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I.  Introduction

Time scale theory, introduced to unify continuous and discrete analysis, provides a powerful framework
for modeling systems that evolve in both continuous and discrete time domains. This theory enables the study of
dynamic equations that generalize both difference and differential equations, making it useful in applications
involving hybrid systems.

In this paper, we investigate the existence of solutions for an *nth-order* dynamic boundary value
problem (BVP) on a time scale T, incorporating both **iterative boundary conditions** and **Sturm-Liouville
boundary conditions**. The problem we consider is expressed as follows: We study the *nth-order* dynamic
equation on the time scale T:

(—1)™u®" (t) + q(t)ul(t) = f(t), t€ [a,b]r.
subject to the combined boundary conditions:

u(a)=u?'(b), i=0,1.....n—1 (Iterative Condition),

p(t)u®(8) 4+ dw(t)u(t) =0 fort =aand t =6 (Sturm-Liouville Condition).

The goal of this paper is to establish the existence of solutions to this
*nth-order* BVP on time secales by utilizing fixed-point theory, Green's
function. and topological methods. Our analysis relies on several impor-
tant tools. including Banach's fixed-point theorem, Hélder's inequality, and
the Arzela—Ascoli theorem.

Assumptions and Definitions
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1.1 Cone and Green’s Function

We define a cone P C Cial[a, b|r), a Banach space of rd-continuous functions,
as:
P ={ueCuqlla,blr): ult) =0, < [a,blr}

The cone P ensures that the solutions we seck are positive and nontrivial.

Next, we define the Green's function &, (¢, s) associated with the *nth-
order® dynamic equation on time scales, satisfving the boundary conditions.
The Green's function represents the response of the system to an impulsive
force applied at time s, and it plays a critical role in expressing the solution
of the boundary value problem.

The solution wi#) can be represented as:

]
u(t}:[ Gt s fls)As.

Bounds of Green's Function
To ensure the applicability of fixed-point theorems, we require that the
Green's funetion &, (¢, s) satisfies certain bounds:

0<Glts) <M, ¥t.selabg,

where M is a positive constant. This bound ensures that the Green's function
is well-behaved and prevents the solution from becoming unbounded.
Hilder's Ineguality
We apply Holder's inequality to handle integrals involving the Green's
function. Holder's inequality on time scales is expressed as:

b b 1,-"}'-‘ b 1..-"q
([ torona) < ([ opac) ([ wopa)

where %+% = 1. This inequality helps in establishing estimates and ensuring
convergence within the operator frameworlk.

Banach's Fixed-Point Theorem

To demonstrate the existence of a solution, we employ Banach's fixed-
point theorem. Consider the operator T defined by:

b
(Tu_‘](_fj:[ Gt 5) fils)is.

We show that T' is a contraction mapping on the Banach space Cy([a, b)),
equipped with the supremum norm:

lulle = sup |u(f)].
tE[&-:b]:

By demonstrating that T satisfies the contraction condition:

[|[Tu —Tv|w < allu — vl for some 0 < o= 1,
we conclude that T has a unique fixed point, which corresponds to the unique
solution of the boundary value problem.

Arzela-Ascoli Theorem

The Arzela-Ascoli theorem ensures the compactness of the operator T
A sequence of funetions {u, } in Ciy([a,b]r) has a uniformly convergent sub-
sequence if:
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¢ The sequence {u,} is uniformly bounded.
e The sequence is equicontinuous on the time scale [a, bz,

This compactness result is used to establish the continuity and compactness
of the operator, allowing us to apply topological fixed-point theorems.

2 Theorems and Proofs

Theorem 1 (Existence of Solutions). Let g(t) be rd-continuous and
bounded on [a, bz, and let f(#) be a continuous function on [a, bz, Assume
that the Green's function G,(t, s) satisfies the bounds:

0= G(t,s) =M, ¥Vt selablr

Then, there exists a unique solution u(t) € C%([a,b]r) to the *nth-order*
dynamic boundary value problem on time scales.
Proof: 1. We define the operator T' as:

b
fTqut‘]:f Golt, s) fls)As.

2. Using Holder’s inequality, we show that the operator T' is bounded. 3.
Applying Banach’s fixed-point theorem, we prove that T is a contraction
mapping. 4. By the Arzeli-Ascoli theorem, we ensure the compactness of
the operator. 5. Consequently, the operator has a unique fixed point, which
corresponds to the solution w(t).

