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Abstract

On higher dimensions Hardy spaces have natural finite dimensional subspaces formed by polynomials or linear
maps in the complex plane. L. V. Kovalev, X. Yang [14] use the restriction of Hardy norms to these subspaces to
describe the set of possible derivatives of harmonic self-maps of a ball, providing a version of the Schwarz lemma
for harmonic maps. These restricted Hardy norms display unexpected near-isometric duality between the
exponents 1 and 4, which they give an explicit form of harmonic Schwarz lemma. As an application on [14] we
use a special function for perspective and affirmative.
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l. INTRODUCTION

L. V. Kovalev, X. Yang [14] connects two seemingly distant subjects: the geometry of Hardy norms
on finite-dimensional spaces and the gradient of a harmonic map of the unit ball (see [14]). Specifically.
writing H} for the dual of the Hardy norm H' on complex-linear functions, and obtain the following
description of the possible gradients of harmonic maps of the unit disk II.

Theorem 1.1. A vector (a;, 8;) € €7 is the Wirtinger derivative at 0 of some harmonic map f;: D — I if
and only if || (a;, ,Bj) = 1.

Theorem 1.1 can be compared to the behavior of holomorphic maps f;: D — I for which the set of all
possible values of f]-’({)) is simply D). The appearance of H! norm here leads one to look for a concrete

description of this norm. It is well known that the duality of holomorphic Hardy spaces H'™¢ is not
isometric. and in particular the dual of H* norm is quite different from H™ norm even on finite dimensional
subspaces (see (3.4)). However, it has a striking similarity to H* norm.

Theorem 1.2. Forall & € €2\ {(0,0)}1 = X, 11 & I/l & llys< 1.01.

o . o g4 1/4
Since the H* norm can be expressed as ||(§f,fg)||q_ = {|:‘fi‘|4 + 4|§i’§é ’ + |€i|4) I . Theorem 1.2

supplements Theorem 1.1 with an explicit estimate,

In general. Hardy norms are merely quasinorms when € < 1, as the triangle inequality fails, However, their
restrictions to the subspaces of degree 1 complex polynomials or of 2 X 2 real matrices are actual norms
(Theorem 2.1 and Corollary 5.2). We do not know if this property holds for n X n matrices with n > 2.

We introduce Hardy norms on polynomials. We show Theorem 1.2. We concern the Schwarz lemma for
planar harmonic maps, Theorem 1.1. We consider higher dimensional analogues of these results.

2. Hardy Norms on Polynomials

For a polynomial f; € C[z], the Hardy space (H 1+€) quasinorm is defined by
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1/1+€
1 2m L
” )G "HH'E: EJ; Z |ﬁ(€ltj)|1+€dt}
i

where 0 = € < oo, There are two limiting cases: € — o yields the supremum norm
Il f; Nlggeo= maxz (et
=g D [5(e)
J

and the limit € - —1 yields the Mahler measure of f}:

1 2 ) .
Il fj | o= exXp EJ’ Z logm(elt"ﬂdtﬁ .
0 .
i ;

An overview of the properties of these quasinorms can be found in [12], and in [11]. In general they satisfy
the definition of a norm only when € = 0.

The Hardy quasinorms on vector spaces €™ are defined by

n
(@ @)l yave =1 Nasse. Sz =ZZ afz*1,

k=1

We will focus on the case n = 2, which corresponds to the H*€ quasinorm of degree 1 polynomials a) +

alz. These quantities appear as multiplicative constants in sharp inequalities for polynomials of general
degree: see Theorems 13.2.12 and 14.6.5 in [12]. or Theorem 5 in [11]. In general. H1¥¢ quasinorms cannot
be expressed in elementary functions even on €2, Notable exceptions include

(el @)l ;o = max (
1

~ . -2 . Zne
Il a)l,- = (lad]” +ad] )’
1
B} . .4 S22 ry
I(al @)l = (lad|* +4lad| (a2 + |a]*)*,
I(a}.al)] e = |al] + |l

