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Abstract

We show an over look on the gide paper of the pioneer [58] on direct and inverse approximation
inequalities in L**S(R¥), 0 < € < oo, with the Dunkl weight. We obtain applications on these estimates in
their sharp form that improving higher known results. A new estimates of the modulus of smoothness of a
function f; by the fractional powers of the Dunkl Laplacian of approximants of f; is established with a new
Lebesgue type estimates for moduli of smoothness in terms of Dunkl transforms. Needed Pitt-type and
Kellogg-type Fourier-Dunkl inequalities are derived.
Keywords: Dunkl weight; Dunkl Laplacian; Best approximation: Modulus of smoothness: K-functional;
Sharp Jackson: Marchaud; Reverse Marchaud inequalities; Littlewood-Paley theory; Pitt's and Kellogg's
inequality
1. Introduction
1.1. Notation
For (x,y¥) be the scalar product in the d-dimensional Euclidean space R% d € N. By, (xg) =
{x € B?: |x — xo| = 1 + €} denote the Euclidean ball.
The finite subset R < R¥ \ {0} be a root system and R be a positive subsystem of R. By G(R) < 0(d) we
denote a finite reflection group, generated by reflections {(:UE-:} a0 € R}. where (g;), is a reflection with
respect to hyperplane (a,;, x) = 0. Let k(a;): R — R, be a G-invariant multiplicity function,

let
n) = | ] I

ajER

be the Dunkl weight,
dpe(x) = cpve(x)dx, et = f e~ /2y, (x)dx
R4

and L**(R%, du,), 0 < € < o0, be the space of complex-valued Lebesgue measurable functions f; for

which
1/1+e
0 fi Maee =1 fi Mty = (j > I,ﬂ|l+fdmf) <o
Rd
L

We also assume that L™ = €}, is the space of bounded continuous functions f; with the norm || f; ll..- As
usual § (R?) denotes the Schwartz space.

If the root system R = {+ey, ..., Xeg}. where {e1, ..., €4} is an orthonormal basis of RY and G = Eg. then
we arrive at the simplest and most important example of the Dunkl weight

d
2k
Ve(x) = 1_[ |7, k=0
j=1
The differential-differences Dunkl operators are given by

D, of,(x) = ‘3"?@ + Z Z k(a)(a, ej)f"(:x:) _ﬁ((gf)’:"'x), j=1,...d.

dx; (a; x)

ajER4+ i

Let Ay = Z_?:lka be the Dunkl Laplacian. As usual, (—Ax)*** for € = 0 stands for the fractional power
of the Dunkl Laplacian; (see Section 3.2).

By definition.
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A :%— 1+ Z k(a,) and dy = 2(2; + 1). (1.1)
a;ER+
The number d,, plays the role of the generalized dimension of the space (R%, du,). We note that A, =
—1/2 and, moreover, 4, = —1/2 if and only if d = 1 and k = 0. In what follows we assume that

1
Ap > —E and dj > 1
For A < B we mean that 4 = (1 + €)B with a constant € = 0 depending only on nonessential parameters.
Morcover, we write A = Bif A < Band B < A.
1.2, Sharp Jackson and inverse inequalities
Let E;.(f;)14+e be the best approximation of a function f; in [**¢(R9, du;) by entire functions of type o; >
0. 1e.,

Ea'[-(ﬁ'_)l+e = iI]af[ I f[ —0; ly.e
g€ L
here BT — R (md) et . : ¥ . :
where B, _, = B,,_; (R?) is the Bernstein class of entire functions of spherical exponential type at most

o; from L' (R?, dpu,.) (see Section 3.1). Tt is known [21] that the best approximation is achieved. As usual,
W14c(fi6)1se denotes the modulus of smoothness of order (1 + €) of f; € L**5(R%, dy,,) (see Section
3.4).

Direct and inverse approximation inequalities - a classical and important problem of approximation theory
- have been recently studied in weighted L'*< spaces with doubling weights (see, e.g.. [36,37] ). Sharp
forms of such estimates require a use of rather advanced technical tools from harmonic analysis. Such
machinery has been recently developed (see [12] for the corresponding results on the sphere and the
references in [21] for results on R? ). Note that the Dunkl weight is doubling (see [19], [49, Chapter 1])

and it naturally extends the power weight |x|?*,k = 0. on R and the weights H?:l |x}-|2kf, k; =0, 0n R,
In these cases the harmonic analysis in the Dunkl setting becomes the analysis in the Bessel setting, which
1s a well-developed topic used in approximation theory, PDE's, and functional analysis (see, e.g., [39,40]
).

[18,21]. derived the classical Jackson and inverse approximation theorems in L**$(R%, dpg), 0 < € < oo,
namely,

i B 1 -
Eo(fdive S wrve(furr) L one =0 (1.2)
i 1+e
and
"
1 1 y . ) )
W1re (ff,—) xTZ Z (+ 1)°E;(fi)1se, NEN, €= 0 (1.3)
N/ i+e n =0 1
7=
as well as the equivalence between the fractional modulus of smoothness and the K-functional:
h'1+e(:f;" 6:)1+e = wl—s(}ﬂ! 5)1—51 >0 (14)
Moreover, we obtained that for d,, > 1
W1oe(fiu8)ie = SUp IaEefill,,, = D IAY <A, 6> 0 (1.5)

—l<e=s-1
L L

where the difference A}* is defined by the generalized translation operator T2*< (see (3.4)). In [20], we
proved the JTackson inequality in L**(R9, du,), 0 < € < 1, with a sharp constant.

Our first goal is to sharpen (1.2) and (1.3) in the case 0 <C € <0 o0, taking into account the strict convexity
of the spaces L**5(R%, duy). The sharp Jackson and sharp inverse inequalities are given in the following
result (see [S8]).

Theorem 1.1. If 0 < e < co,n € N,(1+ ¢€) = max(1l + € 2), and g = min(1 + ¢, 2), then for any f; €

L*E(RY, dpsg)s
1/1+e

n
1 . 2 . ; 1
Tive Z Z JOE T () e i-z Wise (ﬁu;)n (1.6)
=3
Jj=1 i

7

and
1 1 (< Y
. i 11
D one(fin) S 20D JTE G |+, (1.7)

- Mi14e n =1 > - n

i J= i i
Inequalities (1.6) and (1.7) have been first obtained by M.F. Timan (see [14,51,52]) for periodic functions
fi € LY5(T) -
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1
1 £

n
1 s 1
(1+€)2-1plte £ <
nite Z Z JE T (f) e ~ Z Wise (ffJE)LI+E[TJ
=1 :

i

1/q

1~ era
| 2 2 B e
J=1 i

where T = (—m, 7], (1 + €) € N, E;(f;) ,2+¢(ry 1s the best approximation of f; by trigonometric polynomials

<

A

I

of degree at most J, and Wy, (f;, §) jr+e(r 1s the classical (1 + €) th modulus of smoothness. Sharp Jackson

and inverse approximation inequalities were further developed in many papers (see for example [8 —
10,15,17,31,54] and the references therein). Our proof of Theorem 1.1 is based on the corresponding
Littlewood-Paley decomposition in the Dunkl setting: cf. [8,10].

The next two inequalities provide sharp interrelation between fractional moduli of smoothness of different
orders.

Corollary 1.2 [58]. Under the assumptions of Theorem 1.1, the following sharp reverse Marchaud and

sharp Marchaud inequalities hold: for any € > 0,
1/1+e

n
1 146y 1 3 I I fillyps
LSS s (id) ) eT w(nd) o3 e o
n po— " } 1+¢ - N/ ye " n
Jj=1 i J i i
and
1/a
n
1 1 , 1 Il f; Ny
Z W1se (ﬁ-,—) S e Z Z JeE0 L2 (ﬂ-,—.) +Z — (1.9)
: N/i4e 0 - : J/ e : n
i J=1 i i

1.3. Smoothness of functions by smoothness of best approximants

The smoothness properties of approximation processes were used to characterize smoothness properties of

functions themselves [30]. We continue this in I'*¢ with Dunkl weights. As approximation processes we

consider the best approximants and the de la Vallée Poussin type operators.
For (fi)s, € Bii., be the best approximant of f; in L**(R% duy). that is, Eg (fi)iee = Z: |fi —
(fi)o; n1+e' Assume that 1) f; is the de la Vallée Poussin type operator, namely, 1;f; is the multiplier linear
operator given by Tk(r}}-f!-) () =n;(MFp(f)(¥). Here n;(x) = 1 (2_fx) and a radial function 77 € §(R9)
issuchthat n(x) = 11f |x| < 1/2,9(x) > 01f |x| < 1, and n(x) = 0 1f |x| = 1; (see Section 4).
Theorem 1.3 [58]. f 0 < e < oo,n €N, (1+ ¢€) = max(1 + ¢, 2), and ¢ = min(1 + ¢, 2), then for any
fi € Lo (RY, dpy).

o 1/1+¢
— 2. . 1+e¢ - —
2~ (+e) (_ﬂk_)lﬁfzaﬂ-”l_f xz W14e(f 27146
J=n+1 i i
- 1/q
- _ - ; q
< Z Z 2790 || (—a) 2B f| T (1.10)
J=n+l i

where P;f; stands for the best approximants (f;); or the de la Vallée Poussin type operators 1] f;.

