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Abstract

We follow Q. Xu on the smooth method of paper [37] for the classical Poisson semigroup {P;}i-o on R?
and G the associated Littlewood-Paley g-function operator

6°(f;) - IZ 2e(5)|

The classical Littlewood-Paley g-function mcquallty asserts that for any 0 << € < o0 there exist two positive
constants LY, ,_ and Lf_fl . such that

(F1ee)” "Z ;;um_z le* .., Z 2 sve I v fj € Live (R

We determine the optnnal orders ofnmonmlde on(l+e¢) ofthese constants as € = 0 and € — oo, We also
follow the consideration similar of problems for more general test functions in place of the Poisson kernel
(see [37]).

The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too.
For A be the partition of R? into dyadic rectangles and S the partial sum operator associated to R. The
dyadic Littlewood-Paley square functions of f; is

S8R = D0 D Is(R)I°

ReA
For0 <e <o there exist two perfect positive constants L2 | __ and L2, .. 4 such that

Lt1+fd B “ Z f:; "1+€— Z ”SJi f})“1+e Z Lcl+fd I f:r ”l+EJ f:: S L1+E(Rd)

We show that

1
2

l

Lised ¥a (Lrren)” md Lipcq %o (L1rea)”
All the previous results can be equally formulated for the d-torus T?. We show a de Leeuw type
transference prineiple in the vector-valued setting.
1. Introduction
In [35] the vector-valued Littlewood-Paley-Stein theory is investigated, we are confronted with the problem
of determining the optimal orders of growth on (1 + €) of the best constants in the classical Littlewood-
Paley g-function inequality. We deal with this problem as well as the similar one about another classical
Littlewood-Paley inequality on the dyadie square function.
1.1. Littlewood-Paley g-function inequality. This inequality conecerns the g-function associated to the
Poisson semigroup {P,};~ on R? whose convolution kernel is

. c4t
Pe(x) i —
(x| +e2) =z
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The g-square function of f; € Ly, .(R%) is defined as

() = [ Z B

The Littlewood-Paley inequality asserts that fcn any 0 < € < o there exist two perfect positive constants
Liq..and LI; lie such that

r]_.H_: ” Z )“; ||1+¢=— Z "G f:;)||1+ Z L'.:' 1+e “ f:f ”1+EJ fj € lf-‘l+E(L—"!"’d}' (2)

a’r ,x € R4, (1)

We can see Stein [27] for more information and cited references. LY, and LY, _ denote the sharp best
constants in (2). The use of such notation comes from the vector-valued case studied in [35], the subscripts
t and ¢ refer to type and cotype inequalities, respectively, that is, the complex field € is of both Lusin type
and cotype [2] in the sense of [35]. These constants implicitly depend on the mentioned dimension d too.
Now, our main objective validity coneerns the sharp optimal orders of their magnitude on (1 +€)ase — 0
and € — oo so we also wish to have dimension free estimates (see [37]).

In addition we consider the heat semigroup {H,};~o on R? with kernel
d _|x[®
H.(x) = (4nt) Ze 4t.
The associated g- flulction is defined by (1) with P replaced by H. Then

(F,.) "Z f; ||1+E_Z I6=()I,... Z LB 1ee 1) liver f; € Lise(R).

We will use the followi mc- convention: A - B (resp. A T,.. B )means that A < CB (resp. 4 < C,,.B ) for
some absolute positive constant C (resp. a positive constant C, . depending only on a parameter (1 + €) ).

A~ B or A ®,;,_ B means that these inequalities as well as their inverses hold. (1—:) will denote the
conjugate index of (1 + €).

The following theorem determines the optimal orders of the previous constants except those of LY, and
LE, .. as € — oo, Part of this theorem is known, see the historic ’11 comments at the end of this subsection.
Theorem 1 (see [37]). Let 0 < € < oo, Recall that LY |, _and LT |, _ are the best constants in the following

1nequ’1ht1es
Li1se) ”Z fi llm—z I6F U, . = Z Lotee 1 fj lhser [ € Lyye(RY)

Similarly, we have the best constants I_.t 1o and LE . corr cspoudmg to the heat semigroup. Then
R e — 1tey _ 1+
(D) Liq.c ™ max( (1 + €), ( ))andmax( / s EE) sLE .. = dmax(\,l+e E)

()1 = t1 Eth1+ENdlf010<E< 1;
(i VZ + e S LtzE\Lt2+e»‘,2+E101O<E<DO

We will show a more general result. Given £ > 0 and & > 0 let H. 5 denote the class of all functions
[oF% R? — € satisfying

1
. v

1o, (0 = T pae xeR
le|® lel®

lo; () —o;(x + )| = =1+ [xae+s tax |x + e)d+e+s’

fRdZ @;(x)dx =0

We say that ¢; is nondegenerate if there exists another function 1, € #, 5 such that

x, (x + €) € B? (3)

o o dt
| 2 e T -1 veerI\ (0} )
o -
7
Let (@,)(x) = tidfp.? (%) Define
1
z
oo d
e = [ Z e P T ) x e me (5)

for any (reasonable) function f; on R4, Then it is well known that the following inequality holds
-1 _ . _ P -
(LT, E fi lpye= E lée (.. = § LI I fi Naver f7 € Loy o(RY) (6)
- r -

. . ~ ~ N wj ]
Theorem 2 (see [37]). Let ¢; € H, 5 and 0 < € < oo. Then the two best constants L. and L %, _inthe
above inequalities satisfy

(1) I_.C Lee Saes Max (\-'1 + €, 1+f).

€
(i1) LY

f1ie Zazs (1 + e) if additionally ¢; is nondegenerate.
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Assertion (11) above implies that the first inequality of (6) holds for € = 0 too. In fact, our proof of Theorem
2 implies that the norm ||G¥7 (f})"L (&9) is equivalent to the H;-norm of f;. Note that there exist several
1 S

equivalent definitions of the norm of Hy, .(R%): the one used is defined in terms of the Ly, -norm of the
nontangential maximal function of the Poisson integral of a function f; € H,..(R%) (cf. [12]). We have the
following (see [37]).

Corollary 3. Let ¢; € H, 5 be nondegenerate. Then

D 69| Faes ). 1fluy f € HiRD
J 1 J
Moreover, forany if; € H.sand 0 < € < 1,¢ = 0, we have

max Z G¥i(f;) Z Sl+€ f&d.f,a,l—sz el .

j 1+e 1+e 7

Wi . . .
where §; Jf (f;) 1s the Lusin area integral function:

ra| =

2d(x +€)dt

S = f Z e = | —57— | » x € R (7)

Remark 4. All the previous results hold for rhc area integral function defined by (7). In fact, a majonty of
the literature on the Littlewood-Paley theory deals with S¥i(f;) instead of G¥I(f;). Namely, if ¢; is a

nondegenerate function in H, 5, then forany 0 < e < o
@ - : P md
Z (L) 1y e Z Il Z Lves 1y laver ;€ Lise(®Y)

The sharp besr constants LY

e|l<(l+e)t

c1+es and Lr,l—s,s satisfy

€ —
) atldLrl+qud551+€\'1+E (8)

The first one is well known. As far as for the second, the case € = 0 is classical for sufficiently nice ¢;, for
instance, for the Poisson kernel. The case € > 0 is implicitly contained in [7, it can also be found in [32] if

@j . 1+
Litses Sdesiee Max|( Vvl +e,

2 2
. 1+ 1+ —
the aperture (1 + €) is large enough, say d < ( 3:—) s ford > (—3 f) . one can adapt Wilson's argument.

See [9, 13, 15] for related results.

Considering the Poisson kernel as in Theorem we see that the orders of the constants in (§) are optimal as
€ = 0 and € = o0. Thus the higher optimal orders of the constants in (8) are completely determined.
Compared with the area integral function discussed in the above remark, the situation for the g-function is
more delicate. We are unable to determine the optimal orders of L%, and L, | _ as € — oo, The following
problem is closely related to the one mentioned on page 239 of [7].

SqesVitefor0<se<om?

