝑐)  =
0.2 𝑎𝑛𝑑 𝐴(𝑑)  =  1. Then𝐴is a fuzzy set on 𝑋. This fuzzy set also can be written as follows: 

𝐴 =  { 𝑎, 0  𝑏, 0.5  𝑐, 0.2  (𝑑, 1)}. 
In 1994, George and Veeramani [6] introduced the notion of fuzzy metric spaces as follows: 
Definition 1.3. [6] A 3- tuple (𝑋, 𝑀,∗)is said to be a fuzzy metric space if 𝑋is an arbitrary set, ∗is a continuous t-

norm and 𝑀is a fuzzy set on𝑋2  ×  (0, ∞) satisfying the following properties:  

(FMS 1)𝑀 𝑝, 𝑞, 𝑡 >  0, 
(FMS 2)𝑀(𝑝, 𝑞, 𝑡)  =  1 if and only if𝑝 =  𝑞; 
(FMS 3) 𝑀(𝑝, 𝑞, 𝑡)  =  𝑀(𝑞, 𝑝, 𝑡); 
(FMS 4) 𝑀(𝑝, 𝑞, 𝑡)  ∗  𝑀(𝑞, 𝑟, 𝑠)  ≤  𝑀(𝑝, 𝑟, 𝑡 +  𝑠); 

(FMS 5) 𝑀(𝑝, 𝑞, . ): (0, ∞)  →  (0,1]iscontinuous, 

for all𝑝, 𝑞, 𝑟 ∈  𝑋 and𝑠, 𝑡 > 0. 

Then 𝑀 is called a fuzzy metric on 𝑋.The function 𝑀(𝑝, 𝑞, 𝑡) denote the degree of nearness between 𝑝and 𝑞with 

respect to 𝑡. 
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Definition 1.4. [5] A binary operation ∗ : [0,1]  × [0,1]  →  [0,1]is said to be a continuous t-norm if it satisfies 

the followingconditions: 

(i) * is associative andcommutative, 

(ii) * iscontinuous, 

(iii) 𝑎 ∗  1 = 𝑎 for all𝑎 ∈ [0,1]and 

(𝑖v) 𝑎 ∗  𝑏 ≤  𝑐 ∗  𝑑 whenever𝑎 ≤  𝑐 and𝑏 ≤  𝑑  for all𝑎, 𝑏, 𝑐, 𝑑 ∈   0,1 . 
 

Example 1.5.𝑎 ∗  𝑏 =  𝑎𝑏 for𝑎, 𝑏 ∈  [0,1]is a continuous t-norm. 

Definition 1.6. [9] A binary operation 𝛥 ∶  [0,1]  ×  [0,1]  →  [0,1]is a continuous t co-norm if it satisfies the 

followingconditions: 

(i) 𝛥is commutative andassociative; 

(ii) 𝛥iscontinuous; 

(iii) 𝑎𝛥 0 =  𝑎  for all 𝑎 ∈ [0,1]; 

(iv) 𝑎𝛥 𝑏 =  𝑐𝛥 𝑑 whenever 𝑎 ≥  𝑐 and 𝑏 ≥  𝑑 for each𝑎, 𝑏, 𝑐, 𝑑 ∈  0, 1 . 
Example 1.7. A binary operation𝛥 ∶  [0,1]  ×  [0,1]  →  [0,1] such that𝑎∆𝑏 =  𝑚𝑖𝑛(𝑎 + 𝑏, 1)is a continuous t 

co-norm. 

Definition 1.8. [10] Let (𝑋, 𝑀,∗) be a fuzzy metric space, 𝑥 ∈ 𝑋 and𝜙  ≠ 𝐴 ⊆ 𝑋. We define 𝐷(𝑥, 𝐴, 𝑡)  =
 𝑠𝑢𝑝{𝑀 (𝑥, 𝑦, 𝑡): 𝑦 ∈ 𝐴 }( 𝑡 >  0) then  𝐷(𝑥, 𝐴, 𝑡) is called a degree of closeness of 𝑥 to 𝐴 at 𝑡. 

Definition 1.9. [10] A topological space is called a (topologically complete) fuzzy metrizable space if there 

exists a (topologically complete) fuzzy metric inducing the given topology on it. 

Definition 1.10. [6] Let (𝑋, 𝑀,∗) be a fuzzy metric space. A sequence {𝑥𝑛 } in 𝑋 is said to be convergent to a 

point 𝑥 ∈  𝑋 (denoted by lim𝑛→∞ 𝑥𝑛 = 𝑥) if for lim𝑛→∞ 𝑀 𝑥𝑛 , 𝑥, 𝑡 = 1 for all 𝑡 >  0. 