1.4. Weighted Fourier inequalities in Dunkl setting

In various problems of harmonic analysis and approximation theory it 1s important to know how smoothness
of functions is related to the behaviour of its Fourier transforms. This study was originated by [57, (4.1)]
who obtained the following estimate for the Fourier coefficients ( ﬁ)n of a periodic function f; € L*(T) :

(F),| = @ ffg . nEN (1.11)
v m

Similar problems for the Fourier transform/coefficients in L'*¢(R?) and L'*¢(T%) have been recently
investigated in [4,5,25]. [58] not only extend these results for the Dunkl setting but also obtain completely
new Fourier inequalities. Let i (f;) denote the Dunkl transform, (see Section 2). For k = 0 we deal with

the usual Fourier transform Fy(f;) = f,.. Let X; be the characteristic functions of the dyadic annuli
1 - _ - 3 1 - . "
{21‘ < x| < 277F },j € L. that is, X; = X(z2j=|xj<2j+1}
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- . . . . . 1+e
We obtain the following estimates of moduli of smoothness in terms of Dunkl transforms. Let — be a
€

conjugate exponentof 1 4+ ¢,0 = € < 0.
Theorem 1.4 (see [58]). Let §,€ = 0.
(DIf0 < e <1andf; € [*(R, dpyy,). then, for € = 0,

H| T hnn Y (161 DR

S ) w10

1+2¢
and
1/2

D minfL (@8 TNF RIS D Orelf O
JET i i

R
(QIf0<e<m2—e<2<2+e andf, €5 (R?) is such that | - |d"‘(2(2—51'JLFk[ﬁ) € L2(R9, dpy,), then
f; € L*(R%, dp;,) and

Z Wpre(fd)z S

1/2
If0<e<coand f; € S'(RY) is such that (Zjeg X ”'Fk(ﬁ)‘]fj"z_f) < oo, then f; € L>*5(R%, dy;.)

and

(1.12)

P Y w61 R

2

1/2

Z Oprefo8)are S Z mmz (276)YiFn il

JEL
Remark 1.1. (1) An analogue of Lebesgue-type estimate (1.11) for the Dunkl transform is given as follows:
If f; € L*(R9, dpy,). then we simply have
2, onelfoy)
SY w ,—
: 1+e )\ Ji |x|-1

‘Z F(f) (%)
< Z wpee(fin6);

This estimate can be equivalently written as
see (3.6).
1+e

min > {1, (8] - N IFf)
i
(11) In Theorem 1.4 one can replace w, . . (f;, §)4 . with the difference ||AJTE

il ef (1.5).
To prove this theorem, we need the following Pitt- and Kellogg-type inequalities, which are of interest by
themselves.

Theorem 1.5 (see [58]). (1) If 0 { e<landf, € [**(RY dy,), thenfor0 < 1+¢€ <1+ 2,
“I leam) Y map| <Y 1 (1.13)

i 1+2¢ i

and
1/2

Z Z 17, .‘E?Z I £ Nae (1.14)

JjEZ i i

[ _ _
Q)f0<e<ow2-€c<2<2+ecandf; €8 (Pg-“‘) is such that | - |d"kz<2-f3)'}*k(ﬁ) € [**25(RY, duy),

then _
1 ez 1 e Y wur) (115)
i 2
1/2
If0 <€ < oand f; € §'(R?) is such that (Z}E'IE ||Fk(ﬁ},1;'}||2{l E]) < 00, then
1/2
”Z AN |Fk(ﬁ}lelz . (116)

JEL i
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Remark 1.2. (i) It is worth mentioning that for € = 0 Kellogg-type inequality (1.14) improves Pitt's
mequality (1.13) since

1/2
. dk[\zl:l—ETl{ll—ij) F : F 2 1.17
Hiices () LAY (117)
i 2+e JEE i '
Similarly, if € = 0, inequality (1.16) sharpens Pitt's inequality (1.15) sinee in this case one has
. 1{!2
o 2 B e e A
D Imnll, | s |1 1MEEEE Y ms) (1.18)

JEL ¢ i 2te

It 15 easy to construct examples of funetions showing that the behaviour of the left-hand and right-hand
sides in (1.17) and (1.18) is different; see Remark 7.1.

(ii) Pitt's inequalities are well known in the non-weighted case (k = 0): see, e.g.. [3.23.24]. (1.13) and
(1.15) become analogues of the Hausdorff-Young and Hardy-Littlewood inequalities for Dunkl transform;
see [1]. Below we give a simple proof of Theorem 1.5 based on the interpolation technique [48] and on the
Hardy-Littlewood inequality [1]. See also [2] for some extensions of the Hardy-Littlewood inequality.

For trigonometric series f;(x) ~ Ynez oy Xi {_fl,,]nﬂ X Kellogg's inequality [29] states that for 0 < e = 1
1

1 2
\ 1/2(1—¢€) - —
I I DI (DN N W

nef\{0} i J=0 \2lzln|<z i )

<| Z fi llz+er,

improving the Hausdorff-Young inequality. Thc reverse estimates are valid for 0 < ¢ < 0. The example
T, 172c0s 2'x shows the advantages to work with Kellogg's inequality rather than with Hausdorff-
Young's inequality. For Fourier transforms on R? Kellogg-type estimate was obtained by [32].

1.5, Characterizations of the Besov spaces

It is well known that the classical Besov spaces on R can be equivalently defined Fourier analytically or
in terms of differences (moduli of smoothness); see, e.g., [53, Ch. 3.5]. Another characterization of Besov

spaces via smoothness of approximation processes has been suggested in [30].
A detailed study of the Besov-Dunkl space have been shown. To define it. we usually use Fourier-analytical

decompositions
W filzze, .= Z

J——w
(see [1]). Here we would like to obtain various characterizations of the Besov-Dunkl space. Let us introduce
the (inhomogeneous) Besov-Dunkl space in terms of moduli of smoothness.
Let 0 < e <o, We say that f; € I'**(R% dy;) belongs to the Besov-Dunkl space Biif,,. =

11151+5(H‘?- dluk) if

1/1+¢

1+
il

B =15 =M

1+e

1 filstggee= O 1 s

1
! . . ced(l+e)\1*e
+ ([ Z (1 + )" Doy, (fol+6)yee) {7) <w 0<e< o,
0 & 1+e
and
w1+ €) _
| ilsgge= D 1 it sup ) SRS o e w6 > 0.
" - i

i
Sometimes the space Bi}< ., is called the Lipschitz space.
Remark 1.3. Tt is important to mention that in light of (1.5) the modulus of smoothness in the definitions

of the Besov-Dunkl space can be equivalently replaced by the difference [|ATS ill,, - This sometimes is

more frequently used to define the Besov norm in the classical case (kK = 0). For the one-dimensional
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Besov-Dunkl space, see, e.g.. [27]. See also [28] for more information on inhomogeneous Besov-Dunkl
spaces and their embeddings.

Theorem 1.6 (see [58]). (1) The (quasi-)norms || f; [l gate

1+&£,1 +E
(2) The following characterizations hold:
1/1+€

hd Y. . 1+e
1 fillszgg o= 0 Wil | D D 2009 (wy (£,27), ) (1.19)
i J=0 1
- 1/1+e

2z . 1+e

::Z I fi lieet z Z 2(1+e) }(Ezj(fi)ue) (1.20)
: j=0 i
- 1/1+e
32 ; 1+

=D Wfelheet (D) D 20l =yl (121)

i J=1 1 /

o \ Lf1+e
2 1+
Z I fi lyget Z Z 20+’ ]g; ﬁII1+§ (1.22)
i =1
1/1+e
=D Wfileet 2 2 2l ﬁll”E (1.23)
i j=—em i
- 1/1+€
1+e
:::Z I fi et Z Z “(_&k)uegza_fi“lﬁ (1.24)
i J=1 i

where P;f; stands for the best approximants (f;),s or the de la Vallée Poussin type operators 1), f;.
We give necessary (for 0 < € < 1) and sufficient (for 0 < € < o0 ) conditions for f; to belong to the Besov-
Dunkl space given in terms of behmiom of its Fourier- Dun.kl transform.