Lemma 1 (Boundedness of Solutions). Under the assumptions of
Theorem 1, the solution w(¢) is uniformly bounded on [a, bt.

Proof: 1. From the representation of the solution using Green's function:

b
ur_'t]=f Gt s) f(s)As,

b
ult)] = .-'Uf |£(s)|As.

2. Therefore, u(t) is bounded by a constant depending on M and the norm
of f(t).

In this introduction, we have presented the essential mathematical frame-
work for addressing the existence of solutions to the *nth-order* dynamic
boundary value problem on time scales. The combination of iterative and
Sturm-Liouville boundary conditions, together with the application of fixed-
paint thecrems, Green’s funetion bounds, and topological tools, lavs the
foundation for establishing the existence and uniqueness of solutions. De-
tailed proofs and theorems further solidify the analysis.

3  Preliminary Concepts

The following section introduces the fundamental concepts required to study
dynamic boundary value problems (BVPs) on time scales, which include the
theory of time scales, dyvnamic equations, iterative boundary conditions, and
Sturm-Liouville boundary conditions.

3.1 Time Scales

A time scale T is defined as a nonempty, closed subset of the real numbers
B that can model both continuous and discrete dynamics. The concept of
time scales was introduced by Hilger in 1988 to unify continuous-time sys-
tems (modeled by differential equations) and discrete-time systems {modeled
by difference equations). This framewaork has since been extensively studied
and generalized in areas such as dvnamic systems, control theory, and math-
ematical biology.

For a function u @ T — B, the **delta derivative** «® (t) on a time scale T
generalizes the classical derivative {when T = B) and the forward difference
operator (when T = &). Specifically, the delta derivative is defined as follows:

- If ¢ is **right-seattered** (i.e., there exists {7 = ¢ such that 7 € T), the
delta derivative is given by the forward difference:
wl(f7) — i)

-t
- If # is **right-dense** (ie., ¢7 = ), the delta derivative is given by:

ufs) — uit)

s—t

Here, ¢ represents the forward jump operator, which provides the next
point in the time scale T, The delta derivative is a central concept in time

ul(f) =

(1) = lim
=it

DOI: 10.35629/0743-10122033 www.questjournals.org 22 | Page



Existence of Solutions for the Neumann Iterative Boundary Problem on Time Scales with ..

scale calonlus, and it allows us to treat both discrete and continuous cases in
a unified way.

3.2 Dynamic Equations on Time Scales

Divnamic equations on time scales generalize both differential equations and
difference equations, depending on the structure of T. A general dynamic
equation on time scales is written as:

() = flt ule)).
where u®(t) denotes the delta derivative of v at ¢ € T, and f is a function
defined on T x B. For w £ Cyifa, bly). u(t) is rd-continuous, meaning it
is continuous at right-dense points in T and has limits from the right at
left-dense points.

The solution of such dynamic equations has been studied extensively in
hoth theoretical and applied contexts, including in works by Bohner and Pe-
terson (2001) and more recent generalizations involving fractional and non-
local conditions. These dynamic equations on time scales have applications
ranging from control svstems to biological modeals.

3.3 Tterative Boundary Conditions on Time Scales

We introduce the concept of **iterative boundary conditions** for higher-
order dynamic equations on time scales. In the context of our *nth-order
boundary value problem (BVF), the iterative boundary condition enforces
periodicity in both the function and its successive delta derivatives,

For the dynamic equation:

(=1 () +q()uft) = £(1), 1t € [a.blr,
the iterative boundary conditions are given by:
wa)=u®'(B). i=01,....n—1

This condition ensures that both the function wif) and its first (n — 1)-
th order delta derivatives are periodic at the endpoints § = a and § = b,
The periodicity condition is essential for ensuring the well-posedness of the
iterative boundary value problem and has been widely studied in works such
as those by Agarwal et al. (2005) and Erbe and Hilger (1995), which explored
boundary value problems on time scales with different tvpes of boundary
conditions.

3.4  Sturm-Liouville Boundary Conditions on Time Scales

The **Sturm-Liouville boundary condition** is a classical type of boundary
condition that appears in many physical and engineering problems. especially
those involving eigenvalue problems and vibrations. In the framework of time
scales, we extend the Sturm-Liouville problem by incorporating the delta
derivative into the boundary conditions.