(2.1)

Another easy evaluation is

. . 1 2w . 1 2w 4
I(1,1) ”H"zﬁf E |1+ e'i|dt; =Ef E 2|cos(t;/2)|dt; = — (2.2)
0 - 0 - !
] ]

However. the general formula for the H* norm on €2 involves the complete elliptic integral of the second

kind E. Indeed, writing k = |a2/a1| we have

. _ . 7 2w )
[(ai. a3)ll,,. = [ai| I (LK) lg2= Z %f |1 + ke |dg
- o
J

. T | — ., 2
q2(k+1) rz | 2k .
= Z |a{|TL |1 — (m) sin2 I'jdt'j (2.3)
i
_ 2“" + 1)5 2\.-"?
=2 la 1)

Perhaps surprisingly. the Hardy quasinorm on €2 is a norm (i.e., it satisfies the triangle inequality) even
when € < 1.
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2
C

Theorem 2.1 (see [14]). The Hardy quasinorm on € is a norm for all —1 = ¢ = co. In addition, it has the

symmetry properties

”(ajJ anf:]"HL—E = ”(agra{)”m—e = ||(|a{|J|a§|)||Hl—£' (2.4)

Proof. For ¢ = —1, oo all these statements follow from (2.1), so we assume 0 < € < oo, The identities
m i A g 2 — R 2 i R )
f Z |a] + ale®]| dt; =j Z |ale ™ + a dtjzj Z |al + ale™| dt; (2.5)
o : 0 7 0 -
7 7 I

imply the first part of (2.4). Furthermore, the first integral in (2.5) is independent of the argument of a-;

while the last integral is independent of the argument of @]. This completes the proof of (2.4).
It remains to prove the triangle inequality in the case 0 < € < 1. To this end, consider the special following
function of (12 — 1) € R.

1
—€

1
. 1 i . o _it.|1—€
G (A2 = 1):=11 (1,47 = 1) lig1-e= Ef Z |1+ (22 = De™|™ “dt; : (2.6)
°
We claim that G; is convex on R. If |A? — 1] < 1. the binomial series

(l + (;{2 _ 1:)eit}-)1—6,}"2 _ 1-— E/z (32 . .l:)}leﬂl't}-
Sy

n

together with Parseval's identity imply

1/1—¢

G,(2% - 1) = (i (* _?fffz)z (22 — 1)2ﬂ) . 2.7)

Sinee every term of the series is a convex function of (4% — 1), it follows that G; is convex on [—1,1]. The
power series also shows that G; is €™ smooth on (0,1). For A% = 2 the symmetry property (2.4) yields
Gj(ﬂz —1) = (A% — 1)6},-{:1;‘&2 — 1) which is a convex function by virtue of the identity G]-”(ﬂ,z —1)=
(A% — 1)73G{"(1/4? — 1). The piccewise convexity of G; on [0,1] and [1, 00) will imply its convexity on
[0, ©) (henee on R) as soon as we show that G; 1s differentiable at A2 = 2. Note that |'l + (A% — 'lj]«=3ir«"|l_"=
is differentiable with respect to (12 — 1) when e/ = —1 and that for (A2 — 1) close to 1,

6 ; - - i -
mp + (A% — l)e”f|1 = (1—e)|1+ (A% — 1)e'| ) = Clt; —m|™= (2.8)

forall t; € [0.27] \ {m}. with C independent of (A% — 1), t;. The integrability of the right hand side of (2.8)
justifies differentiation under the integral sign:

d 1 3" d e i—e
e eI O - 1—e _ - - 2 _ it i
FTeE I)Gj(ﬂ, 1) ZJTJ; E FICEE=EY |1+ (A2 — et | “d;.

J

Thus G{ (1) exists.