Theorem 1.7 (see [58]). (1) If0 < e < 1 and f; € B} then
1+e
Z 2 24| Fy (f)x, [ S Z I fi lgage, .,

HZ Fel£)
2{1-¢) i

() f 0<e<oo and f; €S’ {]Rld} is such that Fi(f;) € LZ(HE:‘{]Rd dy;) and (E; o X, 20re

1+E 1+e®
1/1+e

. 1+e 1/1+e
”Fk()‘ts_}lf; H2(1 E)) < oo, then
=] 1/1+¢
< 1+e
1D Filagte, S 0 IF Gl +( Y. e
t i

J=0
As a simple application of Theorem 1.7 we establish the following characterization of the Besov-Dunkl
space for € = 0.
Corollary 1.8 (see [58]). For f;, € L2(R9, du,) we have

I Z f: ||5-2;1J£re::3 Z IFx (Fll, + i Z

Moreover, taking € = o0, we arrive at a Titchmarsh type tesult for the Lipschitz space B3 < :

1> filazge= Z IF (I, +supz 20+ Fu(F (1.25)

- JELy

L
extending the main result of [35]. Recqll that the classical T1tchmfu sh theorem [53, Theorem 85] states that
for —1 < € < 0 the condition

I fi(-+h) = fi() Npzemy= O(h'*€) as h =0

1/1+€

||1+e

(fx; 2

15 equivalent to the condition
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(JI’EI" 1 Z |ﬁ(’f)|2df) B O((l * E)_{l_fzj] as (1+¢€)—

The latter can be equivalently written as SUpjez, '; 2/(+e) ”f{/(_;”z < 00, cf. the right-hand side of (1.25).
1.6. Structure of the paper
We present important auxiliary results of the Dunkl harmonic analysis. We introduce needed spaces of
distributions. Moreover, we define the fractional power of the Dunkl Laplacian, the fractional modulus of
smoothness, and the fractional K-functional associated to the Dunkl weight.
It contains the Littlewood-Paley-type inequalities in the Dunkl setting. We prove the sharp direct and
inverse theorems of approximation theory in the spaces L**(R%, dy;. ). namely Theorem 1.1 and Corollary
1.2. We derive estimates of the modulus of smoothness of a function f; via the fractional powers of the
Dunkl Laplacian of entire functions (f;), and n;f;.
Pitt- and Kellog-type estimates given in Theorems 1.4 and 1.5 and the results on Besov-Dunkl spaces are
proved.
2. Elements of Dunkl harmonic analysis
We recall the basic notation and results of the Dunkl harmonic analysis (see, e.g., [21,43,44]).
The Dunkl kernel e, (x,v) = E; (x,iy) is a unique solution of the system

Vifi(x) = iyfi(x), f:(0) = 1
where V= (Dllk, ---:Dd,k) is the Dunkl gradient. The Dunkl kernel plays the role of a generalized
exponential funetion and its properties are similar to those of the classical exponential funetion ey (x, y) =
ei(*¥), Several basic properties follow from the integral representation [43]

en(xy) = [ eCnauE@
Rd
where y* is a probability Borel measure supported in the convex hull of the set {g;x:g; € G(R)}. In
particular,

lex (6, )] = 1, e(x,y) = e (¥, X), (=%, y) = ex(x,y)

For f; € L*(R9, djt,), the Dunkl transform is defined by

FGO0) = [ D7 e
RE =

For k = 0 we recover the classical Fourier transform F.
As usual, by Ay we denote the Wiener class

A = {f; € I'(R?, dy) 0 C,(RY): Fio () € L (RY, d.)}
Several basic properties of the Dunkl transform are collected in the following result.
Proposition 2.1 ([44]). (1) For f; € L*(R?, dy,,). one has Fi(f;) € Co(RY).
(2) If f; € Ay, then the following pointwise inversion formula holds:

00 = | DT R ) dn )
R i

(3) The Dunkl transform leaves the Schwartz space § (R?) invariant.

(4) The Dunkl transform extends to a unitary self-adjoint operator in L2(R% duy), Frl(f) (x) =
Fre(fo) (—x).

Let $97% = {x' € RY: |x'| = 1} be the Euclidean sphere, and let d(oy)x(x") = (a)rve(x)dx" be the
probability measure on $47 1. The following formula is well known [45, Corollary 2.5]:

Lj_l er(x, (1 +€)yNd(a)x(y") = j2, (1 + €)|x]), x e R?

where Ay is given in (1.1) and ji(1+€) = 2 T(A+ 1)(1 + €)"#;(1 + €) is the normalized Bessel
function.
Let y € RY be given. [42] defined a generalized translation operator ¥ in L2(R9, dj;,) by the equation
Fie(tf:)(2) = ex(y, 2)Fr(fi)(2)

Since |e,(v,2)] = 1L, IIT¥ll,o = 1. The operator T¥f; is not positive and it remains an open question
whether ¥ f; is an L1*-bounded operator for € = 1.
Let € = —1. In [21], we have recently defined the different generalized translation operator T1*< in
Lz (]P“dJ dllu'k) b}’

Fr(THf) () = ja, (1 + )y DFR(FI ()
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In light of |j,1k{:'l + Ejl < 1. we have [T, = 1.
We now list some basic properties of the operator T, (1 + ¢) € R,.
Proposition 2.2 ([21,45]). (1) If f; € A, then

T = [ D i+ OlDe TR = [ w9 R 0d(@0 ()
Re = Fe—1 4=
(2) The operator T1*€ is positive. If f; € C,(R4), then
T = [ Y A0 e(2) € Go(R. XRY
RA =

where (0,)¥ |, is a probability Borel measure such that supp(g)¥ ,_ < U gie6B1+(g:%). In particular,
THe1=1.

(3 Iff; € S(RY),0 < € < o0, then [[X; T“Em]lﬁlm
extended to L**¢(R9, dy,.) with preservation of the norm.

Note that for k = 0, T**<f,(x) coincides the usual spherical mean fgd—l 2 e+ (14 e)yd(o)(v").
Let g;(v) = (g:)o(|¥]) be a radial function. The authors in [50] defined the convolution

(Finegd@ = [ D FOIT 0 2.1
Proposition 2.3 ([21,50]). () If f; € Ay, g; € Lrag(R%, dpy), then
(f: +2 9 () = fﬁd D AW 0)d) € A

< X | fi li+eap, and the operator T1*+€ can be

and
Fre(fi e 9 (0) = Fe(F) N Fr(9) (), y € R?
(2)Let0 < e < oo If f, € I*5(RY, dytg). g; € L2 g(R?, dpy). then (f: = g;) € I**(R9, dy;.). and
ICF = gl =0 f el g5 1y
We also mention the following Hausdorff-Young and Hardy-Littlewood type inequalities.
Proposition 2.4 ([1]). One has
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Proposition 2.4 ([1]). One has

Z Fol£)

i

< Z I fillee, 0= e<1, (2.2)

1te i
€

and

S) Mfile0<e<1

D OB (£ (1)
i 14e i

where dj is the generalized dimension defined by (1.1).
We will use the following known I-L’udy 5 illeqlmlih

Z —j(1+e) Z z A :i Z 2 I(+e) (giybte (2.3)
7 Jj=0 i

b

+c

Z 2}'(1+6) ZZ As :=:ZZ zj[l+e:|(Ai)}.+€ (24}
=0 I=j i ) j=0 i

where Aj- 20,6 2 0,and 0 < € = oo (with the standard modification for € = @ ) see e.g. [41].
3. Smoothness characteristics and the K-functional
3.1. Bernstein's class of entire functions

a—
Let €9 be the complex Euclidean space of d dimensions, z = (z,,...,z,) € C%,|z| = |E 12|12, and

Imz = (Imz,, .. Imzy).
For 0; > 0 we define the Bernstein class ‘Bgi .1 Of entire function of exponential spherical type at most ;.