Problem § ([37]). Let ¢; € H, 5 be nondegenerate. Does one have Lt"l+

In particular, does this hold for the classical Poisson or heat kernel on R® ?

Remark 6. We determined in [35] the optimal orders of the best constants in (2) for more general
semigroups. Namely. {P;};- in (2) can be replaced by the Poisson semigroup {P,};. o subordinated to any
strongly continuous semigroup {T;};.q of regular contractions on L,, () for a fixed 0 < € < oo, The
corresponding constants LY |, and LY, . also satisfy Theorem 1 except assertion (ii) (which is an open
problem). See [35] for more details in [36], the authors proved that the optimal order of L, _ is (1 + €)
as € — oo for symmetric Markovian semigroups. Thus the previous problem has a negative solution if the
classical Poisson or heat semigroup is replaced by a general synmleuic Markovian semigroup.

It would be also interesting to have dimension free estimates for LE c1+¢ 10 Theorem (1):

Problem 7 ([37]). Does one have L, . < max (\-' 1+e¢ 1:) 2

Mever [20] shows that this question has an affirmative answer for € > 0 if the time derivative in the
definition of the g-function G is replaced by the spatial derivative. Now let
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GEH@=|[ Y @l
¢

a

where V= (—, ,i). Then
dxy dxgd
Z Go. (f;) <42 +EZ I f; laser f; € Lyso(RY),0 < € < o0,
i 2+ j
Remark 8. All the previous results admit periodic analogues, that is, for T in place of R¥, where T is
the d-torus equipped with normalized Haar measure. This can be done by modifying the arguments for R?,
or more simply by a de Leeuw type transference prineiple. We will show a variant of de Leeuw's theorem
in section 2. Using this de Leeuw type theorem, as illustration we will explain in section 4 why the constant
LZ,.. and its period analogue are essentially the same. A full argument can be found in the proof of
Theorem 9 below (see [37]).
Historical comments. We make some remarks on the previous results and especially point out the part of
them which are known or implicit in the literature.
(i) The classical Littlewood-Paley g-function is usually defined by using the full gradient of P¢(f;) in place
of the partial derivative in the time variable. We denote the latter by GE ( fi):
1

GF(5) = | 2o dve(p)lar ) ©)
7

This square function behaves better than the previous one since it is invariant under the Riesz transforms.
Theorem 1 equally holds for G¢ in place of GF. The corresponding proof is slightly simpler (see the related
remark of [12]).

(i1) Part (1) of Theorem 2 1s known and can be found in Wilson's book [32]. In fact, Wilson shows a stronger
result on his intrinsie g-function that is defined by

* zdt
6@ = [ D aw (o), 50| T ).
0 ] ¢jEH g5
Then for any weight w on R and fi € L,(R%),

J’mdz Ge,a(fj:'zw Tdes fR“Z |fj|2M(w)

where M (w) denotes the Hardy-Littlewood maximal function of w. This implies that for 0 < € < o

z Ges (ﬁ) Sdes (Vz + E)Z I f} 2+ e

J Z+e I

whence Lféﬁ Zaes V2 + € for € = 0. The case € < 0 is dealt with by a standard argument involving
singular integral theory for G%7 can be expressed as a Calderon-Zygmund operator with Hilbert space
valued kernel (see Lemma 20 below).

(iii) Part (ii) of Theorem 2 for € > 0 immediately follows from part (i) by duality.

(iv) The upper estimate ”Z} G¥i (fjj"L (md) Taesl X i il () in Corollary 3 is also well known for
1

the same reason by singular integral theory. The converse inequality is classical too for the Poisson kernel.
(v) Wilson's theorem just quoted implies particularly £5,,_ <, V2 + € for € = 0. However, the dimension
free estimate LE,, . < V2 + € in Theorem 1 (i) is duc to Meyer [20] by probabilistic method. In [35] we
prove a similar result for general semigroups. The dimension free estimate Li,,, S 2 +¢€ for € 2 0 in
Theorem 1 (ii1) is also a special case of that result of [35].

(vi) We can now summarize the new part of Theorems 12 and Corollary 3 as follows
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LBz V2 teandll,, 21, 2 V2+efor0e< o

P oL 1t€. B P o< . . ..
Ceite = for0 <e<1landLii,. S (1+¢)fore = 0 (dimension freeness);

1) lmSaes | > 69(F)
J I 1

1.2. Littlewood-Paley dyadic square function inequality. There exists another equally famous inequality
named after Littlewood-Paley. the one related to the dyadic decomposition of R, First, partition R \ {0}
into the intervals [2571,2%) and (—2%, —2%"1] k € Z. Then the family A of all d-fold products of these
intervals give a partition of R? (deprived of the origin). For any R € A let S, be the corresponding partial
sum operator, that is, Sg( f;} =1 Rf;-. The dyadic Littlewood-Paley square function of f; is defined by

1

st = D) D0 sl

Red
It is well known that for 0 < € < o there exist two positive constants L8, _, and L2, _; such that

-1 _ : .
(Barea) 1D fi e D0 ISP, < 1Bvea ). 1S v f; € Luse(®)  (10)
J J J
See [16, Theorem 5.1.6] where it is showed that both constants L2, _, and L2, ., are majorized by

for any nondegenerate ¢; € H, 5

\NZ

\2d
1+e . . . . . .
Cymax (1 + E,—) . However, like for the g-function inequality, their optimal orders have not been
€
completely determined in the literature. Note that the Littlewood-Paley g-function inequality belongs to
one-parameter harmonic analysis while the above inequality is of multiparameter nature. This explains why

we now mention d explicitly as a subscript in the above constants.
In the spirit of Remark 8, we formulate the periodic counterpart of (10). The only difference is that the

dyadic rectangles now consist of integers, so the corresponding dyadic partition of Z% is A =
{R N Z%R € A}. We similarly define the partial sum operators Sg and
1

' 2
3 =D D 1] - € Lusel™)
REA J
So (10) becomes

—~ —1 i~
i - B, Y e
(Breea) 1) filie= D IS5, < 1B 0eea ). 1 e £y € LuueT) (A1)
. . j A j
The following reinforces the meaning of Remark 8,
Theorem 9 [37]. Let 0 < € < oo, Then the best constants in (10) and (11) satisfy
A i A i
Lc,l—E,d = L'c.1+€.d ﬂl?’ld Lt,l—s,a’ = Lt,1+e.d'

The following result illustrates the multi-parameter nature of (10) and (11). In view of the previous theorem,
we need to state it only for the periodic case.
Theorem 10 [37]. There exists a universal positive constant C such that

~ i ~ d ~ d = d
(L%.lﬂ?.l) = L'%,1+E.d = (C L?,l+f.l) and (L%.1+._=,1) = L%.He.d = (C L%,1+e.1)
The following corollary determines the optimal orders of all the best constants (except one) in (10), so as
well as of those in (11).
Corollary 11 [37]. Let 0 < € << 00, Then
2
D12 1 ea ™ q(l+e)T for0<e<landl®, s~y (1+€)% for0 < e < ooy

()L}, cqg~glfor0<e=land(l+ e)g Sl ieasq (1 +e)ifor0=e < oo,

Remark 12. The estimate 12, 4 S4 (1 4+ €)? for 0 < € < o was proved independently by Odysseas
Bakas and Hao Zhang after the submission of this article: it improves the author's original one
L?,Z—E,d <4 ((2 + €)log(2 + €))% However, like for the g-function inequality, we are unable to determine
the optimal order of L":‘|2+ -q for e > 0. We need to do this only for d = 1 by virtue of Theorem 10 .
Problem 13 [37]. Determine the optimal order of L%z_fpl as € = o,
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This problem is related to Problem 5. In faet, the smooth version of the dyadic square function
5% is a discrete g-function, so the analogue for the smooth version of the above problem is a particular case
of Problem 5.
Historical comments. Part of Corollary 11 is already known.
(1) It 1s Bourgain [6] who first studied the problem on the optimal orders of the above constants by
determining the optimal order of L%JH -1 Lerner [18] noted that Bourgain's result remains valid for R by a
different method via weighted norm inequalities.
(ii) Bourgain [5] proved that L} ,, . ; # 1. In fact, Bourgain showed that the second inequality of (11) holds
for any partition of Z mto bounded intervals in the case of 0 < € < 1. This latter result is dual to Rubio de
Francia's celebrated Littlewood-Paley inequality [25] that insures the validity of the first inequality of (11)
for any partition of Z into bounded intervals in the case of 0 = € < oo,
(ii1) Bakas [1] extended one of Bourgain's estimates to the higher dimensions by showing L%,2+ ed Ma
(2+ sj)’% for0D<e<1.
(iv) Journé [17] extended Rubio de Francia's inequality to the multi-dimensional setting without explicit
estimate of the relevant constant. It 1s Osipov who proved the second inequality of (10) for 0 < € < 1 and
for any partition of R into bounded rectangles. In particular, Osipov's result implies L2, _; 7, 1 for 1 <
€= 0.