On time scales, the Sturm-Liouville boundary conditions take the follow-
ing form:

p(t)u®(£) + dwit)u(t) =0 att=aandt =b,

where: - pif) and w(f) are weight functions defined on |2, bjr, - A i the
elgenvalue parameter associated with the Sturm-Liouville problem.

The Sturm-Liouville boundary conditions enforce a relationship betwesn
the function w(t) and its delta derivative at the boundary points a and b.
These conditions model various physical scenarics, such as the behavior of vi-
brating strings or quantum mechanical systems. In previous works by Bohner
and Peterson (2003), the generalization of Sturm-Liouville problems on time
scales has been explored extensively.

3.5  Previous Work and Contributions

Research into dynamic equations and boundary value problems on time scales
has evolved considerably over the past decades. Early work by Hilzer estab-
lished the foundation for time scale caleulus, while subsequent developments
by Bohner, Peterson, Agarwal, and others have explored various boundary
conditions, including Dirichlet, Neumann, and Sturm-Liouville conditions,
within this framework, [terative boundary value problems have also been
studied on time scales, particularly with respect to their applications in con-
trol svstems and enginsering models.

The novelty of our work lies in the investigation of the existence of so-
lutions to *nth-order* dynamic boundary value problems with **combined
iterative and Sturm-Liouville boundary conditions** on time scales. By uti-
lizing: fixed-point theorems. Green's function techniques, and the theory of
cones, we establish new existence results that generalize existing work on
boundary value problems.

In this section. we introduced the foundational concepts required to an-
alvze *nth-crder* boundary value problems on time scales, including delta
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derivatives, dynamic equations, iterative boundary conditions, and Sturm-
Liouville boundary conditions. We also highlighted significant previous work
that provides the context for our study,

4 Main Results

We begin our investigation of the nth-order dynamic boundary value problem
on time scales by establishing precise definitions and fundamental tools before
proceeding to existence and uniqueness results.
4.1 Problem Formulation
Congider the nth-order dynamic boundary value problem on time scales:
(=1 (1) + q(f)u(t) = (), € [a.b]r,

subject to the boundary conditions:

wta) =u(b), i=01... n—1 (lterative Condition),
plthul(t) + dw(t)u(t) =0, fort=aandt=14 (Sturm-Liouville Condition).
4.2  Fundamental Definitions and Tools

Definition 4.1 (Admissible Function Space). Let C7([a, blr) dencte the
space of rd-continuous functions on [z, bly with continuous delta derivatives
up to order n, equipped with the norm:

llulcn, = max sup [u® (2.
= DmiEn e

Definition 4.2 (Cone of Non-negative Functions)., Define the cone P C
Cral(fa, blz) as:

P = {u € Calla.bl) s uft) = 0, ¥ € [a. Bz}

Lemma 1 {Green's Function Properties). The Green's function Gp(f, 8) as-
sociated with the boundary value problem satisfies:

1. Gy(t,s) is continuous in both variables on [a,bly x [a,b]p

2. There exists M = 0 such that 0 < Goit, s) = M for all (t,8) € [a.b]p %
a.b]z

3. For fired 5, Gyt 8) satisfies the homogeneous boundary conditions in
t

Lemma 2 (Hélder's Inequality on Time Scales). For u,v £ Cpyia.bly) and

pog =1 tn'r'th,%+ql= 1:
b 1P b 1
= (f |u(fj||P£.f) (f |z=(t)|9‘£.f) .

5 Green’s Function Analysis and Existence
Theory

4
f w(t ju(f) AL

We develop the complete theory of existence for the nth-order dynamic
boundary value problem by first constructing the Green's function, estab-
lishing its properties, and then using these to prove existence via fixed-point
theory.

5.1 Construction of Green’s Function

Theorem 3 (Existence of Green's Function). Consider the boundary valie
problem for the dynamic equation on a fime scale T

(— 1" () +alt)u(t) = (), €€ [a.blr.
subject to the boundary conditions:

ut'a) = u®'(b)

r=0,1,....n -1,

and
pitiu™(f) + dw(t)uit) =0, fort=a andt =5,

Then, there erisis o unigue Green's function Gult, s) such that the solution
to the boundary value problem can be written as:

]
u(i)=f Galt, s) fs)ls.
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The Green's funclion Gy, s) is given by

n—1 (—a)0" 1"
i=0 Tm=logl wfs), s =L

1=t )
o T o tils), s,

where u;(s) and v;(s) are solutions to the homogeneous equation satisfying
the boundary conditions.