We say that a function f; € Bi{rek iff; € L“’E R4, dy;) is such that its analytic continuation to €2 satisfies

If.(2)] < C. Z @9kl ye ~ 0, vz e C

The smallest 0; = (0;) ¢, in this inequality is called a spherical type of f,.
In [21], we proved that functions f; € Bl+€ . satisfy

IZ fi(2)] = (1+e)z sillmz| ., e cd

Moreover, the following Paley- \Vlenﬂ type char ftcteuzrmon holds true.
Proposition 3.1 ([21]). A function f; € B;!_;,0 < € < w0, if and only if
fi e MR, dp ) n cb(R ) and supp F(f;) € B,,(0)
The Dunkl transform Fp (f;) in Proposition 3.1 is understood as a function for 0 < € < 1 and as a tempered
distribution for € > 1.
3.2. Lizorkin and Sobolev spaces
Now we define the fractional power of the Dunkl Laplacian. Let

®, = Lﬂ € §(RY): J‘ , Z Xt xS0 (0 dug(x) = 0, € Zi}
Rd &=

be the weighted Lizorkin space (see [2 2,34,42&] ) and set
Wi = {Fi(fi): fi € P}
Proposition 3.2 ([22]). (1) The spaces @, and W, are closed in the topology of § (R%).
(2) The space @y, is dense in L**(R%, dpy) for 0 < € < oo,
(3) One has

Wk ‘P{:—{F(ﬁ)f[E‘I’a}—{fEé(Rd)%f(O) anzd}
e 05

Now we will use some auxiliary results from [18]. Let @}, and W}, be the spaces of distributions on &, and
W, respectively. We have §'(R%) c @}, 8§ (RY) c Wi, and @} = &' (RY)/IL W, = §'(RY)/Fp(1).
where [T stands for the set of all polynomials of d variables. We can multiply distributions from ¥, on
functions from
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Cr (RN {0}) = {|x[**<fi(x): fi € CF (R9), (1 + €) € R}
where C (R9) is the space of infinitely differentiable functions whose derivatives have polynomial growth
at infinity.

Next, using Dunkl multipliers we can define the following distributions. Let € = 0. We define the fractional
power of the Dunkl Laplacian for @; € @, as follows

(=) 2, = (] - 7P (@) = Fill - [T F (9) € By
(see also [38]). By definition, for f; € ®}, the distribution (—A,)* /2, € ®} is
(8072, 0.) = (o (=00"%0,) = (£ F (L *°Fu(00)), 01 € P
By Wlljsk, 0 < € < oo, we denote the Sobolev space, that is,
WS = {fi € IV(RY, dpy): (—A) 72 f, € LM=(RY, g ) }
equipped with the norm

I fi hare =N £ lliaet I=232 10
3.3. Basic definitions in the distributional sense
We define the direct and inverse Dunkl transforms Fy, Fi L, generalized translation operators 7%, T1*¢, and
convolution ( f; =, g; ) for distributions.
For f; € @}, the direct Dunkl transform F (f;) € Wy, is defined by

(Fu(fi) ) = (fu Fe(P1)), 0, €Wy

Similarly, for g; € W, the inverse Dunkl transform Fj, ! (g:) € @}, is defined by

(Fi (9. @:) = (90 Fi *(9:)), 9: € Oy
We have

F (Fe(f) = fo Fu(Fi'(90) = 90, f; € i, 9: € Wi

Note that f; = g, in @}, if and only if F,.(f;) = F.(g;) in ¥;.
For f; € @}, the generalized translation operators TV f;, T 1*<f; € ®}, are given respectively by

(Tfoo) = (fut0) = (f Frie ' (e (=3, ) F (ﬁqol-ﬁ})), y € R
(T*f0) = (. T*00) = (fu Fi (jae((1 + O - DFi(0))), (L + ) ER,

where @; € @,.. Moreover, the following equalities are valid:

Fe((=8) 2 f) = |- " F(f), Fu(tV ) = ex (v, )Fu(fi)
Fre((—8)7 207 ) = |- M e (0. ) Fie(f2), Fr(T5F) = ja (1 + €)| - DFeelf2)
Fr((—2) 2T ef) = |- "4 (L + )] DFe(f)

Fe(T( 1)) = Ja (L + )l - Dew(v.)Fe ()

In particular, this implies the commutativity of considered operators.
Let ¢; € @y and @; (V) = @;(—y). We say that f; € @y, is even if (f, ¢;) = (f;, ¢;). Similarly we define
even g; € ¥ Note that f; € @}, is even if and only if F(f;) € ¥}, is even.
Let Ny, be a set of all even f; € @}, such that F.(f;) € CF(R® \ {0}). For f; € N, and @; € @, we set
(o 900) = CFugD) = (Futg?)
If g, € N and @; € @, then (g, =, @;) € Oy and
(9: *i 9 (1) = Fi " (Fie(g)Fa(0) (%), Fie(g: 1 0:)(0) = Fie(g) ) Fr(0)(¥)
Therefore, we can define the convolution (f; = g;) € @}, for f; € ®}, and g; € N, as follows
((fi =k 900, 0:) = (fu (Ge = @), 91 € P (3.1)
Moreover, we remark that
Fuelfi * ) = Fe(@)F(F) (273 % g) = (8752 = 9:). (3.2)
(fi * ((g0da & (92)) = ((Fr & (900) #x (90)2) = (i % (0802 *& (90)1)) = ((F *& (90)2) *x (@:)e)-
The next result establishes the interrelation between the convolutions given by (2.1) and (3.1).
Proposition 3.3 ([18]). If f; € L***(R¥, dy,,), g; € Liq(R?, du,). and Fp(g;) € Ny, then the convolutions
given by (2.1) and (3.1) coincide.
3.4. Moduli of smoothness and K-functionals
The K-functional for the couple ( L**$(RY, dpy,), WS, ) is defined in the usual way: for € > —1,
Kie(fol +€)1pe = Ko (fiu 1 + 6 I (RE, dpnge), WS,

=06 )" {1 fi = g, leet (14 FN =050 1, 19, € WS

i
Note that lim._,_; ¥; K;,.(f, 1+ €)y.. = 0 for any f; € S(R?). Since S(R?) is dense in L**(R?, dp,,)
and
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‘Z Kuae (01 sne = Kire (D2 1+ e < 2 101 = (sl

then for any f; € L**¢(R%, duy) one has lim.._, ¥; Ki.c(fi,1+ €)14e = 0. The monotonicity property
of the K-functional is given by

Kinelfu 21+ €)1ae < max ) {LAYIK (1 + )y (3.3)

By definition,

. . . : 11

Rivelfi L+ se=inf Y (I fi = gi et (1 + (=87 /2g,),, - g € B

i
is the realization of the K-functional Ky, (f;, 1 + €)1+.. Moreover, define
Rivelful+Oie= ) Ifi= gl + 1+ D (=27l
i i

is any best approximant of f; in L**¢(R%, dpu,.). Note that taking two different best

approximants gwe equivalent R1, (f;, 1 + €),, .. Remark also that if 0 < € < oo, then g/ is unique. The
realization of the K-functional was introduced in [16,26], where its importance in the approximation theory
was shown.
Proposition 3.4 ([18]). Suppose 0 < € < oo, then, for any f; € L**(R?, dpy).

:R1+5(fp 1+ E)l+f = R;+e[ff’ 1+ E)l e K1+E(fu 1+ E.}I+E = Wy f(fu 1+ E}1+€
For the case of integer (1 + €), see [7. Cor. 2.3, Th. 3.1] (k = 0) and [21] (k(-) = 0). For the case of
fractional moduli, see [31,47](k = 0). The discussion on various ways to define moduli of smoothness can
be found in [21, Sec. 6].

1 - : _
Let wy,2.(fii8) 1+ denote the modulus of smoothness of order € > -3 of a function f; € L1+(R9, dpy. ),

where g; EBI’r +

1e.,
Wy42:(fi,6)10e = sUP IATEEf (Ol L o
—l<e=d-1 :
where
. = 14 2¢/2y
M = A-Torrnm = > Y (VT ey @
e=—1 i :

and I stands for the identical operator. The difference AZCHZE' f;(x) cotneides with the classical fractional
difference for the translation operator T**<f,(x) = fl()a + 1+ €) and corresponds to the usual definition
of the fractional modulus of smoothness, see, e.g.. [6.46]. The reason why we use 1 + 2¢/2 in (3.4) is the
fact that the multiplier in (3.8) is of order O((1 + €)**2%) at zero.