d
(v) The estimate (2 +€)z S 1&,,.4 for 0 < € < oo easily follows from the optimal order of the best
constant in the Khintchine inequality for € = 0: on the other hand, Pichorides [22] proved LL:‘.2+ 1S (24
€)log(2 +€) for 0 = € < oo,
2. A Variant of De Leeuw's Multiplier Theorem
We give a variant of de Leeuw's classical transference theorem on Fourier multipliers on R? and T, see
[11] and [29, Chapter VIL3]. (see also [37]).
We begin by fixing some notation. Given z™ = (z[",--,z0") € T% and m = (my,---,my) € Z% let z™

1 1\

(zim, ,Z?d). We identify T4 wwith the cube 1¢ = [— —,—) c R® via z™ = (82“"“1, e ezni“d) e X
2’2

(x4, -+, X4). and accordingly the functions on T% with the 1-periodic functions on R?,
Let X, Y be two Banach spaces and B(X,Y) the space of continuous linear operators from X to Y. Given a

function ¢;: RY — B(X,Y). let Ty, be the Fourier multiplier formally defined by T% (}‘})(;’) = ¢;(¢) f] (&)
for & € R and fi € L,..(R%; X): similarly, define the Fourier multiplier My; in the periodic case when ¢
is restricted to Z¢, namely, JL@(;J (fj){m} = tpj(nl)}‘:j(nlj for m € Z% and fi € Ly.+c(T% X). Here given a
measure space (0, 1), Lo+o(; X) denote the space of (2 + €)-integrable functions from 0 to X.

We will assume that the symbol ¢; satisfies the following conditions:

(Hy) for every a € X, ¢;(-)(a) is a measurable function from R to ¥, and @ ; 1s bounded. ie., M =
SUPzega Il @;(8) lppry) < o

(H,) there exists a partition R of R? into bounded rectangles such that ¢ ; 1s strongly continuous on every
R € R, ie., @;(-)(a) is continuous from R to ¥ for every a € X:

(H,) for every a € X and every R € R the range of the restriction of ¢;(-)(a) to R is contained in a finite
dimensional subspace of V;
(Hy) for every 0 < € < oo and every a € X there exists a constant €, _ , such that

> T,,@af) < (Crrea) ). 1 f; eyt
i Lise(REy) J

for all compactly supported % functions f; on R,
The last condition implies that Ty, (f;) 1s well-defined and belongs to Li..(R%Y) for any compactly

supported C* function f; with values in a finite dimensional subspace of X.
We are interested in the best constants (1 + €) and (1 + 2¢) in the following inequalities

(1 + E)_l I Z f_i‘ ”L-.+s{1d:?¢’)£ Z "Tﬁ"j(ff)”hﬂ(ﬁdjy) = Z (1 + 25) I f:f "LJ.'I'E(Rd:X::' (12)
J i i
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for all compactly supported C* functions f; on R? with values in a finite dimensional subspace of X.
Obviously, if it is finite, (1 + 2€) is equal to the norm of Ty, as a map from L, (R% X) to Ly, (R% V):

we will denote this norm simply by ||T{P‘r.

. Similarly and by a slight abuse of notation, if (1 + €) is
l+e—=1+4€

-1 Tich | o of T-1 fr : : d.
which is the norm of Ty, from the image of Ty, in L (R%:Y)

finite, we will denote it by " T, ||1 )
+e=l+e

to Ly, (R X).
We will also consider the periodic version of (12), the corresponding constants will be denoted by

M, || and Mg L || which are the best constants such that
I res14e Tl tes146
P o _ .
Z ||J f{‘g‘f ||1—E—>1—e I f'} “L“E(Td:x'ﬁi - M‘pf['f})||l.1+siﬁd:‘f:] - - ﬂ’-f{’aj||l+€—'l+€ I j} ”L“'E{']Td"x) (13)
J j j

for all trigonometric polynomials f; with coefficients in X.

We make the convention that if one of the inequalities in (12) and (13) does not hold, the corresponding
constant 1s understood to be infinite.

Theorem 14 [37]. Let 0 < £ < oo,

(1) Assume that @, is strongly continuous at every m € Z2. Then

Z Mg, _Z I7e,ll, ., and Z Mg}
i

i 14+e—l+e i 1+e—=1+e

(i1) Given t > 0 define qo}r) by (,{Jj{r){f) = @;(t). Then

: -1
= Z ||quj ||1+E—)l+6.
1

||Tcpj||l+e—-1+€ = liI;Ill;}Ilf M(_(-lr)

7 Mtes1+e

M@E_r) and ||T¢,‘;|| < lim inf -

ltemlte 1+e—=1+e t—0

I I
We will adapt de Lesuw's arguments. Note, however, that de Leeuw's proof depends on a duality argument
that does not seem to extend to our setting. Instead, we establish a direct link between T;oJ- and M ;A% in

Lemma 16 below.
The following lemma 1s a well-known elementary fact (see [29, Lemma VII1.3.9]).
Lemma 15. Let f; € L (T%). Then

lim jRZ HOB 0= | Z fix + 26)d(x + 26)

The following expresses the periodic Fourier multiplier M . in terms of the Euclidean quj'

Lemma 16 (see [37]). Assume that ¢; is strongly continuous at every point m € Z% Let P be a
trigonometric polynomial with coefficients in X. Then

lljnz (4n(1 + €)t)2059) ||T¢j(PHr)||LL+£{Ra;Y)=Z [0, 7y
J ]

Proof. By approximation, we can assume that @; 1s compactly supported. Let

P(x+2¢) = Z a,,z™ a,, €X
m

Then
PH,(§) = ). anH(E—m)

m
Thus

Ty, (PH) () = Z fﬁdz ;&) (am)He(E — m)e?™E=ag
m j
= 2 Mo @XOR + Y [ 3 (0,0 oy (m) @B ~ e
J m i

o Z My, (P) (20 (x) +Z Z () me(2)
_ — =

j
Recall that H,(x) = e 7 11" Letting s = (16m2(1 4 €)t)~* and using Lemma 15. we get
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1+e

My, (PYOO)HE, ()]

a
lm (47 (1 + £)t)2 fﬁd Z
J

1+e
- Z L] g .

Thus 1t remains to show that

. 1+¢ i
dx_slﬂné jﬁdz ||;'Lf¢j(P)(x)||Y H,(x)dx

d
i 2(1+¢) } =
lim (47(1 + )t) Z |5)..., \medﬂ_) 0, vin. (14)
j
Choose 0 < € < coand 0 < € < 1 such that e = 0 or 1. Then
d
(47(1 + €)t)2(+e) Z (f})m.t
i Lyse(R%EY)
[

< (45(1+E)t)%z H(ﬁ)m”bz{ﬂv) (4m(1
: ;

1-e
d
+ e)t)2(1+e)

Z (f})m,t

1

Lyse(R%Y)
By (H,) and (H,).

2. ().,

It follows that

< (Crsean + Mlamll Iz Hell, |, (ge) = (Crreap + Mllaml ) IEN, , (ga.