Now that G; is known to be convex, the convexity of the function F;(x, v): =Il (x,¥) llgi—e= xG;(¥/x) on
the halfplane (x,y) € RZ, x > 0, follows by computing its Hessian, which exists when |y| + x :

-2,,2 —z
x 3y —x" 7y
H.=G-”1-':r;( ’).
FJ. j (- f ) —Xizj,-" )‘_71
Since Hg, 1s positive semidefinite, and Fj is €1 smooth even on the lines |y| = | x|, the function F; is convex

on the halfplane x > 0. By symmetry, convexity holds on other coordinate halfplanes as well, and thus on
all of R2. The fact that G; is an increasing function on [0, 2] also shows that F; is an increasing function of
each of its variables in the first quadrant x, v = 0.

Finally. for any two points ((‘L{ (‘Lé) and (b}', bé‘) in C* we have
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I(c; +5J.ab +b3)] (|al +51].|ab +52[) < B(lal] + |p]].|a2] + |2])

11"1™2 12 lgi-e '-’ 2 Hl-e
ladl fadl) + £ 1671 1521) = 1(ads )l e + 16,5

using (2.4) and the monotonicity and convexity of F;.

=F
Hi-E
. F;

Remark 2.2 [14]. In view of Theorem 2.1 one might guess that the restriction of H'™¢ quasinorm to the
polynomials of degree at most n should satisfy the triangle inequality provided thatp > p,, for some p,, <
1. This is not so: the triangle inequality fails for any € < 1 even when the quasinorm is restricted to
quadratic polynomials. Indeed, for small (4> — 1) € R we have

=2

(A2 = 11,32 = 1y 15 :ﬁju Z (L+2(42 = 1)cosg)'~*dy

_i_:“ 1"_ A2 1yl — ) 312 13371 — & (—, Zp r1Z — 133y ) .
= z:rJU Z (1+ 2042 - 1)(1 - epeos; + 2(2% — 1)*(1 - e)(—e)oos? 1; + O((A2 — 1)%) ) dg;
=1+ = 1%l - &) (—e) + 04" — 1))

and this quantity has a strict local maximum at A2 = 1 provided that 0 < € < 1.

3. Dual Hardy Norms on Polynomials

The space C" is equipped with the inner product (§/,7/) = ¥ ;:1 2 {fi?]fk. Let H1 ™ be the norm on C"
dual to H'7¢, that is

=5 )
I &7 llga-e= sup (&, 7)1 m lge-es 1} = sup Z i § ) (3.1)

plec™ (0} nJ ||H"£

1+&
One cannot expect the ™% norm to agree with H ¢ (unless € = 1), as the duality of Hardy spaces is not
isometric [4]. However, on the space C* the H} norm turns out to be surprisingly close to H*, indicating
that H? and H* have nearly isometric duality in this setting. The following is a restatement of Theorem 1.2
in the form that is convenient for the proof.

Theorem 3.1 (see [14]). For all {/ € €2 we have

1) &< D N8 lge= (10D ) N N (3.2)
J J J

and consequently

I Z & e Z IE D= (1.01)2 &7 e (3.3)
j j J

It should be noted that while the H norm on C? is a non-elementary function (2.3), the H* norm has a
simple algebraic form (2.1). To see that having the exponent € = 3, rather than the expected € = oo, is
essential in Theorem 3.1, compare the following:

(L)1 - T 1.57
S T D) e 2 T
(L1 g =2, (3.4)
1
I (1,1) llge 6% = 1.57.

The proof of Theorem 3.1 requires an elementary lemma from analytic geometry.

Lemma 3.2 (see [14]). If € = 0 and (1 + 3¢) € R, then
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1+3c—(1+¢€)sing
T+ 26— (1+€)cosh

C(1+26)(1+3e)+ (1 +6€)/(1+26)*+(1+36)>—(1+¢€)°

(1+26)7 — (1L+e) (3.5)

Proof. The quantity being maximized is the slope of a line through (1 + 2¢,1 + 3¢) and a point on the
circle x2 + y2 = (1 + €)2. The slope is maximized by one of two tangent lines to the circle passing through
(1+2¢,1+3€). Lettana; = 1 + 36/1 + 2¢€ be the slope of the line L through (0,0) and (1 + 26,1 +
3¢). This line makes angle f; with the tangents, where tanf;=(1+¢)/