Now we give several basic properties of the modulus of smoothness and the difference (3.4) (see [18] ):

I > 010 B)1ae = 0, Opaze(fy e S fi liae >0 (3.5)
E.
Wy 2 ((f)1 + i)z 6)1ve = @142 ([ 1 0)14e T @1402:((F) 2, 6)14e
Ose2e(fo 20 1ae 5 ) Max(L 220y e (B 2> 0 (3.6)

i

@ys2e(fir Orve = 1A5F,, . 6> 0, d > 1, (3.7)
1+2/2
F8i25 1) = (1— o (L + - D) " Felf). f; € D} (3.8)

We conclude by presenting the Bernstein inequality in the Dunkl setting.
Proposition 3.5 ([18]).Ifg;, 1 +¢6,d > 00 <e< o, f; €B ’Ek. then

HZ s Z CORATA (3.9)

Orvelf Dree S O Y N=BIT AL, S (B0 1 filuve (3.10)

i

4. Littlewood-Paley-type inequalities
Recall that 77 € S5 (RY) such that 7(x) = 1 if [x| < 1/2,9(x) = 0if |x| < 1, and n(x) = 0 if |x| = 1.
Set 8(x) = n(x) — n(2x),
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n; () =n(277x), 6;(x) = 8(277x) = n;(x) =11 (x), JELZ
Let n; f;, 8;f; be multiplier linear operators defined by the relations
Fi(nf:) = Fe(fony, Fel8f:) = Fre(F)6;
respectively. We have
suppn; < B,j, supp 8; € B,i(0) \ B,i—=(0) (4.1)
n;ifd) =m(n;fi) =n;fe j <
and for f; € L'*<(R?, duy) (see [18,21])
N;fe 61 € Bl

“Z fi =y,
¥ o1

i

Mifilyye SUfi D 165fill, S Nise
= Z Eja (fi)ise = Z "ft - nf—j-f""ne
1+e L !

SO W= maafly, + D). W=nfil,,. S By (Free (42)
1+e i i

Moreover,

1)+ ) G =Lx RN, mofi+ ) > 6f =, (43)
j=1 j=1 1

[, ofieyfidu =0, 1i-jl =2
R &
and for any function f; € L,. _(R?, dyu,) the series 1,f; + Y72, 6;f; converges to f; in LM*e(RY, dpy,).

Lemma 4.1 (see [58]). Suppose 0 < € < oo, then S(R?) is dense in Wf:;k.
o

Proof. Setting By, .. = Us,0B,, - In virtue of (3.2), (4.2), Propositions 3.3 and 3.5, forany f; € Wllffk

5
T and

we derive that 7, f; € B, _, a

(=802, = (=802 (fi oz Pr(n)))

= (=82 £) =i Fi(ny) = (2 2f;) € Bl e
Since, by Bernstein's inequality (3.9), the embedding B], _, © W75, holds, (4.2) implies

Z f—nif < Z () rse Z {:—ﬂ;{)lﬁfzfi — {:—,!_\_k)1+e;'2 (}}jﬂ)
i 1+e i '
$ Y Eyna((-807R),

e : : 1+e
Henee, By, . 1s dense in Wi 5y

1+

Letf; € ij_ o 0,& > 0 and suppose that i), € § (R9) is an entire function of exponential type 1 such that
P (0)=1. Let (Y;)s(x) =1,(6x). Then  inequality  (3.9) and  the  Nikolskii
inequality [18] yield that f;(y;)s € S(RY) n Bf:i Choose € = 0 and 0 < § < 1 so that

[ @ < % 1= @a()] < e forlx] < 1+
[x]=1+e =5

Then we have

J.RdZ 17 () — Fil) W)s ) dp (x) = Z (1+11 s HW)HEL I GO el (x)

|zl+e
et [N ARG S ) W N I )
|x|=1+e : :

Using again Bernstein's inequality (3.9), we finally obtain

D CRINLGE - WIS =0 @+ DS = Wl

1l+e

< c(k)z (0 + D40 s oo+ fi Nise)e
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Now we establish the desired version of the Littlewood-Paley inequalities. To prove it, we follow the same
reasoning as those in [8,10,11] (see also [13, Chapter 7]). We will also use [56].
Theorem 4.2 (see [58]). Let 0 < € < o0, If f; € WS, then

1/2
‘Z (—Ag Z Z 2201+ '-’U|3f| (4.4)
i )E;. i 1+
[
and
- 1/2
N 2 ' 2
H =D Ieaermer*+ )" Y 226 g (4.5)
i 1+4e . j=1 1 , Lie
Moreover,
- 1/2
. \ s 2
HZ (_ﬁk.}H—Eﬂff = “Z moffF +Z 22[1+E'|j|6}.ﬁ.| (4.6)
: : j=1 1+e

Proof. For f; € S(R?) and € = 0, equrvalence {(4.4) was proved m [56, Proposition 4.5]. By Lemma 4.1,
S(R?) is dense in W”E and hence, equivalence (4.4) is valid for any f; E W
Inequality (3.9) implies n,f; € W5, Applying the equality 1, f;(x) = }__,_ﬂ 8;f;(x) and (4.4), we have

1/2
HZ {:_ﬁk)1+€;’2 — Z Z 22(1+ EU|3}"|
! 1+e jEme d 1+e
Henee,
1/2
HZ (_ﬁk}lﬂ-_;zﬂ' _ Z Z 22(1+E)J|9 f|
i 1+e JeL i 1te
1/2 1/2
= Z Z 22{1+EU|8 f| Z Z 22(1+ El_il|6f|
jEmeo il 1+e 1+e
/2
= Z IIEZ—ARJI‘E”%}%IIHE+Z Z 2204946, £,|*
' ! 1+e
- 1/2
; 2 - 2
- Z |(_ﬂk.)1+e,’2noﬂ_| + Z 22(1+e,|} |6jf!|
i i=1
1+e

that is, (4.5) is shown. Since [|(=2,)" 2o fill,,. < INofill,, . we obtain (4.6) from (4.5).

To prove Theorem 1.5(2) we will use a more general version of lower estimate in (4.4) with € = —1.
Lemma 4.3 ([56]). Let @; €8,4(R%), suppe,c{(l+e)<|x|<1+2¢},—-1<e<1+
26, (@) ;(x) = (pf(Z_j.r). and (@), f; = ?k_l(iF-k{f[ _t,r),_}}). Then for 0 < € < o2 we have

1/2
: 2 .
A S il
= i
J S f+e
Note that in [56] this result was shown for € = — T E=7 The general case is similar. To prove Corollary

1.2, we will also need the following result.
Corollary 4.4 (see [58]). If f; € L***(R¥, duy),0 < € < »,(2 + €) = min(1 + €, 2). then
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\ 1/2+¢

. 2+
I folee ) | ImafiIZEE+ D 6,07
j=1

i
Proof. The proof is carried out as the corresponding result in [8]. We give it for completeness. If 0 < € =
1, then
1/2 v 1/1+e
oo

. z " 1+e
1 filiees | D [ Inofil2+ ) [6)fi =12, | mofilt*<+ > |o,fi

i j=1 i

1+e ! 1+e
> nnom@:ﬁz le £l

1;"1—E
i

If0 < € < oo, then Minkowski's mequaht} mmplies
1/2

- 2
1 filoee s | > | afil2+ D [6)fi
Jj=1

1

= ‘Z |7?cfz'|z+i Z |6jfa'|2
i =1

1+e
\ 12 , 1/2

_Z Inofi 2 II,+€+Z|||6;’1| L] =20 (mefilZe + > leflE
_ j=1 ,

i
5. Proofs of TllEGI em 1 1 and Cor ollan 1.2 (see [58]]
PlOGf of Theorem 1.1. Following the corresponding proof in [10], since E;(fi)i4er @1+e(fi 1/) 14

K+ e(fio 1/])14e are all monotonic in j, by (1.4), we can equivalently write inequality (1.6) in the form
v 1/1+e

,IF = 2_(1+€]ﬂ’ Z Z 2(14.5)3_;52]’_}—5(}1'[_}14—5 f‘:’ Z K1+e()ﬁ': 2—11j}1+e (51)
J=0 i _ i
Set (gi)n = Nn-1f;- Applying (4.1) and (4.5) with € = —1, we have Exn(fi)iic = If; — (go)all,,

En((g)n)1ee = 0.and for 0 < j < n
EZj(:{:Qi:}n)IJrE = Z 172 (ge)n — nj{gf:]n”1+f - Z Z 6,(g;)n

I=j+1 i te
n 1[.:"2
) 2
= PIMLICAN
I=j+1 i s
N €
Hence,
P 1/1+e S 1/1+e
IE r“‘ﬂﬂfz N 2O~ (g | 27O YD 2O () s
\J=0 i =0 i
o1 14ey Ll+e
—(1+€) 1+€)?f 2
LR § e RN ‘ oY
‘ j=0 =L L+es

Let 0 < e =1 and e = 1. Using (5.2), the inequality 1 + /2 < 1, (4.5) with € = 0, and Proposition 3.4,
we obtain

n—1 n
IS D, W= (@l +2700m | 3 220000 BTy ja (g0l
i j=0

I=j+1 i

1/z

1+e/2
n—1 n 12
S0 M= @l 270 [ 220597 ) la(g),
: j=0 I=j+1 1+e/2
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1/2

n -1
=2 W= (@l #2709y > 18ig0nl? ) 2““6”’
: =1 i j=0

1+€/2
n 1/2
S D= (@l + 27 220+ g (g)), |2
i =1 14+€/2
n 1/2
= Z Ifi — (:g[')n"1+e +27(rem (Z Z 22[1+Eji|5i(ﬁ'f)n|z)
i = i 1+e