Lite ([Féd FY)

< oo,
Ly4e(REY)

()

Let us treat the part on the Ly-norm. Since we have assumed that ¢; is compactly supported, by (Hz). we
can further assume that ¥ is finite dimensional, so isomorphic to a Hilbert space. Thus by the Plancherel
identity, there exists a constant C. depending on a,,, and ¥, such that

1), < c? [RZ 1G9,() = 9, (am) I H (¢ — m)2dg
i

2

Lo(R%y)
Given £ > 0, the strong continuity of ¢; at m implies that there exists § > 0 such that | ¥; (¢;() —
@;j(m))(am) ly< & whenever [§ —m| < §. Thus by (Hy).

o La . : SR S
(m(1+ 02 LZ 1605 = 0,0 @ L He(E = m)?d

m.t

d
sup Z (4m(1 + e)t)2(1+e)
t=0 .

j

< e2(4m(1+ E)t)%[

H (- m)ds + (2Mla, ) Gn(1+ 00 [ (- m)as
|&E—m|<d

E-m|=8

- 2 -

Sieed £+ (ZMHQ’” ”X) f e
€1z

Therefore.

i:"1+€.d Ce

m,t {Lz(ﬂd:?’)

imswp Y a1+ 0 (7)
J

As ¢ is arbitrary, combining the above estimates, we deduce (14).
Conversely, we can estimate Ty; in terms of M e

Lemma 17 (see [37]). Let f;: R% — X be a C* function with compact support and define the periodization

o£(f),

mek

(ﬁ)t(-‘f) = Z Z (f})t(:c +m), x € B4
a4 j

Viewing (f;) as a function on T%, we have
= \Ujle
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1;_)1132 1=t o Moo ((f;) H _Z I on(f})” e(BEY)

J
Proof. The Fourier series of ( jj) is given by
Z Z f(tm)e Zmimex

meZd

llllz t4M o (jj) )[;tx)=limtd Z Z cpj(trrl)f{'tm)ez“”"m'“

mezd

fz qa}mf(cjezmﬁdq—z o)

where we have used (H,) to insure that the above i mtc_cq al exists in Riemann's sense. Let 1) be a nonnegative
continuous function with compact support on R? such that

7(0) =1 and Z n(x+m)* =1

meZd

Thus

(see [29, Lemma VIL3.21]). Then
lim teM (z((f}) (tx)n(tx) —Z 0; (i) (x

t—=0
j
Thus
=1 AWM a0 An(t -
Ty, (f;) e _lf'il&Z t H%j.l((ﬁ-)f)(t it )HLM{}%Z]
However,
1+e
Z M@J{{r) ((f’)r) (tn(t-) | =td J;;d Z ||ng}f;. ({:ﬁ)t) (x) ;_E n(x)t+edx
! L;+s(3diy]
l+e

3 L3

n(x +m)*edx

Mo ((7),) @

meZd
d ("j 1+s
=t~ Z M (r;.( .)
j qu ¢ LL+£(Td:Y}

We then deduce the desired assertion.
Proof of Theorem 14. (i) Let P be a trigonometric polynomial with coefficients in X. By Lemma 16 and

Lemma 15
Z Mg, (P)

i

Z “ i ||1+s—>1 s!fl-l.n Am(1+ E)t)Z(HE]”PH ”L 1+e(R%Y)
Lise(T%Y) J

=2 7ol 1P ey r)

=X ||T¢.|| . The second inequality ||Z} Mg ||
1+e—1+e TMite—1+e

is proved in the same way.

whence ||E j M@j ||

1+e—1+e

I L5
(11) We use Lemma 17 for this part. Let f; be a compaetly supported function with values in a finite
dimensional subspace of X. Then for t sufficiently small, [:f:,]t is supported in the cube 1%, so [:f;]t = (f:,)t
Thus
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Z M Etl ((_}j) ) = Z Mfcpj_ﬂ ||(f?)g||L+ {-[[-djy']
7 . +€[Td:'{} 5 1+e—1+e 1ve k
= Z Mo [CN I

1+e—=1+¢

=t 1+EZ ||1M’ (o
I

I f:l IILJ.+E(|Ed?Y)
1+e—=1+e

Therefore, by Lemma 17,

Z o1 )
Lyse(R%y)

< lim ian
t—=0
j
Z Tq,,j < llm mfz
J 1+e—=1+¢

We show similarly the other inequality of part (i1).

Remark 18. Some of the hypotheses (H;) — (H,) can be weakened for the validity of Theorem 14 We
have seen in the proof of Lemma 17 that (H,) can be replaced by the Riemann integrability of the function
&= (@))€ )}‘:](f )e2™MEX for every compactly supported €% function f;- On the other hand, the proof of
Lemma 16 shows that (Hz) is unnecessary if ¥ is isomorphic to a Hilbert space.

If the function ¢; is strongly continuous, Theorem 14 can be reformulated as follows: the norms

M )
.‘ffp}({r,

175 e, o (m)
1+e—=1+e

whence

M (r)

1+e—=14e

||T(p_|| and || T, 1” coincide with the corresponding ones when R¢ is viewed as a diserete
MMi+e—14e T M+es1+e

group (see [11] for more details). We then obtain the following corollary as in 11:
Corollary 19. Let ¢;: R? — B(X,Y) be a strongly continuous function. Let iP; be the restriction of ¢; to
R* < R? for some k < d. Consider the Fourier multiplier Ty, from Ly, (R¥; X) to Ly, .(R¥; Y). Then

Z T]‘bj L::Z ”T(’Dj”l—f—)l—f and Z Tﬁj}} Z “ (’91”1 e—=1+¢

J 1+e=1+¢ J J
3. Proofs of Theorem 2 and Corollary 3
As described in the historical comments of subsection 1.1 we need only to show Theorem 2 (11) for € < 0.
We start the proof by some preliminaries. In the sequel. Q will denote a cube of R? (with sides parallel to
the axes), |Q| and £(Q) being respectively its volume and side length. For a locally integrable function f;
on R¥ we let (fi)o denote the mean off} over (0 :

) IQlj Z Ji(xdx

As mentioned before, part (1) of Theorem 2 for € < 0 is proved by singular integrals. We state this result
as a lemma for later use.

Lemma 20 [37]. Let ¢; € H.sand f; € Hy,.(R?) with 0 < € = 1. Then

D GHH)|  Saes ), 1 e
j_ _

1+e i

Indeed, consider the Hilbert space valued kernel K defined by K (x) = {{:(pj)t{:x)}ho for x € RY, that is,

1+e=1+e

. . : . . . dt ,
K is a function from R? to L,(R,). where R.is equipped with the measure — Weuse K to denote the

associated singular integral too:
K(f) =j D K(-ef(x+ed(x +e)
R&
J

Then

GI(f)(xX) =Nl K(f)(X) I,m,) X € R?
It is easy to show that K satisfies the following regularities (see below for a proof):
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, o1 . _ _|x+2¢]8
1K COllL,m*) Se 7oz and IK(2(x + €)) = K()llp,m*) Tes N

| x|
X, (x+26) eRY, x| > 2|x + 2el. (15)

Thus the lemma follows from the L,-boundedness of K and the Calderén-Zygmund theory.
We will need a reinforeement of the previous lemma for Wilson's intrinsic square functions defined by
1
i . H
N . ) _zd(x +e)dt
Sealf;) () = D sup [(@pe fx+ @) =
lel<t 5 piEHes L
This square function can also be expressed as a singular integral operator. Let the cone I'=

d(x+e)dt

{(x +61t) € R |x + €] < t} be equipped with the measure ey

. Let X be the Banach space of
square integrable functions on I' with values in £, ('H 5,5) :

X =L, (6. (3.5))
This time, the convolution kernel K is an X-valued kernel: for x € RY, K (x) is defined as follows:

K(x):T = €(Heos), (x +€,1) = {(0))e(2x + ej}}{ﬁewes

Then
Ses(f)(0) =1 K(f)(2) lIx, x € RY
Let us show that this new kernel K satisfies (15) too. By (31), we have
. 5 2d(x +€)dt
Il K(x) 1% = J; Z sup |(@)).(2x + ) —a
i

pjcHes
2
J‘ 1 1 d(x + €)dt
~r

td |2r+E| d+= td+1
()