J(1+2€)?2+(1+3€)2 — (1+ €)2 Thus, the slope of the tangent of interest is

tan «; + tan f3;

tan(a; + ;) =
(f ﬁf) 1 — tana; tan f3;

(1+3e)y(1+2e)2+(1+3e)2—(1+e)2+ (1+2e)(1+¢)
(1+2e)/(1+26)2+(1+36)2—(1+€)2—(1+3e)(1 +¢)

which simplifies to (3.5).

Proof of Theorem 3.1, Because of the symmetry properties (2.4) and the homogeneity of norms, it suffices
to consider &/ = (1,42 — 1) with 1 < A% < 2. This restriction on (A* — 1) will remain in force throughout
this proof.

The function
1 & _
G (A2 —1): =l (1,22 — 1) llga= EJ; Z |1+ (A2 — 1)e'|dg,
j

has been intensely studied due to its relation with the arelength of the ellipse and the complete elliptic
mtegral [1]. [3]. It can be written as

Gj(.-lz _ l) =& = ,F, (_E’_%: 1; (‘12 _ 1)2) _ i (ﬂ)z (H'z _ 1)273 (3.6)

m(x + ) 2 n!

=0
where L is the length of the ellipse with semi-axes x,y and 22 — 1 = (x — v)/(x + y). The Pochhammer
symbol (z), = z(z + 1) --- (2 + n — 1) and the hypergeometric function ,F; are involved in (3.6) as well.
A direct way to obtain the Taylor series (3.6) for G; is to use the binomial series as in (2.7).
As noted in (2.1), the H* norm of (1,42 — 1) is an elementary function:

Fi(22 = 1):=11 (1,27 = 1) llga= (1 + 4(2 — 1) + (A% - D)V

The dual norm H2 can be expressed as
1+ (A% =1

(1+ 4t + a:;‘)l’hL

F (A% = 1):=1 (1,A* = 1) llge= sup

(3.7)
t;eR

j

where the second equality follows from (3.1) by letting 1 + 3e = (1,t;). Similarly, the H! norm of (1,27 —
1) 1s
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, L+ (4% - 1)
Gy (P =1:=1 (LA —1) lg2= SU-P Ty (3.8)
22T 6
Our first goal is to prove that
Gi (A* = 1) = (LOF(A* - 1). (3.9)

The proof of (3.9) is based on Ramanujan's approximation G (A2 —1) = 3 -4 — (42 — 1)? which
originally appeared in [13]: see [1] for a discussion of the history of this and several other approximations
to G;. Barnard, Pearce, and Richards [3], proved that Ramanujan's approximation gives a lower bound for

G(AF—1)=3—4—-(12-1)% (3.10)

We will use this estimate to obtain an upper bound for G;.

The supremum in (3.8) only needs to be taken over t; = 0 since the denominator i1s an even funetion.

;
Furthermore, it can be restricted to t; € [0,1] because for t; > 1 the homogeneity and symmetry properties

1+ (A2 - 1) t1+;12—1 1+(;{2—1'}r-1
Z IEDrS Z I(Lg) Z 1oL

Restricting f; to [0,1] in (3.8) allows us to use inequality (3.10):

of H! norm imply

1+ (22— 1),
G/(A*-1) < sup {7);

| (3.11)
t;e(0.1] > 3_ H _ E};
N

Writing t; = —2sin 8 and applying Lemma (3.5) we obtain
G 1) < (1 -1 -2sin6 _ . 3@ -1 +2FFE -1
R e 5
I (3.12)
3+2/TF5(E -1
R
The function
3+2y1+5s
fy(s):=

(1+ 4s +s2)1/2

is increasing on [0,1]. Indeed,

3(6s+2—(s+2)¥v1+5s)
2v1 + 5s(1 + 4s + s2)5/4

F(s)=

which is positive on (0,1) because
(6s+2)2— (s+2)%(1+55)=5s%(3—5) > 0.