Z Ifi — (gl +2° f“mZ I8 (gall . < Z Kiselfu 2™ 1ee

Thus, we verified (5.1) f01 0<e=1.
Let0 < ¢ < wande = E' Appl}mg the duality between ¢35, . j, and €3, ., where (2 + €) = (2 + €/2), we
can write

2+e/2 2+c/2
Z 9(2+€)(1+€)] (Z Z 18,(g:)n]%(x) ) (Z 2@Fad+ai(a,) );(x) Z Z 16,(g:)n > (x) )

I=j+1 I=j+1
W hele E}‘:(}Z(Z”N 1+EJJ’{ja5)§+E(.\’) = 1. Using this, we derive

2+e/2

n—1
L =[ Z 2(2+e][1+e)}-( Z Z Iﬂi(g )n| '[1.’:]) d g (x)
ad j=0 I=j+1 i
n-1 2+e/2
= f ) (Z 2@+)+9)S (g)) 1 (x) Z Z [6:(g:)nl? {«C)) d iz (X)
* j=0 I=j+1 1

2+¢/2

j Z (Z 161(g:)nl {“C)Z 2@+ 1+l (g (t)) dptg(x)

Applying Holder's mequallty and (4.5), we obtam

i 24e/2
n—1

2/2+e y 1/2+€
L< [ Z Z 16:(g0)nl2 () (Z z<12+6)<11+e:=f) (Z 2E+e+e (g )“‘(@) dpg ()
J=0
.
(Z 22f1+sﬂ|ef(gz-:)n|2)
=1

2/2+¢ 1/2)2+€

< fﬁd Z (Zn" 22c:1+£)j|81(gi)n |2(lj) d.“k(l':) B Z
T \i=1 !

£ D I=a R gl
Hence, :f10111 (5.2), we get
Z I = (@al . + 27E* (=802 (gl Z Kire(fu2 ™zue

that is, (5.1) follov&s Thus, (1.6) is proved.
Since the Sobolev space is dense in L2*5(R%, d ), we can assume that f; € W3S, and write inequality
(1.7) in the form

2+e
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\ 1/2+e
n

K1+E(ﬁr2_n:)2+e :\5 2_(1+€an Z Zt2+E)(1+€]j522;€(ﬁ':)2+e +|| f[ ”2+e (53)

j=0 ;
Taking into account Proposition 3.4, (4.5), Corollary 4.4, (3.2), and (4.1)-(4.3), this gives

Kieelfo2™aee § D My = Mafilyye + 270790 " =007 0,

S Eea(flaee + 270" )

: i 2+e y 2+e
> Earea(faee + 270 [ Ino((=80" < naf)llos + Y I6;((—a </ naf) I o
i . Jj=1 )

¢

|r}0((j_ﬂk)1+ﬁ2nnfi)|z + Z |8j [(_&k}1+ef2nnﬂ_)|2
j=1

2+€
llf'IZ—E

A

2+
[

n—1
— 2+e ) ;
D Ears(fzee + 27097 Y | =005 nofil} 10+ ) (=020, £]
i . j=1

M

i
z+e)1f2—f
2+

2+ .
+ ”nn ((_ﬂk) 1+E!26nfi) ”2_; + ”r}n ((_"ﬁ‘k.}l+ff!26n+1fz') ”

Bernstein's inequality (3.9) yields

. 1/2+¢
n+1 ‘

_ . _ : 24e
Kiselfo2™ave ) Enes(faee + 270 ) [ Iofil315 + ). 2@+0@raig £
: j=1 _

1/2+e
n

< 2—(1+€]nz Z 2(2+€}(1+E]J'E§;—f(:fsz+€ +]] f[ “2—E

i=0

Proof of Corollary 1.2, Inequality (1.8) can be equivalently written as follows
y 1/1+€

n
J= 2—cj1+sﬁmz (Z 2{1+s)‘}'wii§€(ﬁ’2—}'}2“) = Z Wyae(fir 27™)g4e + 270FEM Z I i llage
i J=0 i i

Indeed, using (1.3) and (1.7), we have

] 1/1+e
n J
Js 2_(1+E)nz Z 2—(e)(1+e)j Z 2<1+2€:‘{1_E:HE;!_E{ff)2+-_=+” fa "%ti
i j=0 =0 ¥
" n v 1/1+e
< 2—(1+E)nz Z 2{1+2€][I+EJEE21!+E[:fr')2+ez 2—{5:]{1+£:]j 1+ 2—[l+ejnz I f[ ||2+e
i =0 j=1 ) i

n 1/1+€
< z—(lﬁ)nZ (Z z<1+f>”E;rf(ﬁj)z+e) +2—{1+fimz A
=0

S 0elfu 2 e+ 27ED T £l

Inequality (1.9) follows from (5.3) and J ackson's inequality (1.2).

6. Proofs of Theorem 1.3 (see [58])

Proof of Theorem 1.3 for the best approximants. It follows from [33, Theorem1] that given a function f; €
[**e(R9, d ), 0 < € < oo, for any entire function g; € BY!

1+ek
> (= (F)e)

one has

= Z I fi — g 37— AZ lg: — (iﬁ-)ailli:, (1+¢)=max(1+e¢2)(6.1)

1+e
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HZ ~ (£)a)
1+¢

where (f;);, € B, [ o 15 the best approximant oi f; and positive constants A, B are independent of

for i)y G-
Following similar arguments as those in [30], let us prove the left-hand side inequality in (1.10). Using
Hardy's inequality (2.3)

2+e

<) Ifi—g BB Z lg: = (ells (2+6) =min(1+€2) (62)

2+e

oo J !
Z 2—(1+€]j Z Z ‘4% Z Z 2= tl+€|} 2+E (63}
j=n I=n i i

inequality (6.1), Proposition 3.4, and (1.4), we derive thar

27D (—a, )R () il
jEnt
- ;i 1+e
_ Z 2—E1+€:'3J-Z Z (_&k)ns,.-':({-f:_)z!_ _ (ﬁjzf-l) + {:_ﬁk)1+s.-"2(f!_)2n |
j=n+l i i=n+l1 14e
< Z Z 2-(1+e)%] Z (( A ef,.{f)ﬂ__( A )L+e;2(f) —1] 4+ 2~(1+en Z I(—a)t+e2 {f)-r-|1+E
J=n+l | +e
- i 1+=
= Z 2—(1+e:-=,.-z ( Z | (—ﬂ;{)HE"'E(ﬂ-)g: _ (_ﬁk)HEm(fr)z!'-*-”]_ﬂ) + 2—(L+ei.=uz (=) /2 (f ) n t:
j—n+J. i 1=nt1 i

Z D 2O (AT s — (M) e + 2R (A () n
j=nt+l
Then Bernstein's inequality (3.9) implies

Z 2~ (1+e) _,l'

Z e |

Z D 0D = Fayeallie + 270 Y a2 ()l e

J= 11+L +e J=n+l
53 Z Z ("f:'_(J‘:‘):,‘—L”L+€_”ﬂ_{f:‘)z,fll+sj e +2'=1'532”Z I(=A) <2 (f) ol
j=n+l

Z If = (F)aml3Te + 2—u+e:'=nz (=82 () mll 1o < Z K502 ™) e ~Z WiE(f 2 ae
To show the right-hand side mequahh i (1.10), by (1.4) 'md (3.3), we have
W24 B Z KHE(f2 ™) 4

5 = (Rhamealig + 2GRN AL () s

DN (|-f,-—mpzj_lnf:—nﬂ—m}:;nf:]+z-<"-ﬂfl+€>ﬂz IR 2 ) s e

JFn+Z i

50 (1= arms (Do) = 1 = R IZ5E) + 27000 N (=425

jent+l i

Using (6.2) and the following Jackson inequality [18]

Eafuve S 007049 Y |-a T

1+e - - -
CGEWS, 0<e<ma,e =20

we obtain

I 2 M e S Z DG = o ((F2 e + 2 <2+EJ“+63”Z I8 /2 (f) el

'—n+2 i
Y 2+€
= Z Z EZJ—'((E)”)HE+2_[2+E][l+f'mz ”(_Ak)lﬁjz(ﬁ)z““"lﬁ
j=n+2 i i
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Z z 2= {2+e)[1+ej_;||( & )1+¢=,2 fr)Q;”
1+e

j=n+l i
completing the proof.