2

t
This gives the first estimate of (15). For the second, let x, (x + 2¢) € R? with |x| > 2|x + 2¢|. Applying
(3) once more, we get

f‘” 1 1 dt 1
~d.e .. _.d+zl| + Tde Tv12d

t t X

0 (1 + |x|) |x]

2
L e 1 |x + 2¢|® dix +e)dt _  |x+2¢|*
] K(ztl + E}) - K(l) ||x.x'_-5’5 : P ( |2~C N E|)d_f+6 e ~d.ed W
1+ A

By [31], S, ¢ is bounded on L,(R?). Thus we deduce the following
Lemma 21.Let 0 < € = 1. Then

D Sesf)
J 1+e J

Our proof of Theorem 2 (ii) for € < 0 is modelled on Mei's argument [19] (see also the proof of Theorem
1.3 of [33]). We will need a variant of the usual BMO space. For any locally integrable function f; on R
define

Sacs ). 1S lyse f; € Hyne(RY)

1

p
oo 1 - 2
o =sup| [ > |0 = (ol
xEQ |Q| Q 7

and for 0 < € =< oo let

BMO,, .(RY) = {f;: f{' € L, .(R¥)} and || f; llgmo,..= | ff
Note that BMO,, (R?) coincides with the usual BMO(R®).
The BMO space is closely related to Carleson measures via the following maximal function

2+e
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. : 1 2d(x + E}dt
C‘P;(E.){__x)=ilelg @J‘th)z (@) * fj(x + &) ————

where T(Q) = Q x (0,4(Q)] Ri“.

The following inequality is known, it can be shown by adapting the proof of [28, Theorem IV.4.3].
Lemma 22. Let ¢; € H, 5 and f; be any nice function on R?. Then C‘pf(jj-:l Zdes f;.

We now arrive at the key step of our argument.

Lemma 23 (see [37]). Let ¢, ; € H, 5 satisty (4). Let 0 < € < 1. Then

1+e
|, Z [0 Sacs Z GG, 1fy Vo2 1, oo
for any sufficiently nice funcrlons fi€ H1+€(F§ ) and g; € BMOu+e( RY).
(3
Proof. Fix (sufficiently nice) functions f; € H,..(R%) and g; € BMO.+<(R%). We need to consider a
3

truneated version of G¥J(f;) :
1

2
G(xt) = [ Z @ OS] xeri =0 (16)

By approximation, we can assume that G{r t) never vanishes. By (4), we have

LHZ 139, = f S @ W), 9,058
xe s ,

JMZ (@ w60 0] [0 05 (w,), » ,00]

Thus by the Cauchy-Schwarz 111::q11a11ty

dxdt

Ldz fig;|=A-B
J

w=f _Z 6059 09|

B?—f Z Gx, )1+
RA+1
The term A is estimated as follows
= 0 = ..
A = —f j G(x, ) —(G(x,t)))dtdx = —ZJ- j G(x, ) —G(x,t)dtdx.
rd Jo at md Jo at
Since G (-, 1) is decreasing in t, G(+, 1)° = G(x,0)° = G¥(f;)(x)°. Thus

) - d - 1+e
2 - P NE - - Pirf A 1l+e — @i ;
At =12 J-.a ; G -’{,);)(,l_) J; —arG(:\,t_)dtdl =2 ]_ P Ej G “(jj:](;‘) ds =2 E "G j(j;)||1+€.

i
The estimate of B is harder. We will need two more variants of S, 5(f;). The first one is defined as before
for G(-,t) :

(x + €)ds
S(x,t)? = J‘ J. Z sup ‘(qo} = fi(x +E)‘ — g Y€ Rt = 0.
|]< s—— "

To introduce the second, let Dy, be the f’mnl} of dyadic cubes of side length 27%, and let ¢, denote the
center of a cube Q. Define

where

zd?(dt

2 dxdt

W), 9,0 ==

d(x + €)ds

(x, J{)Z—J‘ J‘ sup |(¢J}) f}(r+e)| —ar if x€Q €D, keL
Vdz =k xre— ﬂ'Q|'-..S' pjEHes

By definition, we have
e  S(-, k) is increasing in k;
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o  $(-, k) is constant on every @ € Dy
* $(,—)=0andS(,»)=S5(x0)=S.5(f;)
On the other hand. if s = t = Vd2 ¥ and x € Q € Dy, then B ( é) c B(CQ, S). Here B(x, 1) denotes

the ball of center x and radius 7. It then follows that

S(-t) < S(- k) on every Q € D;, whenever t = Vd27*
Here, the crucial observation is the clementM} pointwise inequality: G(x,t) $4.5 S(x, t). This inequality
1s easily proved by the arguments of [31]. Indeed, by a lemma due to Uchiyama [30] (see
also Lemma 3 of [31]), we can assume that the function ¢; defining G(x, t) in (16) is supported in the unit
ball of R¥. Then we get G(X,t) S4.4 S(x,t) exactly as Wilson did on page 784 of [31].
After these preparations, we are ready to estimate the term B. We have

2 dxdt
B2 wmf Z sCe 0 |(8,), » 9,0
VazTRe 2dt
= f f Z St |( iP-)t*Q;{:-"C:)‘ de
ez QeDy, CER
\,dZ k+1 zdt
<> > jf D skt |(wy), - 9,00 T
= =, fd2-k -
-[3 D{w)[ Z ), 5,0
rd ke jek f[d2—k
where D(x, k) = S(x, k)*** — S(x, k — 1)**¢. Thus
B2<ded
\,-'EZ_"H'J' 2 dt
[ Y ociy [ |, g00f Fax
\."EZ_J-'“' 2 dt
=Z Z [D(.x,jﬂ,jj Z |(¢;J.)t*gj.(jx)‘ —dx
- o 0 -
j QeDj J
Sinee D(,]) is constant on every Q@ € D;, we have
B2<d, e
2/d4(Q)
2 2 Dot [ | Z 06, 9,0 ax
i QeDj
=> > D(:xijo)'ﬂ(g(x)m@;;gqc%(g;){;x+e) 0|
i QeDj j '

= fﬁﬂ Z D(x,jo)C¥1(g;)(x)?dx
j
- f az Ses(F)()FECYi(g,) (x)2dx

Z ||sfacfj>||”f||c%(g;->||;

By Lemma 21|%; SfJé‘{ﬁ')Hl_E Taesll fi lg,.. Hence,
1 £
BSacs ). 1f; Iy, €Yo lase
J
Combining the estimates of A and B together with Lemma 22, we get the desired assertion.
The preceding lemma implies the following

L2 05| Sa 2 1, Dl 95 Howoa
R - n &
J ]
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This shows that every function g; € BMOuite (R%) induces a continuous linear functional on Hy, . (R9).
[3

Like the H,-BMO duality theorem, the converse is frue too. The following lemma is known, its
noncommutative analogue is [19, Theorem 4.4]. We include a proof by adapting Mei's argument.
Lemma 24 (see [37]). Let 0 < € < 1. Then every continuous functional £ on H,, (R%) is represented by
a function g; € BMO+e(RY) :

3

;) = Ld > fi05 vh € Hi(RD 0 L (R
Moreover, !

l + E} I Z gj ”BMOL+5~.¢:’” £ ”H Lie Eld 'r-ud Z Il 9; ”BM01+£

J
Proof. We will use the characterization ofHHE(L—%d) by the g- funcnon defined by (99), namely

|| Z £ s, ~a Z IGEI,,.