Sinee f; is increasing, the estimate (3.12) implies
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G(A*-1) 1 e 1 N 3+ 2v6 LoL
W——f}( _}_):gfj()—T<

This completes the proof of (3.9).

Our second goal is the following comparison of ;" and G; with a polynomial:

1 1
_ - ~ 3?2 _ 2 2 _ 4 2 _ 116 < F*()2 —
1)£l+4(_,i 1) +64(}L 1)* + (A*—-1) _Fj(.fl 1). (3.13)

G.(A°
( 128

g

To prove the left hand side of (3.13). let T, (12 — 1) = 1+ (A2 — 1)2/4 + (A% — 1)*/64 be the Taylor
polynomial of G; of degree 4. Since all Taylor coefficients of G; are nonnegative (3.6), the function
G;(A* — 1) — T, (A - 1) 1

- 1)° 128

PO~ 1):=

is increasing on (0,1]. At A2 = 2, in view of (2.2), it evaluates to

1 1 1 4 163
G()—1—"——— ==
4 64 128 7 128

which is negative because 512/163 = 3.1411 ... < . Thus ¢(A% — 1) < 0 for 1 < A% = 2. proving the
left hand side of (3.13).

The right hand side of (3.13) amounts to the claim that for every A% — 1 there exists t; € R such that

1+ (22— 1)
2 2
Tzt L4 — 1) 4 —

Lt s — 2= 10
(1+ 41:].2 +t4)" 64 128 '

This 1s equivalent to proving that the polynomial
QA2 —1,t):= (1+ (22— Dtp*
1 1
— 2 4 _ 2 _ q- 2 _ 6
(1+4r +r)(1+ (=12 + 64 1%+ 128( 1))

4

satisfies (A% — 1,t;) = 0 for some t; depending on (42 —1). We will do so by choosing t; = 4(A% -
1)/(8 — 3(A%2 — 1)?). The function

W02 = 1):= (8- 3(2 — 1)?)*0 (2 — 14(2* — 1)/(8 - 3(2° - 1)?))

is a polynomial in (A* — 1) with rational coefficients. Specifically,

A —1) 149 209 ., 1y — 53?5 3069 _ 8963

oD =0 - -1 - —1)F - (B - DR o (B - 1) -
7837 . ., 36209 . 2049 . 13 s o A5 Bl @14
— e (B D - S (B - 1) = T (B 1 - (B D (- 1B - (B - )

which any computer algebra system will readily confirm. On the right hand side of (3.14), the coefficients
of (12 — 1)%, (A2 — 1), (A2 — 1)® are less than 10 in absolute value, while the coefficients of higher powers
are less than 1 in absolute value. Thanks to the constant term of 50, the expression (3.14) is positive as long
as 1 < A% = 2. This completes the proof of (3.13).

In conclusion, we have G;(4* — 1) < F]-"(.?l2 — 1) from (3.13) and G; (A* = 1) < (1.01)F;(A* — 1) from
(3.9). This proves the first half of (3.2) and the second half of (3.3). The other parts of (3.2)-(3.3) follow
by duality.
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4. Schwarz Lemma for Harmonic Maps

Let D = {z € C: |z| < 1} be the unit disk in the complex plane. The classical Schwarz lemma concerns
holomorphic maps f;: D — D normalized by f;(0) = 0. It asserts in part that |f] _O_}| = 1 for such maps.
This inequality is best possible in the sense that for any complex number &; such that |@;| = 1 there exists
f; as above with fj'(O) = @;. Indeed, f;(z) = a;z works.