Proof of Theorem 1.3 for the de la Vallée Poussin type operators. We will show that for (1 + €) = max(1 +
£,2) and (2 4+ €) = min(1 + ¢, 2).

o 1/1+e
2. N 1+€ . —n
(Z Z 2-(+e) ’IH(_AJ()HE'Z??J'}wl_E -‘{-'Z W14e(f 27" 14
Jenel :
2+e
(Z ] S ) o

J=n+1

To obtain the left-hand side estimate, we have

1+s oo
Z 9—(1+e) Z (—A )1—5;2}}”:1 < Z Z 2—{1+eﬁ]?j”{:_ﬂk)1+e;'2(}Jrj—r}n)ff"i:i (6.5)

j=n+1 +& j=n+1

, : o 1+
+ Z I~ Znnﬁlll =+ A fll
In light of (4.6), we obtain l

= , 1/2 1+e
g ) Y, e (\fru((m—nn)ﬂ Z 220+t g (r};—nn)ﬂﬂ)
j=n+l 1 Lie
= j+1 \ 1/2zy17E
= Z Z —(1+e)%j (Z 22(1+e)l ‘gf((”j_’]n)ﬁ)r)
j=n+l1 1 J=n .

Ifl=nn+1j=n+1 then(4.1) and (4.2) yield

“Z 6 ((n; —na)f) Z 101y =n)Fil,, = Z Ins (= mafl,., < D 1= mafil.,

1+e i

Ifl=jj+1j=n+1,then

it

IEn+2<1<j—1 then 8 ((n; = 1,)fi) = 6,(f; = 1.f0).

Hence,
1/2 1+e
I Z > 2o (Z 2 “f”l@(ﬁ—nnﬂlz) D U

j=n+1

= Inj(8:(f: = maf) S 16:(f: = 1,

1+¢ :
Taking into account Minkowski's inequality, Hardy's inequality (6.3) and equivalence (4.5), we obtain

1/2
Z Z 2= —(1+£)%j (f 22{1+e)!|3 (f _nnf:H )

n+1i
= 1+e

1 1+&/2
j=n+l i
12"
~Z (Z lou(f: — nnﬂ)l) ~Z Ify = il
1+e f

f\:,: ZZ |'91 '_nnfr |1 ¢
i i j=n

j=n
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Therefore, J < If; — 0y ﬁlli: and by (6.5). we arrive at

g 3

NI
z Z 27 | (=) znzjﬁ" ) xz IIJ‘}—rrn}%lll_E+Z I(=8)** <0, £l

j=n+1
’CZ hfl+€(f;1 _n:]1+e

Proposition 3.4 concludes the proof of the left-hand side mequality in (6.4).

To verify the right-hand side inequality in (6.4), it suffices to prove that
1/2+¢

. _ _ . 2+¢€
Kise(fo 27™1ee S Z Z 2-CrOO AN (=A< Py fill (6.6)

j=n+1l i

By Proposition 3.4 and (4.2), we have
. . _ ~ . Gy y N
Kise(fi 2735 Nz If = mafilliie + 27 GFa0 ’Z =2 nafillye (67

Using (4.5), the inequality |Z 6;(f; — rjrnfl-}|2 =23, (|6'}-ﬁ-|2 + |BJ-(:?’,'N}‘}:}|2.). (4.2) and the equalities
8;(nnfi) = 0forj = n+2,6;(f; —nnfi) = 0 forj < n — 1. we obtain

HZ o= mi| Z 6l j=nn+1

and

i 1/2 2+e
Le oo
) 2
HZ Fi=maf)| S (Z 16, (Fe = mafo)
d 1+e { J=n lee
' 1/2)2%€ 124627
2 2+¢=
sy (Z 61| Z Z |6,f] )
' J=n 1+¢ 1+e
- 1/2+e2FE
- Z (Z 2—[1—e:|[2+e:|j (|gjﬁ|222[1+ejj)2_f’r2
' J=n / l+e
o i+2 y 2+ef2
_-:\:_ZZ Z g-(1+€)(2+€)j Z 22(1+€]i|31(”}_+1ﬁ_)|2)
i j=n I=n .
- ’ 1+e/2+€
o - 1;2 24
Z Z 2-(1+e)(2+€)] (Z 22[1+E:‘I|81(nj+1ﬁ')|2)
j=n =1 1+e

In view of (4.5),

HZ ~nfi)

B I e [T i

1+ J=n

Z Z 2-(1+e][z+e:u'||(_,a.k)1+ffz(??jﬁ)||i:

This and (6.7) imply (6.6).
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7. Proofs of Theorems 1.4-1.7 (see [58])
Proof of Theorem 1.5. First we obtain Pitt-type estimates (1.13) and (1.15). For0 < e <land 1 +¢e =
2 4+ € < 2(1 + €) the inequality

ST

z |x|d;{( 1;'2[1+e:|—1;'2—E,I:FR (ft)
f 2+e

immediately follows from Proposition 2.4 and the interpolation theorem [48, Theorem 2].
Letnow 0 < e <o and 2(1 +€) = 2+ ¢ = 2 + ¢. By Proposition 2.1(4) to obtain estimate (1.15), we

prove that
[ mw| s wsonecimay,, 7.0
J 2+€ i

Proposition 2.4 implies the following Hardy-Littlewood type inequality:
IFe(fOll,, . = sup J. Fr(f)g:dyx| = sup Z U fiFe(ge)d i
lgillz+2e=1 &= R4 lgillz4e=1 & rd
dx(1-2/2+¢)
- J-ﬂgd

— sup > FiX| 402229, (g )dpy |
sup ”|x|d;<t1—2;2+e]g:k(‘gf)||2+2€::J:Z |||x|d;<(1—2;2+25:|ﬁ||2+EI (7.2)

lgillz4ze=1
24+e lgillagae=l

X

< Z ||x|d;{(1—%+e)ff
As usual, we first obtain this inequality for f;, g; € S(R?) and then we use density arguments to consider
the general case | - [%(1=2/2*<)f € [7+<(R9, d ). Interpolating between [[Fy(f)ll,,_ = I f; l242. and
(7.2). we arrive at inequality (7.1).

Second we derive Kellogg-type inequalities (1.14) and (1.16). Let 0 < € < 1 and f; € L1*<(R%,dy;). To
verify  (1.14), we will wuse Lemma 4.3 for nonnegative ¢; with support in
the annulus {1/2 < |x| < 3} and such that @;(x) = 1 for 1 < |x| < 2. Then

.1‘;{’(:] = x{2j='.|x|<22j+l} El\f} = (qol)_;(x)l xe ]E‘d (?3)
Putting A} = |((,£J:-)j-ﬁ-|1_E and € = (2/1+ €) — 1, Lemma 4.3 gives
1+€/2 1/1+e 1/1+€ 1/1+e
. 2 .
ez | [ D D Mo ) am ] = [ 2D @)
R? \ £= = md | < .
JET i JEE ¢

Making use of Minkowski's inequality

e ;
i 1/1+e 1/1+¢

1
;: (fmzi A;difk) | = J-Rd ;Z {:Ai’)}+e du,

we derive that

TANESDY ( [.2 A;duk) =1 DD Iwoufll,.

‘jEE , jEE i
Applying the Hausdorff-Young inequality (2.2) for (¢;)f; and (7.3), we have
10 £ill,, . 2 1Fe((@d 1 fo) lnse = 1FL(F (@D jlare = 1Frlfdityllze
Thus, the proof of (1.14) is complete.

y 1/(1+e(1+€)) ¢ 1/2

1+e

1/2
If 0 < e < o0 and (Eieg o IF(fx; ": s ) < oo, similarly (7.2), we use duality argument to show
+i€
(1.16). Indeed. we apply Plancherel's theorem, Hélder's inequality and (1.14) to get

fRdZ figdps = [Rdz Fre(fi)Fr(g0) dpix =Z [Rdz Fe(f)x;Fe(gox;dux
i i Jek i

| 1{!2

<D > IR, P, = D (D IR, | D) 1o,

JEL i i JEL JEL

12
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. 1/2
171, I g: I
~ EVJiJA 2126 Q: 242s

i \jEE ,
and
. . 1/2
_ ; 2
I fi llave= sup j Z figdp = ZZ 17 Fdx;ll, .
lgillz+ze=1 Jmd n A

completing the proof of (1.16). .