j j
Let £ € Hy, .(R%)". Then by the Hahn-Banach theorem, there exist d + 1 functions h; on the upper half

space RZ** such that
€

€ 1+¢
2(1+€)

d+1
= dt
fmd ( J; |h(x + €, t)FT) d(x +€) ~all € ||HJ+£(Rd}*
=1

and (withxz,, =)
d+1

o(f;) =Ldfz 2 e Pel)(x + Oilx +6.) —d{r+e) —fdz £,(0)g,(x)dx
h j ) J

i=1

where

o fdrl
gm=] | 2, RO+ DD | T+
It remains to show that g; € BMOﬁERd). All the d + 1 terms on the right hand side are treated in the
same way, so we need only to deal viith one of them, say the i-th term. For notational simplicity, let
(9;),00) = tai]}" —x), h=n

and (with some abuse of notation)
1

e dt = dt\2
_ . h. - _ . 2
gj_fo E (¢)), = hC.O S Hix+ ) (L Ih(x + €,0)| t)
i

Given x € R% and a cube Q containing x, let
1 = dt
ag = —f f f Z ((,!)j-) (—E)h(x + €, D)1 gye(x + €)—d(x + €)d(x + 2¢)
|Q| o “md o 7 ¢ t

Then
= ) L o dt
g;j(u) —ag= [ f Z ((p}-)r[_x +e—uh(x +et)lg(x+ E)Td[_x +€)
Rt o 7

_L fm L—élf z ([cp}-)t[_\' (qa), E)}d X+ 26]] (x —E,ﬁ:]ﬂ[:Q)c[J(+E:]¥d[.\'—£:]d(}f+2€)
d Jg ) 7

def

= A{u) + B(u).
By the Plancherel identity and the Cauchy-Schwarz inequality, letting 1, (x + €) = h(x + €, 1)l (x + €),
we have
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[Q |:'-1(:u)|2du=_::[u§d |,4{:u)|zdu=["§d J:’Z @j(tgjﬁt(f)? B
<J. f Z I%(té‘)lz—f o Laz

= J‘ J‘ |h(x + ¢, rj)|2—d(:x +¢€)
20 Jo t

It then follows that
sup

up |@|f AW Pdu S JMH?)().

We turn to the term B. Let ¢ be the center of Q and u € @, then
B( f f i) hoc+ 6,0 e+
| ‘”’JI "Vd {ZQ)C (|," +e— Cl + I_)d+1| (.]C £, )| t [.3’ E)

< FEQ) = ) ] zdf 3 . .
e J;zq)c [x + e — c|d+2 (fo |h(x + €, 1) : ) d(x +€)

RS
S 2 o
<4 M(H)(x).

[

f H(x +€)d(x +€)
2k—Lg(q:j<|x—E—c|{2kf(Q]

Thus
1
F
sup( J‘ |B(u2}|2du) g M(H)(x).
xe@ |Q|
Combining the preceding estimates, we get
1
2
oo 1 2
g; (x) < sup —[ Z lg;(w) — ag| du
xEQ IQ| Q 7
e 1

e

1 1 2
]2 12
ilég (|Q| f@ S du) ¥ ﬁgg (|Q| f 18| du)
d{:M(HZ)(:x))% +M(H)(x) =4 (:M{:Hz)(ﬁ'):)%-

A

Hence,

(M(HZ))%

lg§llise <

= H = £ .

14c d l Fe || || l+€ d 1 +e || ”HL+E(Rd:]

This is the desired inequality.

It is now easy to show part (ii) of Theorem 2 for 0 < € < 1.

Proof of Theorem 2. (ii) for € << 0. Using Lemima 24 and taking the supremum in the inequality of Lemma

23 overall g; with || g; lIgmo, (.= 1. we obtain
_2+e

B} 1 _
1Y i laSans = 169G 1 f 12
i J

whence

||Z fy Uit S s ()77 EZ lGes (),

Since 1 X fijllz24e=2; I f; IIH2+F we deduce

n Z fi NaseSaca (€

)||2+€
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M

<)

Ce ?j - . . : ) R o L) -
This mmplies L5, S4.51 for € 0. For 0 <€ < S We use duality and LCJ[E_E],

| 3
—+€) to
5 Gte
@
conclude that L' Sdes |{ +€) 4.5 1to0.
tite
2

Proof of Corollary 3. In the previous proof we have obtained || f; llg,, < d, & 6[|G?7 (f})” for0=e=

1. The converse inequality is contained in Lemma 20. On the other hand, by Lemma 21 we get

Zs%(m Socs 0, Wil Sexs 2, 16"l

J !
Hence the corollary is proved.
4. Proof of Theorem 1 (see [37])
We have seen in the previous section that the g-function GF can be expressed as a singular integral operator.
Equivalently, GF can be also written as a Fourier multiplier with values in L,(R, )(recalling that R,is

equipped with the measure %) Let (pj']Rd — Ly(R,)be the function defined by @;({)(t) =

—2mt|&|le 2™ for § € R% and t > 0. Let T be the Fourier multiplier introduced in section 2 (with X =
Cand Y = L;(R.)). Then

GF(H)) = [Ty (), - * € BES; € Ly (B,

It is clear that this symbol @; satisfies the assumption of Theorem 14 (see also Remark 18). Thus the results
in that section apply to ¢;.

The corresponding periodic Fourier multiplier My, gives rise to the g-function defined by the circular

Poisson semigroup on T? :
= Z Z fi{:m)ﬂm'zm, f; € Ly (TY).
eTd j

The associated g-function is defined by

G*(f,) = fz l—r}|d ;j

—2mt

ra| =

(17)

By the change of variables r = e . elememary computations show that for any 0 < € < oo

Z @ (f}) e Z "Jw{pj{j}) ||LL+E{Td:LE{R+]) J f} - Ll+E(TdJI
J Liye(T9) !
We refer to [10, Section 8] for more details.
Now we proceed to the proof of Theorem 1. For clarity, we will divide this proof into two subsections. Let
us first make an elementary observation as a prelude. {P;};-q 1s the Poisson semigroup subordinated to

{H,}i~o in Bochner's sense:
r(5) == Z ()

This formula immediately implies
- B
L‘cl+e = Lc 1+e ﬂlld L‘t 1+ ~ Ltl €
Combining this with rhe historical comments at the end of subsection 1.1, it remains for us to show that

L£E ..z max (\, I+e- ) and LE = V1 + € for € > 0. The former is already contained in [35]. but
we will reproduce the pr oof there for the convenience of the reader.
4.1. Proof of ££, .. = max (\.-'1 + €, ;) (see [37]). By the discussion at the beginning of this section and

Corollary 19., the constant LI, increases in the dimension d. So it suffices to consider the case d = 1.
This inequality for € = 0 is well known. It can be easily proved as follows. Fix s > 0 and let f; = F';. Then

ra P (_')_t = (t+s)* R

atz (f)(x TGttt L
j

For x = 65, we have
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bl =

Zdr 1

GF(f)() 2 f Z P()00)

1 1

) J-:ﬂ 1 p Z¥e g 2(2+e)

= — - ax =z
g X2TE 1+€

1
”f;"z P w g 2[1 E|

Thus

2. 60

I 2+€

On the other hand,

Henee, L2 ;.. = 2(1 + €).
Unfortunately, the above simple argument does not apply to the case € > 0. Our proof for the latter is much
harder. By the discussion at the beginning of this section, it is equivalent to considering the torus T and the
g-function defined by (17). Recall that

1— 72

1—2rcosf + 1%
It is shown in [34] that the inequality

Z 6P (1) < E,HZ I f5 Nopeerm)

i La+e(T) !
is equivalent to the corresponding dyadic martingale inequality on 0 = {—1,1}¥. It is well known that the

P.(6) =

relevant constant in the latter martingale inequality is of order V2 + € as € = . To reduce the
determination of optimal order of ££,, . to the martingale case, we need to refine an argument in the proof
of [34. Theorem 3.1] whose idea originated from [4].
Keeping the notation there, let M = (My,) gy =x be a finite dyadic martingale and
My — My = dic(&1, -, Ep—1) €k
where (£;,) are the coordinate functions of (. The transformation £, = sgn(cos 6;,) establishes a measure
preserving embedding of 0 into T¥. Accordingly. define
ag (e, -, ei¥-1) = d; (sgn(cos ,), -, sgn(cos 6;_,))
by (e'¥x) = sgn(cos ;).
Note that to enlighten notation, we write an element (x + 2¢) € T as (x + 2¢) = e 19, so identify T with
[—m, ), a slightly different convention from the one of section 2
Given (ng) a rapidly increasing sequence of positive integers, put