Definition 1.11. [6] Let 𝑀 be a fuzzy metric space. A sequence {𝑥𝑛} in 𝑋 is called Cauchy sequence if and only 

if lim𝑛→∞ 𝑀(𝑥𝑛+𝑝 , 𝑥𝑛  , 𝑡) = 1 for all  𝑝 >  0 and 𝑡 >  0. 

Definition 1.12. [12] Two mappings 𝑆 and 𝑇 of a fuzzy metric space (𝑋, 𝑀,∗ ) into itself are said to be 

compatible maps if  lim𝑛→∞ 𝑀(𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 , 𝜀 )  =  1 for all 𝜀 > 0 where {𝑥𝑛  } ∈  𝑋 such that lim𝑛→∞ 𝑆𝑥𝑛 =
lim𝑛→∞ 𝑇𝑥𝑛 =  𝜔 𝜖 𝑋. 

Definition 1.13. The self-mappings 𝑆 and 𝑇 of a fuzzy metric space (𝑋, 𝑀,∗) are said to be commuting 

if𝑀(𝑆𝑇𝑥, 𝑇𝑆𝑥, 𝑡) = 1 for all𝑥 ∈ 𝑋. 

Definition 1.14. [13] Theself-mappings𝑆and𝑇ofafuzzymetricspace  𝑋, 𝑀,∗  are said to be weakly commuting if 
𝑀 𝑆𝑇𝑥, 𝑇𝑆𝑥, 𝑡 ≥  𝑀 𝑆𝑥, 𝑇𝑥, 𝑡  for each𝑥 ∈  𝑋 and  𝑡 > 0.   
Definition 1.15. [8] The self-mappings 𝑆 and 𝑇 of a fuzzy metric space  𝑋, 𝑀,∗  

are said to be compatible if and only iflim𝑛→∞ 𝑀(𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 , 𝑡) = 1 whenever {𝑥𝑛 } is a 

sequence in 𝑋 such thatlimn→∞ Sxn = limn→∞ Txn  = x for some 𝑥 in 𝑋 and 𝑡 >  0. 

Definition 1.16. [11] The self-mappings 𝑆 and 𝑇 of a fuzzy metric space (𝑋, 𝑀,∗) are said to becompatible of 

type (𝐾)iff 𝑙𝑖𝑚𝑛→∞ 𝑀 𝑆𝑆𝑥𝑛  , 𝑇𝑥, 𝑡 = 1 and𝑙𝑖𝑚𝑛→∞ 𝑀 𝑇𝑇𝑥𝑛 , 𝑆𝑥, 𝑡 = 1,whenever {𝑥𝑛 } is a sequence in 𝑋 such 

that 

𝑙𝑖𝑚𝑛→∞ 𝑆𝑥𝑛 = lim𝑛→∞ 𝑇𝑥𝑛  =  𝑥for some 𝑥in 𝑋 and 𝑡 >  0. 

Definition 1.17. [8] The self-mappings 𝑆 and 𝑇 of a fuzzy metric space  𝑋, 𝑀,∗ are said to be weakly 

compatible if they commute at their coincidence points, i.e., Sx = Tximplies STx = TSx. 

Definition 1.18. [1] Let(𝑋, 𝑑) be a metric space. Two self- mappings 𝑆, 𝑇satisfyE.A property if there exists a 

sequence {𝑥𝑛 }in 𝑋 such that𝑙𝑖𝑚𝑛→∞ 𝑆𝑥𝑛 =  𝑙𝑖𝑚𝑛→∞ 𝑇𝑥𝑛 =  𝑡 for some 𝑡 ∈  𝑋. 

Definition 1.19. [1] Let 𝑆 and 𝑇 be two self-maps of a metric space then they are said to satisfy 

(𝐶𝐿𝑅𝑇) property if there exists a sequence  𝑥𝑛   in 𝑋 such that limn→∞ Sxn  = limn→∞ Txn =  Tx for some 

𝑥 𝜖 𝑋. 

Definition 1.20. [14] Let (𝑋, 𝑑)be a metric space and 𝑆, 𝑇 ∶  𝑋 →  𝑋. Let𝑌 ⊆  𝑋. The mappings 𝑆, 𝑇are said to 

satisfy the property common limit converging in the range sub-space𝑌 if there exists a sequence {𝑥𝑛 }in 𝑋such 

that lim𝑛→∞ 𝑆𝑥𝑛 = lim𝑛→∞ 𝑇𝑥𝑛 ∈  𝑌. 
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II. Main Results 

In this section, we prove some common fixed point theorems for a pair of self-maps in fuzzy metric space. 