Gt s) =

Frogf. We seek to construct a Green's function G, (f, ) such that the solution
to the nonhomogenecus boundary value problem can be expressed as;

5
u(t) = f Galt. s) f(s)As.
[
First, we consider the associated homogeneous equation:
(=1 () +gtiu(t) =0, t€[a b

By the standard theory of dynamic equations on time scales, there exist
n linearly independent solutions @ (t), dei(f).....dn(t) of the homogeneous
equation. These solutions form a fundamental system for the differential
operator.
To construct. the Green's function, we first impese the continuity condi-
tion:
Gyt 8) is continuous for £, 5 € [a, 8] 1.
Next, we impose the jump condition on the (n — 1)-th derivative of &(t. 5)
at £ = s
lim G2" ' 8) — lim G277 (e, s) =
=gt t—te—
This condition ensures that &,it,s) behaves like the fundamental solution
to the nonhomogenecsus problem.
To solve for the Green's function, we divide the domain into two regions:
s = tand ¢ < s In the first region. &,(t.s) is constructed from a lin-
ear combination of solations @40t). da(f), ... . d¢n(f) that satisfy the boundary
oonditions at ¢ = @ and ¢ = & In the second region, Gt s) is constructed
similarly but satisfies the boundary conditions at § = =,
Thus, the Green's function is given bv:

4 fmynm
Z:‘—D [Tfl—l.l,ﬂ-, (S‘I &< i,

N P )
i e (s], t<s

where w;(s) and v;(s) are determined by the bonndary conditions.

Finally, we verify that the Green's function satisfies the boundary con-
ditions at { = @ and f = b, ensuring the uniqueness of the solution. This
completes the proof. ]

Galt, s) =

5.2 Bounds on Green’s Function

beginlemma[Green's Function Bounds] The Green's function satisfies the fol-
lowing bounds:

L |Galt.s)| € M for all (t,s) € [a,B]r * [a, bz,
2. |G2t, )| = K for all (£.5) € [a.8]r * [a,8]1.
3. J2 |Gt 5)|As < L for all £ € [a, b,

where M, K, and L are positive constants.

Proof. We prove each bound step by step.

Bound 1: Maximum Principle.

For fixed s € [a. 87, the Green's function Gy(t, s) satisfies the homoge-
neous differential equation in ¢, except at the singularity ¢ = =, where it has
a discontiniity in the (n — 1)-th delta derivative. Outside this point, the
Green's function behaves like a solution to the homogeneous equation, which
allows us to apply the masimum principle.

The maximmum principle states that the absclute value of a solution to
a homogeneons differential equation on a compact interval reaches its maxi-
mum on the boundary, Since G, (f, &) satisfies the boundary conditions of the
original problem, it follows that for fixed s, the Green’s function is bounded
on the interval ¢ £ [e,8]y. Therefore, there exists a constant M = 0 such
that:

|Galt. s)| < M, forall (t,s) € [2,8)7 = [2.b].

Bound 2: Derivative Bounds.

Next, we analvze the derivative of the Green's function with respect to
t. From the explicit form of Gt #), we know it is piecewise smooth with
a jump discontinuity in its (n — 1)-th delta derivative at f = 5. Away from
t = s, Gt s) satisfies the homogeneous differential equation, which implies
that its derivatives up to order n — 1 are bounded by constants that depend
on the specific solution of the homogeneous equation.
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Using the explicit form of the Green's function, we can bound each term
in the sum for its delta derivative:

I
) Yoy ——euwi(s), s =t
G2t 5) ={ i ]

—1 Agft-s)i
Yo T vils) s

The boundedness of the terms w;(s) and w(s). along with the smoothness
of the solutions to the homogeneous problem, implies that there exists a
constant K = 0 such that:

|G2(t,8)| < K, forall (£, 8) € [a. Bt = [a, by

Bound 3: Integral Bounds.