Gk,(nj(e 9) = ak(m(gla ’51 319,{ L) =a (81(61+n 6‘] , iwk—;"’“k—lﬁ':])

bk,(nj(eia) _ bk.{n](eng 19;() =h (elie,‘ﬂl,ﬂ_))

() = (em(e e, -, etfx) = Zﬂm: ?)rcim (),

The functions (f}) ), Qi) and Dy gny are viewed as tunctlons on T for each (84, -, 8 arbitrarily fixed.
Furthermore, by approximation, we can assume that all a; and by, are polynomials. Then, if the sequence
(n,,) rapidly increases, Lemmas 3.4 and 3.5 of [34] imply

1
K 2
P : Z-p 2 - AP
S () = (Z |t m)| "G (Drem)) ) <26 ((f,r)[n;])-
k=1
Therefore,
x 7
(Z Iak.cnz.lzﬁp(bkw)z) <2050 1y iy (18)
k=1

Lo+elT)
The discussion so far comes from [34]. Now we require a finer analysis of the g-function GP(bkl{n]). To
this end we write the Fourier series of the function b = sgn(cos @) :
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o2 (-1 o
b(ei®) = EZ g} +)1 (61214006 4 g-iC2j+10)

Then

o0
d 4 .
- gy _ ap—1 AN 2ngf Li(2j+1) (8 +ny )
L (i) () = Smrmsire (S (-G eme |
j=0
The real part on the right side is easy to compute. Indeed, letting p = 12" and 1) = 8, + n, 6, we have

Re ei”i (—1)/p/ei?n | = Re el ). 1+p cosn
= 1+ pei2n 1+ 2pcosn + p? )
v IE y

1+p o 1+p 1

e p—

1+2pcosn+p2~ (1+p)2~ 2

As

it then follows that

_ |cosq]|
)

Re einz (=) pieizm

Therefore. we deduce
2

= nir20w=Y cos?(6, + n.6).

d .
[P () ()

Thus

1
Gp(kaEHDJZ = cos?(6;, + nkej)nﬁf (1—r)* tr2me—gy
4]

1 )
R [l +0 (—H cos2(8y + ngd).
Mg

Now lifting both sides of (18) to power (2 + €). then integrating the resulting inequality over T¥ with
respect to (B4, -+, g ). we get
2+€

2

K
, . 1 .
J. J. Z |ak.(n‘|(31wl+}h9]‘"'*eltgk_;_nk_lG)Nz [1 + 0(—):| CDSE(Qk + ng6) d8, - d6yde
T JTK = ! Ny

< (C1%..) 2+EJ' J‘KZ ‘(}cj)(n\l(eiiﬂ;+n;93’,,.Jei{ﬁ'x+nx8ﬁl)|2+fdgl - 4B, d6.
T JTx & )

For each fixed 8, the change of variables (8,,---,8y) = (6; — N, 0,---, 8, — N, 0) being a measure

preserving transformation of T¥, we deduce
2+¢
2

J‘ (z |Gk(nl(elel O L | [1+O(ﬂ1k)]c0526'k) dfy - dfg

2+€
= (CLezse) f Z |(f1‘ in] e, elex)‘ by

Letting n;, — oo, we get
2+¢
2

K
. . . . 2
J;K (Z |dy(sgn(cos 8y), -, sgn(cos Bx_))| coszﬂ;() d8, - dbg = (C LY, 2+€) ||MK||E++E (@)
T \i=1

Now we consider an elementary example where M 1s simple random walk stopped at £2, namely
k

i = gy with 7 = inf) ke[ & =2 .
j=1
i
Note that the probability of the event {T = j} is zero for odd j and 27z for even j. On the other hand,
recalling & = sgn(cos 8;) and letting
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A}-={r=},|c036k|.2 E,lsk;;}

N
i
we easily check that the probability of 4; is 8 2 for even j. Thus
K ] :
- _ _J
Z |dg(ey, - Epy)|Pc0s? By = 1, Z lirspyCOS* By = Elﬂf
k=1 k=1

consequently, for K = 2j
24
zf

K
J. (Z |dy(sgn(cos 61),---Jsgn(cossk_l)ﬂzcoszek) de, - dfy
THK
. k=1

i

2te _ 2e
= Z jz8 7= (24€) 2.

m
Noting that |My| = 2 and combining all the previous inequalities together, we finally obtain
L. =V2+e
4.2. Proof of LE,IZJ,E =2+ € for € > 0. Again, it suffices to consider the torus case. The g-function
relative to the heat semigroup on T is defined by

1
z

6H () = [Z (1-7) \%Hrt};—)rdr
I
H, () (e)—z Z fimyrein®

We will need the following elementary inequality rlmt 1s l{nou n to experts. Let a = (a;.) be a finite complex

where

&
sequence and f; = Y age’ 9 Then

165,z ~l @ le, (19)
See [8] for related results in a more general setting. The proof 1s easy:
2
1
) = [ a-n Z a1 dr
0

_:1__,r+k
—Z M:"(41+4k—1)2
—Z l »‘| 4J+4k 1)2
f:-Z o’
7

l6* I,

This implies
Sl a
L Shal,
However, for 0 < € < oo,

Y el =D 16, M,

1 Lo+e(T) 1

Therefore. for 0 =< € < oo,
Hpr ~
62D,y ®1 @ ey
The remaining case 0 = € < 1 then follows from the Hélder inequality.
Now it is easy to show LY, . = v/1 + € fore > 0. Indeed, 19) shows that LY, , . dominates the best constant
Cy. . in the following inequality
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Z (‘L;(Eizkg

k=1 Layel(T)
Z+€
for any finite sequence a = (ay). It is well known that the best constant €, . in the above inequality is of

< Cove l e,

order /2 + € as € = o (see [26]): this fact can be also seen from the equivalence, up to universal constants,
between this inequality and the classical Khintchine inequality (cf. [24]). Thus [E,,_ = V2 + €. This
completes the proof of Theorem 1

5. Proofs of Theorem 9, Theorem 10 and Corollary 11 (see [37])

We begin with the proof of Theorem 9

Proof of Theorem 9. Let H = £,(A) be the Hilbert space indexed by the family A of dyadic rectangles and
{€r}ren be its canonical basis. Let ¢;: R4 — H be the function given by

©; = Z Igeg
=A

We will apply Theorem 14 to the case where X = C and ¥ = H. With the notation introduced in section 2
forany f; € Ly.. (R9) we have

405 = ITe; i,
S0

Loasea = [T and Lgz.ea = |75/

24+e=2+s 24+e—=2+¢

Note that

and H T 5
®;

“riH, e

2+E-324€ T Wates24e

|70 = |17,
I V2pes2+e 2+e—2+€

Choose t irrational. Then (p}t'] satisfies the assumption of Theorem 14 (i), so

ng—L = _.1
Z M'(p_}r) Z chf;r) and Z Mrﬁ"?"H _Z HT@_}ﬂ

i 24+e—24€ J 2+e—2+e I 24+e—2+4e I

Letting t — 1. we deduce
-1
= Z ”Tgﬂj ||2+e~2+e
I

W= 2 W, ., [ 05
] I

7 Z+e—=2+€

<

2+e—=2+e

This means
A —TA iy - 1A
L’c.2+e,d —= L.::,2—E,d and Lt.2+€.d = Lt.2+e,d
To show the converse inequalities, we note that for any integer j and any f; € Laye(T?) we have

M (=7) U}) = st U‘:I )

P

H
This implies

i =M - i — [y
L'c.2+e,d - Hw [_z-‘_:l and Lt,z—e,d =M .:'zi:
1 2+e=2+s ) 2+e—2+e
Thus by Theorem 14 (ii), we get
A T A A - Vi i ar—1 _ 14
Lezsea < liminf M () = Leaseqand Ly, g < liminf M (1) = Lt2rea
i I 2+E=24€ i i Tye—T4e

The proof is finished.