Theorem 2.1: Let S, 𝑇 be two weakly compatible self-mappingson fuzzy metric space (𝑋, 𝑀,∗) 

such that  

M Sx, Sy, t < 𝑚𝑎𝑥 M Tx, Ty, t , M Sx, Tx, t , M Ty, Sy, t , M Tx, Sy, t , M(Sx, Ty, t) (2.1)   

and S, 𝑇 satisfy 𝐶𝐿𝑅𝑇  property then 𝑆, 𝑇 have a unique common fixed point in 𝑋. 
Proof: Since 𝑆 and 𝑇 satisfy 𝐶𝐿𝑅𝑇  property, therefore there exists a sequence {𝑥𝑛 } in 𝑋 such that 

lim𝑛→∞ 𝑆𝑥𝑛 = lim𝑛→∞ 𝑇𝑥𝑛 = 𝑇𝑥 for some 𝑥 ∈ 𝑋. 

Taking 𝑥 = 𝑥𝑛  and 𝑦 = 𝑥 in (2.1), we obtain  

M Sxn , Sx, t < 𝑚𝑎𝑥{𝑀 Txn , Tx, t , M Sxn , Txn , t , M Tx, Sx, t , M Txn , Sx, t , M Sxn , Tx, t }. 

Taking limit as 𝑛 → ∞, we get 

M Tx, Sx, t < max 1, M Tx, Sx, t  . 
Therefore, 𝑇𝑥 = 𝑆𝑥. 
Thus 𝑥 is the coincidence point of 𝑆 and 𝑇. 

Let 𝛼 = 𝑆𝑥 = 𝑇𝑥. 

Since 𝑆, 𝑇 are weakly compatible, therefore we have 

𝑆𝛼 = 𝑆𝑇𝛼 = 𝑇𝑆𝛼 = 𝑇𝛼. 

Now we prove that 𝑆𝛼 = 𝛼. 

Let us suppose that 𝑆𝛼 ≠ 𝛼 then 

M Sα, α, t < max M Tα, Tα, t , M Sα, Tα, t , M Tα, α, t , M Sα, α, t , M Sα, Tα, t   
< 𝑀 Sα, α, t , 

 a contradiction. 

 Henc𝑒, 𝑆𝛼 = 𝛼 = 𝑇𝛼. 

Thus 𝛼 is the common fixed point of  𝑆 and 𝑇. 

Let 𝛼, 𝛽 be two fixed points of 𝑆 and 𝑇, therefore 𝑆𝛼 = 𝑇𝛼 = 𝛼 and 𝑆𝛽 = 𝑇𝛽 = 𝛽. 

M Sα, Sβ, t < max M Tα, Tβ, t , M Sα, Tα, t , M Tβ, Sβ, t , M Tα, Sβ, t , M Sα, Tβ, t  
< max M α, β, t , M α, α, t , M β, β, t , M α, β, t , M α, β, t  . 

M α, β, t < 𝑚𝑎𝑥{1, 𝑀 α, β, t }. 

So, 𝛼 = 𝛽. 

Thus 𝑆 and 𝑇 have a unique common fixed point. 

Theorem 2.2: let 𝑆, 𝑇 be two weakly compatible self mappings on fuzzy metric space  𝑋, 𝑀,∗  

and 𝐾: [0, ∞) → (0,1) be a function satisfying the followings: 

ϕ M Sx, Sy, t  ≤ K t . ϕ(M x, y, t ),        (2.2) 

where 𝜙:  0,1 → [0,1] is a function and 

M x, y, t = min{M Tx, Ty, t , M Sx, Tx, t , M Ty, Sy, t , M Sx, Ty, t ,
M Tx ,Sy ,t M Sx ,Ty ,t 

M Sx ,Sy ,t 
}.         (2.3) 

Either 𝑆 and 𝑇 satisfy 𝐶𝐿𝑅𝑆  property or 𝑆 and 𝑇 satisfy 𝐶𝐿𝑅𝑇  property. 

𝑆𝑋 ⊃ 𝑇𝑋. 

Then 𝑆 and 𝑇 have a  unique common fixed point in 𝑋. 

Proof: Since 𝑆 and 𝑇 satisfy  𝐶𝐿𝑅𝑇 property, so there exists a sequence {𝑥𝑛 } in 𝑋 such that  

lim𝑛→∞ 𝑆 𝑥𝑛 = lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑇𝑥 for some 𝑥 ∈ 𝑋.      (2.4) 

Now lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑇𝛼 for some 𝛼. 