The story of the Schwarz lemma for harmonic maps f;: D — D, still normalized by f;(0) = 0, is more
complicated. Such maps satisfy the Laplace equation C?gfj- = 0 written here in terms of Wirtinger's

derivatives
af; . of; af; af
j 2 é ( I _ i I) af} 2 E ( J' J)

The estimate |f;(z)| = Etan_1 |z] (see [6] or [5]) mmplies that

. . 4
185;(0)] +19£;(0)| = . (4.1)

Numerous generalizations and refinements of the harmonic Schwarz lemma appeared in recent years [8],
[10]. An important difference with the holomorphic case is that (4.1) does not completely deseribe the

possible values of the dertvative (9f;(0), d f;(0)). Indeed, an application of Parseval's idenfity shows that

|9f;(0)I* + 1af;(0)]* = 1 (4.2)
and neither of (4.1) and (4.2) imply each other. It turns out that the complete deseription of possible

derivatives at 0 requires the dual Hardy norm from (3.1). The following is a refined form of Theorem 1.1
from the introduction.

I (8f;(0),0f;(0)) lgs= 1 (4.3)

for any harmonic map f:D — D). In view of (2.1) this means |a}j(0}|4+4|a;3(0)31}(0)|2+
|9f;(0)[* = 1

Theorem 4.1 (see [14]). For a vector (a;, 5;) € 2 the following are equivalent:

(1) there exists a harmonic map f;: D — D with f;(0) = 0,0f;(0) = @;, and 5}‘} (0) = B;:
(i1) there exists a harmonic map f;: D — D with df;(0) = @; and 5;’;(0) =p;:

(1) I (e By) =1

Remark 4.2 [14]. Both (4.1) and (4.2) easily follow from Theorem 4.1. To obtain (4.1), use the definition
of H? together with the fact that ||(a{a£)||Hl = 4/7 whenever |a]| = |aj] = 1 (see (2.2). (2.4)). To

obtain (4.2), use the comparison of Hardy norms: || - ||z < || - g2, hence || - Iz = |- [lgz = [ - llg=.

Remark 4.3 [14]. Combining Theorem 4.1 with Theorem 3.1 we obtain
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> (af@.050)| <1 (43)

j ”

for any harmonic map f;: D; — D;. In view of (2.1) this means |3f}{:0:)|4 + 4|@}‘}(0)5}‘}(0)|2 +

3" < 1.

Proof of Theorem 4.1. (1) = (11) 1s trivial. Suppose that (i1) holds. To prove (1i1), we must show that
|27 + B G5l <1 (v;,6)) g (4.4)

for every vector (y;,§;) € C2. Let g;(z) = ¥;z + §;Z. Expanding f; into the Taylor series f;(z) = f;(0) +

@;z + ;Z + -+ and using the orthogonality of monomials on every circle [z] =1+ ¢, -1 <€ <0, we
obtain

B _ 1 2w ) N T
7+ B8] = e ||, 2 5(@r @) a(ar oy
j

1 am _ .
<] Y o ool 49
J

Letting € — 0 and observing that

1 2m ) ) 1 2m
—f > |Vje‘ti+5je‘”i'|dt}-=—f >
m ), i 2m ), i
1 7

1 2 .

B ZTJ Z v + Spettildty =1l (v, ;) Ny (4.6)
[¥] -
J

. —2it;
¥; + 8¢~ dy;

completes the proof of (4.4).

It remains to prove the implication (iii) = (i). Let Fy be the set of harmonic maps f;: D — D such that
f;(0)=0.andletD = [(ﬁlf}-{:{)), 5}3{0))}fr € TU}. Since Fy is closed under convex combinations, the set
D is convex. Since the function f;(z) = a;z + f;Z belongs to Fy when |a;| + [f;] < 1, the point (0,0) is
an interior point of D. The estimate (4.2) shows that D is bounded. Furthermore, ¢D c D for any complex
number ¢ with |¢| = 1, because Fy has the same property. We claim that D is also a closed subset of C2.
Indeed, suppose that a sequence of vectors ({ja'j)n, [:ﬁj)n) €D converges to (@, f;) € C*. Pick a
corresponding sequence of maps (f;), € Fy. Being uniformly bounded. the maps {( ﬂ-:)n} form a normal
family [2]. Hence there exists a subsequence {( f})ﬂk} which converges uniformly on compact subsets of
D). The limit of this subsequence is a map f; € Fo with 0f;(0) = @; and 8f;(0) = ;.