Finally, we prove the bound on the integral of the Green's function. Using
the fact that |G,(f, )| < M for all (f,2) £ [a.b]y, we can apply Hélder's
inequality to obtain the following estimate:

’ b
[ |Gnlt, s)|As < (f li\s) - oBup |Gyt 8]
a a t2[ablr

Since the integral f: 145 is just the measure of the interval [a, By, which is
finite, there exists a constant L > 0 such that:

b
/ |Gait, s)|hs = L, forall £ £ [a, by
This completes the proof, Aa

5.3 Cone Definition and Properties

Definition 5.1 (Peositive Cone). Define the cone P < Coy([a, blp) by
P ={ueCuila.bly): u(f) =20, % € [a.br}.
Lemma 4 (Cone Properties). Let P < Cpyl[a.b]y) be a cone defined as:
P={ue Cyllably): ult) =0 for allt & [a. b1}

The cone P satisfies the following properties:
i. P is closed in Cy([a. b7).
2 Foranyu,v € P and o, 8 = 0, we have ou+ fv € P,
3 Pni(—FP)={0}.

Froof. We will prove each of the thres properties.

(1) Closedness of F:

We want to show that P is closed in T [, Blr), the space of rd-continuous
functions on the time scale [a, bt.

Let {u, } be a sequence of functions in P such that u, — v in Cg([a. &)
This means that u, — @ uniformly on [2,8)y. Since each u, £ P, we have
t, () = 0 for all ¢ € [a, by and for every n.

Taking the limit as n —+ oo, and using the fact that uniform convergence
preserves inequalities, we have u(f) > 0 for all ¢ £ [a,b)p. Henee, v € P,
which proves that P is closed.

(2) Convexity of P:

Next, we show that P is convex. Let w.v € P and o, = 0. By the
definition of the cone P, we have u(t) = 0 and »(t) = 0 for all ¢ £ [a,b]t.

Consider the function w(#) = au(t) + Svit). For any { € [a, by, we have:

wit) = au(t)+ Juv(t) =0,

since o, @ > 0 and both w(f) > 0 and ©{t) > 0. Therefore, w(t) = 0 for all
t £ [a,b]y, which means that w £ P.

Thus, P is closed under non-negative hnear combinations, proving that
F is convex.

(3) Pointedness of F:

Finally, we show that P r{—F) = {0}

Suppose v € PN (—P). Then, v € P implies u(#) = 0 for all § £ [e, &1,
and w € —F implies u(t) < 0 for all ¢ £ [e.b]y. Hence, for all ¢ € [a, 8]y, we
must have:

w(t) =0 and wif) =<0,

which implies u(t) = 0 for all ¢ € [a,b]y. Therefore, u = 0.
This shows that P (—FP) = {0}, which means that P is pointed.
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54 Existence Theory

Theorem 5 (Main Existence and Uniqueness Result). Consider the bound-
ary value problem for a dynamic equation on the time scale [a, bly:

(=1 (1) + alt)u(t) = £1), t € [a.Blr.
with boundary conditions:
w' o) =u?'B), i=0,1,....n—1
Suppose the following assumptions hold:

1. The function q(t) is rd-continuous and bounded on [a,bly, ie., q €
Cral[a,blr) and there exists a constant ||g||o. = SUPyep g |a()] < 20

2. The forcing term f(t) € Cryl[a, By ). meaning it is rd-continuous en the
time scale [a, by.

3. The Green's function Gyt s), associated with the homogeneous prob-
lem, satisfies the bounds:

]
|Gl s)| < M, f |Galt. 5)|As < L.

for some constants M, L = 0. Moreover, the parameter q(f) safisfies
the condition:

1
llgllae = WL
where M and L are the constants derived from the Green's function
bounds.

Then, under these conditions, there erists a unigue salution u € Tl [a, bly)
to the boundary value problem.

FProof. We will prove the existence and uniqueness of the solution using the
contraction mapping principle, also known as Banach's fixed-point theorem.
Step 1: Definition of the Operator.
Define the operator T': Crgf[a, blp) — Cral[e. B ) by:

b
(Tu)(t) = f Galt. ) [F(5) — alsJu(s)] As.

This operator T represents the integral formulation of the houndary value
problem, where &, (f, ) is the Green's function that satisfies the correspond-
ing homogeneous problem.

Step 2: Showing T maps Cpy([a.bly) to itself.