Therefore,  lim𝑛→∞ 𝑆 𝑥𝑛 = lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑇𝛼. 

Now we will prove that 𝑇𝛼 = 𝑆𝛼.  

Let us suppose that 𝑇𝛼 ≠ 𝑆𝛼 and M Sα, Tα, t > 1. 

Taking 𝑥 = 𝑥𝑛  and 𝑦 = 𝛼 in (2.2) and (2.3), we get  

ϕ M Sxn , Sα, t  ≤ K t . ϕ(M xn , α, t ) and      

M xn , α, t = min{M Txn , Tα, t , M Sxn , Txn , t , M Tα, Sα, t , M Sxn , Tα, t ,
M Txn ,Sα ,t M Sxn ,Tα ,t 

M Sxn ,Sα ,t 
}. 

Taking limit as 𝑛 → ∞ we get,  

M α, α, t = min  M Tα, Tα, t , M Sα, Tα, t , M Tα, Sα, t , M Sα, Tα, t ,
M Tα, Sα, t M Sα, Tα, t 

M Sα, Sα, t 
 . 

M α, α, t ≥ min 1, M Sα, Tα, t  . 
Therefore, 𝑀 𝛼, 𝛼, 𝑡 ≥ 1. 

Now 𝜙:  0,1 → [0,1] is a map and 𝐾 𝑡 . 𝜙 𝑀 𝑆𝛼, 𝑇𝛼, 𝑡  ≥ 𝜙 𝑡 = 1, 

 a contradiction. 

Hence, 𝑆𝛼 = 𝑇𝛼. 
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Let 𝛼, 𝛽 be two fixed points of 𝑆 and 𝑇, therefore 𝑆𝛼 = 𝑇𝛼 = 𝛼 and 𝑆𝛽 = 𝑇𝛽 = 𝛽. 

ϕ M Sα, Sβ, t  ≤ K t . ϕ(M α, β, t ) and      

M α, β, t = min{M Tα, Tβ, t , M Sα, Tα, t , M Tβ, Sβ, t , M Sα, Tβ, t ,
M Tα ,Sβ ,t M Sα ,Tβ ,t 

M Sα ,Sβ ,t 
} . 

ϕ M α, β, t  ≤ K t . ϕ(M α, β, t ) and      

M α, β, t = min{M α, β, t , M α, α, t , M β, β, t , M α, β, t ,
M α ,β ,t M α ,β ,t 

M α ,β ,t 
} = min{1, M α, β, t }. 

Therefore 𝛼 = 𝛽. 

Thus 𝑆 and 𝑇 have a  unique common fixed point in  𝑋. 

Theorem 2.3: Let 𝑆, 𝑇 be self-mappings of a fuzzy metric space (𝑋, 𝑀,∗) satisfying  

𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ≥ ϕ min M Sx, Ty, t , M Sx, Tx, t , M Sx, Sy, t , M Ty, Sy, t    for all x, y ∈ X and t > 0,                                                                                                                                   

(2.5) 

 where 𝜙:  0,1 → [0,1] is a continuous function with 𝜙 𝑠 > 𝑠, 

where 0 < 𝑠 < 1. 

𝑆 and 𝑇 satisfy 𝐶𝐿𝑅𝑆property such that 𝑇𝑋 ⊂ 𝑆𝑋. Then 𝑆 and 𝑇 have a unique common fixed point. 

Proof: Since 𝑆 and 𝑇   satisfy 𝐶𝐿𝑅𝑆property, so there exists a sequence  𝑥𝑛  in 𝑋 such that lim𝑛→∞ 𝑆 𝑥𝑛 =
lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑆𝑥 for some 𝑥 ∈ 𝑋. 

limn→∞ S xn = Sk for some 𝑘. 

Therefore, lim𝑛→∞ 𝑆 𝑥𝑛 = lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑆𝑘. 

Now we prove that 𝑆𝑘 = 𝑇𝑘. 

Let us suppose that Sk ≠ Tk and 𝑀 𝑆𝑘, 𝑇𝑘, 𝑡 > 1.  

Taking 𝑥 = 𝑥𝑛  and 𝑦 = 𝑘 in (2.5), we get 

M(Sxn , Tk, t) ≥ ϕ min M Sxn , Tk, t , M Sxn , Txn , t , M Sxn , Sk, t , M Tk, Sk, t   . 