The preceding paragraph shows that D is the closed unit ball for some norm ||-llp on €2. The implication
(i11) = (1) amounts to the statement that |-l <||- | 2. We will prove it in the dual form

sup {|y;@ + 6;8;|: (. B;) € D} 2l (¥;.6;) g2 forall (y;,5;) €2 (47)

Since norms are continuous functions, it suffices to consider (y;,6;) € €2 with l¥;l = [5;]. Let g;: D = D
be the harmonic map with boundary values
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v,z + é}z

——— |z]| = 1.
lv;z + 6;Z]

g;(z) =

Note that g;(—z) = —g;(2) on the boundary, and therefore everywhere in . In particular, g;(0) = 0,
which shows g; € Fo. Let (a, ;) = (dg;(0), 59;(0)} € D. A computation similar to (4.5) shows that

_ _ 1 2 " T
v+ 6,8, = EJ; Z (v;e™ + 8;e7"% ) g (e )dt;
-

1 %" _ L yeti+ S8t
=— eti e t) L _— 1 gt
ZJ‘TJ; Z (VJ 7 ) }’}-E,'Etf + 6j-€_[tj| J

1 . _
=g | 2 e+ 5t =1 0.5 s
}_

where the last step uses (4.6). This proves (4.7) and completes the proof of Theorem 4.1.
5. Higher Dimensions

A version of the Schwarz lemma is also available for harmonie maps of the (Euclidean) unit ball B in R™.
Let § = dB. For a square matrix A; € R™ ", define its Hardy quasinorm by

1
1+e

Il A; llzgree= f Z I Apx 177 dp(x) (5.1)
oo }'

where the integral 1s taken with respect to normalized surface measure 4 on § and the vector norm || 4 X I
is the Euclidean norm. In the limit € — 0 we recover the spectral norm of 4;, while the special case € = 1
yields the Frobenius norm of 4; divided by V. The case € = 0 corresponds to "expected value norms"
studied by Howe and Johnson in [7]. Also, letting € — —1 leads to

I A; llzo= exp fz log Il A;x Il du(x) (5.2)
55

In general, H* quasinorms on matrices are not submultiplicative. However, they have another desirable
feature, which follows directly from (5.1): || UA;V llza+e=Il A; ll g1+ for any orthogonal matrices U, V. The

singular value decomposition shows that || A ; lgr2+e=Il Dj [lg1+e where Dj- 1s the diagonal matrix with the
singular values of A; on ifs diagonal.

Let us consider the matrix inner product (4;, B;) = %tr‘(B;Aj). which is normalized so that {[,I) = 1. This

inner product can be expressed by an integral involving the standard inner product on R"™ as follows:

(4,,B) :LZ (A4, Byx)dp(x). (5.3)
J

DOI: 10.35629/0743-1012121133 www.questjournals.org 130 | Page



A Focus on Near-1sometric Duality of Hardy Norms with Applications Corresponding to ..

Indeed, the right hand side of (5.3) is the average of the numerical values (BJTA e 1) which is known to be

the normalized trace of BJTAI. see [9].

The dual norms H}*€ are defined on R™ " by

A-,B-
I 4; lgs+e=sup {(4; B;): | B; lg+e< 1} =  sup E _(4.8) . (5.4)
seR o) & | B v

Applying Hélder's inequality to (5.3) yields (4 5o J} =N A I atell By llgpase when (1+ €)1+ {:%:}_1
H €
1. Hence || 4 llgz+e< |l 4; || 1+e but in general the inequality is strict. As an exception, we have || 4; llzz=
H € :

Il A}- | ;4= because (A}, AJ) = AJ,- "iz. As in the case of polynomials, our interest in dual Hardy norms is

driven by their relation to harmonic maps.