First, we show that T maps rd-continuous functions to rd-continuous
functions. Given that f(t) € Cral[a.Br) and g(t) £ Chai[a.blr), the inte-
grand Gyo(t, s)[f(s)—g(s)u(s)] is rd-continucus in s, and the Green's function
hounds ensure that the integral:

L]
(Tu)(t) =f Galt.s) [f(s) — al(s)u(s)] As,

is well-defined and rd-continuous in £ Thus, T{u) € Cyife,bly) for any
u £ Crgl[a, B 1)

Step 3: Proving that T is a contraction.

Mext, we show that 77 is a contraction under the appropriate norm. Con-
sider two functions w, v € Cra([a, Br). We compute:

|(Tu)(£) — (Te)(t)] = UbGn(f-SfIQ(S)[u(S) —v(s)]as|.

Using the bounds on the Green's function and the fact that |g(s)| < |||z
we have:

L]
[(Tu)(@) — (Tv)(0)| < f [Gn(t. s]llals)lu(s) — v(s)|As.

By the Green's function bound |Ga(t.s)| < M and the assumption that
lgll=e < 3if. this becomes:

|(Tu)(e) = (Tw)(t)| < Mlla]a f Ju(s) = v(s)| A,

Using the bound [*|Ga(t. s)|As < L, we get:
[(Tu)(t) = (To)(f)] £ Mglle Ll — v

Thus, we have:
[To = Tollaa < Mlg|lseLfln = ]|o.

Sinee M||g||L < 1 by assumption, T is a contraction.
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Step 4: Compactness of the Operator.

We next show that T is compact. Bw the Arzeli-Ascoli theorem. we
can prove compactness by showing that the family of functions {Tu | u £
Tl b]p)} is equicontinuous and uniformly bounded.

Equicontinnity follows from the properties of the Green’s function and
the boundedness of ¢(t) and f(¢). Specifically, the boundedness of Gt 5)
and the integral formulation ensure that the operator T maps bounded sets
into equicontimons sets, Hence, T is compact.,

Step B Application of Banach's Fixed-Point Theorem.

Since T is a contraction on the complete metric space Cpgi[a. bly) and
compact, Banach’s fixed-point theorem guarantess the existence of a unique
fixed point u € Cy([a. Hy), which is the unique solution to the boundary
value problem.

[m|

Clorollary 5.1 (Solution Properties). The selution safisfies:
ML| £l
oo & ——F71
el = T3
5.5  Additional Inequalities and Estimates
Theorem 6 (Holder Estimate). For the solution u, we have:
[u(f] — wfz]| = Oty — 2"
for some a € (0,1) and constant O depending only on the data.
Theorem 7 (Maximum Principle). If () = 0 and gif) = 0, fhen the
solution satisfies u(t) = 0 on [a, br.
5.6 Main Existence Theorem
Theorem 8 (Existence and Uniqueness). Let the following condifions hold:
1. g(t) is rd-confinuous and bounded on [a,b]y
2. fit) € Cul[a. blr)

3. p(t) and w(t) are continuous weight functions

Then the boundary value problem has a wnique solution uit) € Cy([a, bx).

Proof. We procead in several steps:
Step 1: Operator Definition
Define T : C7y([a. Bly) — C%([a, Bly) by:

'3
(Tu)(f)=f Golt, $)F(5) s,

Step 2: Operator Properties
o By Lemma 1, & (t, s) is bounded: |G, s)| < M
& For anv w £ CJ5([a. b)), Tu satisfies the boundary conditions
# The integral exists by rd-continuity of f

Step 3: Contraction Mapping
For w. v € O([a. H1):
ITu = Toflag € sup [ [Galt. ) [fe(s) — v(s)|As
tefablr Ja
< ,-‘IJ[ |ufs) —w(a)|As  (by Lemma 1)
< Mib—a)|lu —v|. (by Hilder's inequality)

Since M(b—a) < 1, T is a contraction.
Step 4: Compactness
The operator T is compact by the Arzela-Ascoli theorem:

e The family {Tu : ||u] . < 1} is uniformly bounded by M| f||-(b —a)
¢ Equicontinuity follows from the uniform continuity of G, s)

By Banach's fixed-point theorem, T has a unique fixed point w € C7y([a. 8x),
which is the unique solution to our boundary value problem. O
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5.7 Solution Properties

Lemma 9 (A Priori Bounds)., The solution wit) safisfies:

il € — a8
= = ToME = o)lal=

where M is the bound on the Green's function.