Taking limit as 𝑛 → ∞, we have 

M(Sk, Tk, t) ≥ ϕ min M Sk, Tk, t , M Sk, Tk, t , M Sk, Sk, t , M Tk, Sk, t   . 

M(Sk, Tk, t) ≥ ϕ(min 1, M Sk, Tk, t  ) and ϕ s > 𝑠,  

where 0 < 𝑠 < 1. 

M Sk, Tk, t > 𝑀(𝑆𝑘, 𝑇𝑘, 𝑡), 

a contradiction. 

Therefore, Sk = Tk. 

Now we prove uniqueness of common fixed point.   

Let α, β be two fixed points of S and T, therefore Sα = Tα = α and Sβ = Tβ = β. 

M(Sα, Tβ, t) ≥ ϕ min M Sα, Tβ, t , M Sα, Tα, t , M Sα, Sβ, t , M Tβ, Sβ, t   . 

M(α, β, t) ≥ ϕ min M α, β, t , M α, α, t , M α, β, t , M β, β, t   . 

M(α, β, t) ≥ ϕ(min 1, M α, β, t  ) and ϕ s > 𝑠, 

where 0 < 𝑠 < 1. 

M α, β, t ≥ M α, β, t . 

So, α = β. 

Thus, 𝑆 and 𝑇 have a unique common fixed point. 

Example 2.4: Let 𝑋 = [0, ∞). Define 𝜙:  0,1 → [0,1] by 𝜙 𝑘 = 𝑘 + 1. 

And define 𝑆, 𝑇 ∶ 𝑋 → 𝑋 by 𝑆 𝑥 = 2𝑥 and 𝑇 𝑥 = 𝑥2 for all 𝑥 ∈ 𝑋. 

Define 𝑀 𝑥, 𝑦, 𝑡 =
𝑡

𝑡+ 𝑥−𝑦 
 

Then 𝑆, 𝑇 have a unique common fixed point. 

Solution:𝑆 and 𝑇 satisfy 

𝑀 𝑆𝑥, 𝑆𝑦, 𝑡 ≤ 𝜙 𝑀 𝑥, 𝑦, 𝑡   and 

𝑀 𝑥, 𝑦, 𝑡 = min 𝑀 𝑆𝑥, 𝑆𝑦, 𝑡 , 𝑀 𝑆𝑥, 𝑇𝑦, 𝑡 , 𝑀 𝑆𝑦, 𝑇𝑦, 𝑡 , 𝑀 𝑇𝑦, 𝑆𝑥, 𝑡   for all 𝑥 ≠ 𝑦 and 𝑡 > 0. 

𝑆 and 𝑇 satisfy 𝐶𝐿𝑅𝑆 property for sequence  𝑥𝑛  = {
1

2𝑛
}. 

Since, 𝑆 0 = 𝑇 0 = 0.  

Therefore, 0 is a unique common fixed point of  𝑆 and 𝑇. 

Example 2.5: Let 𝑋 = [0, ∞) and define 𝑆, 𝑇: 𝑋 → 𝑋  by 𝑆 𝑥 = 2𝑥 − 1 and 𝑇 𝑥 = 𝑥2 for all 𝑥 ∈ 𝑋.  

Define  M x, y, t =
t

t+ 
1  

x
− 

1

y
 
 . 

And ϕ:  0,1 →  0,1  by ϕ s =
s

2
  is continuous function with  ϕ s > 𝑠, 0 < 𝑠 < 1. 

S  and T satisfy M(Sx, Ty, t) ≥ ϕ min M Sx, Ty, t , M Sx, Tx, t , M Sx, Sy, t , M Ty, Sy, t    for all x, y ∈ X and 

t > 0. 

Also SX ⊃ TX. 

Also, S and T satisfy (CLR)T  property for sequence  xn = {
1

n
}. 



Common fixed point theorems for a pair of self-maps in fuzzy metric space 

DOI: 10.35629/0743-10118993       www.questjournals.org                 93 | Page 

limn→∞ ST(xn) = limn→∞ ST(
1

n
) = limn→∞ S  

1

n2 = limn→∞  
2

n2 − 1 = −1. 

limn→∞ TS(xn) = limn→∞ TS(
1

n
) = limn→∞ T  

2

n
− 1 = limn→∞(

2

n
− 1)2 = 1. 

limn→∞ ST(xn) ≠ limn→∞ TS(xn). 

Hence, (S, T) is not compatible mapping but  S, T  is weakly compatible mapping as S x = T x  when x = 1. 

Thus 𝑆 and 𝑇 have a unique common fixed point at 𝑥 = 1.   
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