Theorem 5.1 (see [14]). For a matrix 4; € R™"" the following are equivalent:
(1) there exists a harmonic map f;: B — B with f;(0) = 0 and D f;(0) = 4;:
(ii) there exists a harmonic map fj: B — B with D f;(0) = 4;:

(i) II Af 2= 1

Proof. Since the proof is essentially the same as of Theorem 4.1, we only highlight some notational
differences. Suppose (ii) holds. Expand f; into a series of spherical harmonies, f;(x) = Y., pl(x) where

pk:R™ — R" is a harmonic polynomial map that is homogeneous of degree d. Note that p) (x) = 4 ;x. For
any 1. X n matrix B} the orthogonality of spherical harmonics [2]. yields

(4,,B,) = limf Z (1 + €)x), Byx)du(x) <Il B, I,
e~0 5 e
J

which proves (1i1).

The proof of (i11) = (1) 1s based on considering, for any nonsingular matrix 5;, a harmonic map g;: B —» B
with boundary values g;(x) = (Bjx)/Il B;x |l. Its derivative 4; = Dg;(0) satisfies

B, 4)) IZ B, g, (X)) dp(x) = fz du{r) —11 B, s

and (1) follows by the same duality argument as in Theorem 4.1.

As an indication that the near-isometric duality of H* and H* norms (Theorem 3.1) may also hold in higher

dimensions, we compute the relevant norms of Pk , the matrix of an orthogonal projection of rank k in R?,

For rank 1 projection
. 1 00
P = (0 0 O)
0 00
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t].1¢ norms arc
' 1
! = | (l+e)d1+e) ==
I#l,. = aroda+eo-3,
) 1 1/4 1
1B, = (f (1+e)*d(1+ e)) = =73 ¥ 067,
(p.P]) 13 2

pl =il ==~ 067.
e =Ter), =123

For rank 2 projection

they are
j T
Pl = [ imGreran+o -1,

1/4 g\ L4
2. ( (1—(1+¢)? )Zd(1+e)) =(_) ~ 0.85,

2] I

This numerical agreement does not appear to be merely a coincidence, as numerical experiments with
random 3 X 3 indicate that the ratio || 4 I axlll Aj llye 1s always near 1. However, we do not have a proof
of this.

As in the case of polynomials, there is an explicit formula for the H* norm of matrices. Writing a, ..., dy,
tor the singular values of A;, we find

14, 15=> @ iﬁ;ﬂLZZ B ) oiot (5.5)
e 4

k<l
where @; = fgxfd_u(x) and f; = fﬁxlz.rgd,u(x). For example, if n = 3, the expression (5.5) evaluates to
1g 2
I A le= EZ o +EZ ailaf.
k=1 k<l
Theorem 2.1 has a corollary for 2 % 2 matrices.

Corollary 5.2 (see [14]). The H'™® quasinorm on the space of 2 X 2 matrices satisfies the triangle
mequality even when 0 < € < 1.

Proof. A real lincar map x = 4;x in R? can be written in complex notation as z = a/z + b/Z for some

(a’,b7) € C2. A change of variable yields
Z |aJ + biz|t+e

[ Z laiz + biz|t*e J‘

|zl=1
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which implies || ,flj | g2+e=ll (a/, B7) |lga+e for € = 0. The latter is a norm on €2 by Theorem 2.1. The case
€ = —1 is treated in the same way.

The aforementioned relation between a 2 X 2 matrix A; and a complex vector (a’, b7) also shows that the

singular values of 4; are 0, = |a/| + |b/| and o, = ||a’| — |b7]|. It then follows from (2.1) that
o g, + 0,
Il 4; llgo=max (la’|.|b/]) = 7

which 1s, up to scaling, the trace norm of 4;. Unfortunately, this relation breaks down in dimensions > 2 :

for example, rank 1 projection P/ in R® has ||P1j ||H,:| = 1/e while the average of its singular values 1s 1/3.

We do not know whether H*< quasinorms with 0 < € < 1 satisfy the triangle inequality for n X n matrices
when n = 3.
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