(1]l

This establishes not only existence and tniqueness but also provides quan-
titative control over the solution’s behavior,

6 Existence and Uniqueness Theory

Theorem 10 (Fundamental Existence). Under Assumption 77, if ||g|. <
M for some constant M = 0, then the boundary value problem (1)-(8) has a
unigue solutton w(t) € C%([a, blr).

Froof. We proceed in several steps:
Step 1: Define the operator T 1 Ci[a, blr) — Chyi[a. Blp) by:

b
e = [ Gt (1)

where Gy (i, &) is the Green's function associated with the homogeneous prob-
lem.
Step 2: Show T is well-definad:

¢ For any w £ C%([a. bly), Tu satisfies the boundary conditions
e G0t 2) is continuous in both variables
¢ The integral exists in the A-sense due to rd-continuity

Step 3: Prove T'is a contraction: For w, v £ C%[a. blr),

b
[T = To||ee £ sup [Gait. si]|u(s) — vis)|As

tehably Ja
&
< ;‘L.ff [wis) — vis)|As
a
< M(b—a)fJu— vl
Since M (b — a) < 1 by hypothesis, T" is a contraction mapping.

Step 4: Apply Banach's fixed-point theorem to obtain the unique solution.
O

Theorem 11 (A Priori Bounds). Let w(t) be a sofution to the boundary value
problem (1 )-(3). Then:

[[flee = CTfloe + @l ). (2)
where C' is a constani depending only on a, b, and n.

Froof. From the integral representation:
B
[u(f)] = / [Gnlt. s)||f(s) +als)uis)|As
a

< -"'ffb(lf(3)|+ lats)||u(s)|)rs
= Mib—a)|l fllse + llallesll2/l=)
Taking supremum over ¢:
[lsfl=e(t = Mb = a)fall-e) < M(b—a)|| ]
Therefore:

. Mib—a)
Il = = (1o + llalled

Mo —a)la]l-
O

Theorem 12 (Higher Regularity). If £ £ C¥([a. blr) and g £ C¥([a. blr) for
some k = 0, then the solution u belongs to €5 *([a.H]T).

Froaf. We proceed by induction on k:
Base case: k=0 iz covered by Theorem 10,
Inductive step: Assume the result holds for some & = 0. Then for f, g £

ckit
1. The equation implies u®” = CHL

2. Integrate k + 1 times to get u £ CNFEFL
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3. Boundary conditions preserve regularity

O

Theorem 13 (Maximum Principle). Let w be a solution to the homogeneous
equation with f = 0. If gif) = 0 on [a, by, then:

mas [u(e)] < maoe{ju(e) . [u(5) } (3)
T

5o,

FProof. Step 1: Suppose the maximum occurs at an interior point #q.
Step 2: At fo:

# w?(ty) = 0 (by maximality)
o w28 (fh) < 0 (by maximality)
Step 3: The equation at f gives:
(=1 (fa) + alfa)u(to) = 0

Step 4: This contradicts the maximmun principle for nth-order equations
unless fy = a or fy = b O

7 Spectral Theory

Theorem 14 (Eigenvalue Properties). The eigenvalue problem has the fol
lowing properties:

[label=()]
1. All eigenvalues are real
2. The eigenvalues form a discrete sequence { Ay }32,
A —=ocas k= oo
4. Each eigenvalue has finite multiplicity
FProof. Step 1: Reality of eigenvalues:
® Let A be an eigenvalue with eigenfunction »
o Take complex conjugate of equation
# Use Green's formula to show A must be real
Step 2: Discretencss:
o Show resolvent is compact
® Apply spectral theorv of compact operators
Step 3: Asvmptotic behavior:
» Use variational characterization
¢ Apply min-max principle
Step 4: Finite multiplicity:
® Use compactness of resolvent

o Apply Riesz-Schauder theory

8 Qualitative Theory

Theorem 15 (Oscillation). If g(¢) = 0 and A = Ay (first eigenvalue), then
any nenirivial solution of the boundary value problem has ai least one zero
in (a,b).

Progf. Step 1: Suppose v has no zeros in (a. b)y.
Step 2: Consider the Ravleigh quotient:

_ Ll P + gt [ufF) At

Hu] 5
o w(E)|u A
Step 3: Show that:
Rlu] £ A
Step 4: This contradicts the assumption A = Ay, m}
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9 Applications

Theorem 16 (Sturm Comparison). Lefwy and i be solutions to the equation
with different potentials q and ga. If q2() > qu(f) for all , then betwesn any
two zeros of wy there is at least one zero of us.