Remark 7.1. Inequalities (1.17) and (1.18) easily follow from Hélder's inequality for dyadic blocks and the

monotonicity of [,, -norms. For example, in order to show (1.17) with 0 <e<1<2+¢€ < 2(1 +€),
= dr I _ - .

we use [||x]F(/21+e) 132+E]g!xj||2_f = ||gij'||2(1+E)Jj € Z. to get

1/2 ; 1/2
o 2 - i 2 1e )1 /2t e~ 2
Z Z ”‘F"(ﬁ)xf”ztue] = Z Z ||| @k (/21 +e)-1/2 E']?k{fi:’ffj“zﬁ
JET ¢ ; JET i
; 1/24¢
: I 4T —1 /24 - 24€
> Z Z |||x|dk[1,f2|:l £)—-1/2 E']?k{ﬁ)fj“zﬁ
_jEE i

_ Z | x| /2612 F ()

Let us now show that (1.17) and (1.18) are sharp. For large enough integer N take Schwartz functions
(P, 1 =1,..,N such that supp(,); € {2! + & = |x| = 2! + 2&} for sufficiently small £ > 0 and

||([}5'z'j}t||2(1+5)=1. Then, by Hélder's inequality we have |X; |x|dk(lf‘z[l""":"lfz_ﬂ(jil{,'[-);||2+€r\,-
T N W0ilp, gy = L Similarly, |5, [x|4s0/20+9-1240 () |2 1for 2+ 2 2(1 + ).

Consider

(Fon =i DR @))
I=1

Since supports of (;); are disjoint sets, we get

1/2 1/2

.2 Il | = (Z f) = (N2

JEZ =1

Thus, for € = 0, we arrive at
1/2+e¢

N
=( Z lII—[2+E:|.,r'2”|_,(|a’;,:(1f2(1+E)—1Jaf2+¢.=)(qbz_'}i”2"’5)
Stz
I=1

Z+e =
1/2+¢e

D a9z 9T (£),)

N
I=1

and the reverse estimate for € < 0. This show that for € = 0, estimates (1.17) and (1.18) are optimal.
Proof of Theorem 1.4. To show the estimate

> G T minga, (SR

= Z wl+€(ﬁ: 5)1—5: 0<es=1, (7'4)

2—e
we use Pitt's mequality (1.13) for the difference (3.4) in place of f;. Using also (3.8), we have

s Cae_1/2— L oy 1FES2 ) -
D Itz (1, (]]) mz-.)‘ £ 185,
£ 2—€ ]

i

To conclude the proof, we use (3.7) and the fact that for A > —1/2 one has

1—j3(1+¢) =min{1, (1 +¢)%}
uniformly in € = —1. The latter follows from the known properties of the Bessel function:
(1+¢6)?

01D +0((1+e)), e = -1

Jall+e)=1-
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lia(1+6) < mm{l Ca(1+e) 2 } €>—1

The reverse mnequality to (7.4) for 0 < € < 0,2 — 26 < 2 — € = 2 + € can be derived similarly with the
help of Pitt's inequality (1.15).

Further, proceeding as in the proof of (7.4) with the help of Kellogg's inequality (1.14), we establish for
0<e=1

| 12
Z > Imin{L, (DRG] 5D orre(fi Dure
_,r—'Ir i i
which is equivalent to
. 1}."2,
2(1+€) :
2, 2, min{L.(2/6) E}llfk(mlelm S Orelfy Dure

JEET i
The case 0 = ¢ < @ 1s similar.
Proof of Theorem 1.6. Relation (1.19) immediately follows from the fact that w,, (fi, 1+ €)=

Wi+e(fi, 2(1 + €))24e: 522 (3.6).
In light of (4.2) and Jackson's inequality (1.2), we derive

Z Z 2:1+EJ3}”8J—}.;.“12.tZ = Z I f ||ét:+z Z 2(1—532;“ _??jfﬂl £ = Z I £ lii:-’-i Z 2(1—5)33-(Ezj{ﬁ):+E)L+e
=1 i J=0
Z ¥ ||11:+Z Z 205 (4 (£, 27024

Therefore, to verify (1. ’O) (1.21), and (1 2), it 1s enough to show thar

1+e
33 2000 (w2, ) = Y 0 H%“+Z 2. 2N
j:U i ! :-

Using (4.2), (4.3), (3.5), and (3.10) and setting 8, = 1y, we have for f; = ¥ [2,6;f;and j = 0

7 o
w1+5(ff, 2_1)2+e = Z Z Cdl_,_e(g;ﬁJ 2_1)2—5 + Z Z c‘-"1+f(6ifi’2_j)2+€
I=0 i I=j i
Jj oo
Z D 2WEDIGEY, DD 16,
I=j

This and Hardy's inequalities (j 3) and (2.4) imply

! o 1+e
Z Z 2t (1+£)2 J{w1+e(f 2= )‘)ﬂ+ )L+£-= Z Z (Z 2(L+£ullﬁf|4+£) +Z Z 2(1—5)5}.(2 "6Eﬂ||2_s>
i i i I _f= i
;:;Z Y 2urigrt s Z Imofills5s + Z Z e O
=0 i
SR Y 20 A
] J=1 i
Relation (1.23) follows from
0 1/1+e o 1/1+e
DD ] T A S Wfillpue| D, 20497 A
J’:—x i i .j:—x i

To obtain (1.24), we take into account (1.19), Theorem 1.3, and Hardy's inequalities. In particular, we

establish the estimate from above as follows:
1+e/2-€

55 s i, 55 2 5 reeoncaa

I=j+1

=YY s
=1

Similarly, we obtain the estimate from below.
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Any of equivalences (1.20)-(1.23) show that the Besov-Dunkl space equipped with the (quasi-jnorm ||
f’- ||Bé1-|-+§,1.+s'
Proof of Theorem 1.7. We give the proof only for € < oo, The proof for € = oo is similar.

Suppose 0 < € < o0 and Fi(f;) € L>725(R%, dpu,,). First, applying (1.12) with (2 —€) = 2 + 2€. we
estimate

J:Z ((1 . E)—{l—f]wlﬁ{:f[-, 1+ E)g_fjl”E d{ll::) Z Z pl1+e) .i‘ w1+€[fl ]2+€) B
<2 20 2 {1 ) Rl

=0

S’econd we note that

Z Z 2049 fmin{1, 2D IF IS, = ) Mguenlx ™ Fuflire, + D) Y 2L, (75)
=0 1 =0

Illcleed

. Lee 247 y l+e/2+2¢
z; . - )
Z Z 2(1+e)%f ||mm {1, (2 J‘|x|_} }?;\(f)"zp J Z x| Felf) duy,
Jj=0 i j=0 x|<2] i
o0 1+e/2+2¢ .
+Z 2+ (f Z Iﬁ(ﬁ)l“”duk) =L+
=0 [x|z2d &=
To estimate I>, we use Hardy's inequality (2.4):
1+e/2+2¢
Z Z 2(1+e]2 Z [ |~Fj([:f;'j}|2+2Ed.Hk
- I{|x|&21+-
14+e/242¢ =
2z ) . - 1+e
= Z > 29 J(J‘ |ﬂ(ﬁ)|2”€dﬂk> -> X515 5
=0 = 2is|x|<2 Jj=0
Taking into account (2.3) we also get
N 3426 v 1+e6/2+2¢
Z Z [ ] mm duk)
x|l
i 2+2; s\ 1+e/2+2¢ Lie 242 1+e/2+2e
+Z Z (J x| Felf) d,uk) =y [ x| Fe)| di
L{I\flf’).r - Jx|<1
- 1+e/242¢
+Z Z Z 2j-::1+s)c:2+2s) [ |:-Fk('ﬁ)|2+2.sdﬁk
— - — <2le|x|z2i¥t '
=11 \1=o
. e 2436 1+e/2+42¢ . Lee/aene
[ S| m|  dw > 2““-""([ | mmin““duk)
|1 &= — - Y2ig|x|<2
i F=0 i
Third, in view of (7.5), we have
1/1+e€

= ] 1
I fi gt .. ,\;Z 5 nz+5+z Igeies <RI +Z Z 2049 B, (F) |1,

where |} R’{|r|<1}|“€|l+ffk 2l
1F(fll,, 5. Thus,

— = X IF (), ,, and by Hausdmff Young's mequality || f; |l
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1/1+e

. 1
Felfx 175,

i batte S D P luse + 3, | 3, 20097
i i J1‘:[3

The reverse estimate for 0 < € < 1, and f; € L'*¢(R%, dy;.) can be obtained similarly. We have

o o ared(l4e)
J; Z ((1+e) Mo, (fu1+6).) ETFYE

+€

> Z Z 21+ Hmin{l, (2‘f|x|)1_f}Fk(ﬁ-jH;He\l
j=0 i '

Using (7.5),

- 1/1+e
- . 2; 1+e
TIPS LIRS W YOS N DI X
. - ; =0

Hausdorfi-Young's inequality || f; 1122 |Fr(fOll
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