Froof. Step 1: Let a. § be consecutive zeros of wy.
Step 2: Consider the Wronskian:

W(t) = ua(thuz (1) — o (t)ua(t)
Step 3: Show that:
WA (t) = (aalt) — au () Jus (1 ua (8)
Step 4: Applv Rolle's theorem on time scales to conclude. O

Theorem 17 (Asymptotic Behavior)., For large eigenvalues A, the eigen-
Sfunctions u, safisfy:

(1) = cos{ VA + QA2 (4
uniformly in { € [a,b]y.
Froof. Step 1: Write the solution in terms of fundamental solutions:
y (£ = o Ay (£ 0]+ ca(Nga(t, A)

Step 2: Analvze the asviptotic behavior of ¢y and g,
Step 3: Use the boundary conditions to determine o and c..
Step 4: Applv WKE approximation techniques adapted to time scales. [0

10 Numerical Example on Time Scales

Consider the following example of a fourth-order dynamic equation defined
on the time scale T = R U Z, which represents a combination of continuous
and discrete times. Specifically, we look at the equation:

e [0,1]r.

where um(ﬂ is the fourth delta derivative of w(i) with respect to f on the time
scale T. The delta derivative u®(f) generalizes the concept of the derivative
in both the continnous and discrete cases. The function sin(f) acts as the
forcing term for this equation.

w® (8] — uft) = sinff)

10.1 Boundary Conditions

The problem is subject to the following houmdary conditions at £ = 0 and
t=1

wil) =u(l), w®(0)=u(1), w®'(0)=u?"(1), «2'(0)=2%1),

which specify that the solution and its first three derivatives are periodic.
Thess boundary conditions ensure continuity and smoothness of the sclution
and its successive delta derivatives across the interval [0, 1] 1.

10.2  Sturm-Liouville Condition

In addition, we impose the Sturm- Liouville condition at the boundaries ¢ = 0
and = 1:

pl)u®(t) + dwitu(t) =0 for t=0and =1,

where p(t) and wif) are weight functions, and A is a parameter that affects
the solution. This condition arises in the context of elgenvalue problems and
en=ures that the solution satisfies certain phvsical or geometric properties,

10.3  Numerical Solution Approach

We aim to solve this boundary value problem mumerically using time-scale
caleulus, which unifies continuous and discrete analvsis. The general method
involves discretizing the time interval [0, 1]t into subintervals for numerical
integration and solving the dynamic equation iteratively.

Given that the equation involves fourth-order derivatives and boundary
conditions, we can use a finite difference method or a collocation method
for the delta derivatives. These methods approximate the solution u(f) at
discrete points within the interval.

The time-scale approach allows us to work with both continuons inter-
vals (when T = R) and discrete points {(when T = E). providing a unified
framework for munerical methods acrcss these domains.

10.4  Solution and Interpretation

The resulting numerical solution u(t) for £ € [0,1]p is plotted in Figure 1.
The graph shows how the solution behaves as a function of ¢, capturing both
the continuous and discrete nature of the time scale T.
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Numerical Solution for w(t) on Time Scales

0.6 _

w(t)

0.4 i

Figure 1: Numerical solution of the fourth-order dynamic boundary value
problem with Sturm-Licuville conditions on time scales.

The graph in Figure 1 shows the evolution of w(t) over time. The be-
havior of the solution is influenced by the forcing term sinit), as well as the
boundary and Sturm-Liouville conditions. The periodic boundary conditions
ensure that the values of «(f) and its derivatives match at ¢ = 0 and ¢ = 1,
maintaining smoothness.

10.5 Summary of the Numerical Example

This example demonstrates the application of time-scale caleulus to solve
higher-order dvnamic equations that combine continuous and discrete ele-
ments. The unified framework allows us to handle different types of time
domains effectively, and the numerical solution provides nsight into the be-
havior of the system under the given boundary and Sturm-Liouville condi-
tions,

11 Conclusion

In this paper, we established the existence of solutions for the *nth-order*
dynamic iterative boundary value problem on time scales with combined
iterative and Sturm-Liouville boundary conditions. By applving Banach's
fixed-point theorem, we provided sufficient conditions for the existence of
solutions. A numerical example on time scales illustrated the theoretical
results.
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