Remark 25 [37]. The above proof is also applicable to the one-sided Littlewood-Paley-Rubio Francia
inequality in [25, 17]: This inequality and its dual form in [5, 21] do not make difference for R and T¢.
We will need the following lemma for the proof of Theorem 10. This lemma is of interest for its own right
and is the Hilbert space valued extension of a classical theorem of Marcinkiewicz and Zygmund (cf. 14,
Theorem V.2.7]).

Let (0, 1) be a measure space, H a Hilbert space and 0 < € < oo, Consider a linear operator T from Ly, (Q)
to L, .(Q; H). We are interested in the following inequalities

A+ filieew= ) NT(H) b= ). (1426 1 luyuter. fi € Lusel).
J

j J
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Like for (12). if the first inequality holds for some € < o, the least (1 + €) is denoted by |T ], ...
while the least (1 + 2¢€), if exists, 1s equal to | T lligenise. If (1 +€) or (1+ 2€) does not exist,
1T~y yye o0 I T llyyenysc is interpreted as infinite.

Given another Hilbert space K. consider the tensor [, @ T: L, (G K) = L, (0, K & H), where K ® H
denotes the tensor Hilbert space. Let |1z & T and [|(Ix & T:}_l||1+€ﬁl+€ be the best constants. 1f
exist, in the following inequalities

A+ 1D fileanr= ). e @ T, owom

J i
=(1+ 25)2 I 5 lepsetaimy fj € Lise(K).

]
Lemma 26 (see [37]). Let 0 < € < o2, Then
Iy @ TI SNT lysemree and [Tz @ )7 ST

Proof. It suffices to consider a finite dimensional K, say, K = £3. Let ( (gj)e s (gj)n) be a standard

l+e—=l+e

1+e=1+¢ l+e=1+¢ 1+e—=1+e"

complex Gaussian system, the corresponding expectation denoted by E. Then for any (ay, -+, @,,) € C" we

have
1+e 1+s

ks n >
E Z Z ak(g}')k = yiit (Z |ﬂ’k|2) with 7S = E
k=1 ] k=1

Now let f; = ()1, (F)n) € L14e(Q: €3). Theu

1+e

.)1

n 1+¢
—(1+¢€)
||Z fi Wrtniem = IZ (Z (7). ) =Vive LZ E|D (9),0),
i k=1
On the othe1 hand,
1+€
+€ n 2
2
Z wors)| = [ (22 i@
o\ &= =
0T @H) k=1 j
Recall the following w ell known fact, the Hilbert-valued Khintchine inequality:
n % 1+e l-]I:E n %
ATt. (Z "ak”i) = (95), = Bise (Z ||Gk“i.) s ax €H
k=1 k=1

moreover, 1 S A4,., =1 for 0=e<1and 1=B,,.SV1+te=y,. for 0=<¢e<oo Usmng this
inequality, we can write (recalling K = £ )

2+e " Z+e
> IK®T{1;3-) <[ DB (@) T eso
J (D) @57 k=1 H
+& 2Z+e
Z IK®T{JG > —{2+e)[ Z Z (.G; (fj ) ,€>0.
(R RH)

Thus for € < {).
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+& n 2+e

), T((F)x)

Z IKNT{jj

Ly+ (e @H)
n 2+€
SIT e o4 E > (9,0
=~ |
2
=1 T I V3 Z I N e
F
T Y 1 I
;
This yields [l ® Tll,,__,,. SI T lrsecose-
On the other hand, for e = 0 we have
+& n 1+e
2 70 o | 2 |2 o)
Ly (07 QH) k=L H
+e

—(1+e€) 1 =
=~ Vl £ ”T ||1+€~1+€

)k(:fﬁ)k

Soal lnliii?ﬁmﬁz L 12 ey
j
— T D U e
j

whenee [(Ie @ T,y S IT M sy

Itremains to show I @ T, .,  SI T lly4e14e for€ > 0. To this end, weuse duality. I | T I, c04c

is finite, then the adjoint T*: L5 (0 H) = Loyo.(Q) 1s a bounded operator with norm equal to ||

T ll2+es2+e- In the same way, we have

Mg @TH,, . s e = Ng @ T Lysz. (LK Q H) = Lasae (LK)
Then arguing as above with T* and (2 + 2¢€) instead of T and (2 + €), respectively, we get
g @ T7: Loyz (UK @ H) = Lo (LK) S T Lysn (0 H) = Ly ()l
which implies Iz @ Tll,, o, SN T ll24emz4e fore > 0.
Remark 27. Except the last part, the above proof works for T defined on a closed linear subspace § of
Ly, (0)). Namely, letting § &, . H be the closure of S & H in L, (Q; H). then
e ®RT:5S @1, K- 5S5@L. K@H)=IT:5-5SX, HlL0O=e=1
10 @ T) %5 @y (K@ H) = S D12 KIS NI TS @y.c H—5),0 < € < o0,
Proof of Theorem 10. By considering d-fold tensor products of functions on T, i.c.. functions on T¢ of
the form f;(x + 2€) = (f})1(z1) - (fj)d[:Zd). we easily check
(Lfl 51) = L'g,l—s,a’ and (L%,l—f,l)d = L%,l—f,d'
Lemma 26 allows us to prove the converse inequalities. We do this for the second, the first being similarly
treated: we consider only the case d = 2, an iteration argument will then give the general case. Let A be
the family of dyadic intervals of Z and A® the same family but with Z viewed as the second factor of Z2.
Then (withd =2)
A={RM x R@:RW g AV { = 1,2].

Now let f; be a polynomial on T?. By the Fubini theorem and (11) applied to the first variable z; € T, we

oet
1
Il }C} ||i:-£(-rz)= Ldzz[rz |f}(21J22}| "dz
7

—: Lt1ee 1) J- dz, J;r ‘SR(;:- (fj( 22:)) (21)|2 dzy.

RILcAL
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Let K = 4, (3{1:') equipped with the canonical basis [eRclz.}R(LJEE:l:,. Then
1
2
DD s () @] ) =1 D D S (£62) @ew
RlUgA) j rgalt) j

For each fixed z,. we apply Lemma 26 to the K-valued function on the right hand side in the v ’111ablc Zy1in
order to infer

1+€e
Z Spw (ﬂ('*zz:})(zljegﬁl? dz;
T llgcieaw 5 %
1+e
2y T2
. A 1+e L
E(Lm—e,l) B Sg) Z Z Sg(l:-(}‘}('»32.})(21)9_;3(;:- dz,
= R(ZJEE:Tn RLI=ATL) J

K
L%l el J‘ Z 53 f; (71,2,) " dz,,

Combining the previous 111equa11rles we get

| Jf:; “L'J.+£(TZ):5 (L%,l—rf;l)zz ”SEU;:}“LHE(TZ)
j

- - 2
whence L‘%.1+€.2 = (L‘%.H_ﬂ] )
Remark 28, Pichorides [23 studied the first inequality of (11) for d = 1 restricted to functions in the Hardy

as € — 0. Combined with Remark 27. the above

. . 1+e
space, and proved that the corresponding constant is of .

proof shows that Pichorides' result extends to higher dimensions, we thus recover a result of [3] (see also
[2] for related results).
We conclude the paper with the proof of Corollary 11.

Proof of Corollary 11. By Theorem 9. Theorem 10 and the known results mentioned in the historical

d
comments at the end of section 1 we need only to show (2+€)z SL2,.. ., S2+¢efor0 =< e < oo The

first inequality is proved by using lacunary series as in the last part of the proof of Theorem 1. It remains
to show the second, that is, we must prove

1 laees ). @+ OISA(A)],, . i € Love(R)

j
To this end, it suffices to consider a (nice) function f; whose Fourier transform is supported in R, . Fixing
such an f;. let Sp(f;) = Sg(f;) forR = [2k-1 2K) je., §k(jj) = 'ﬂ[zk—lek‘:,f}.

We will use the smooth version of 2. Let ¢ ; be a C* function on R whose Fourier transform is supported

in {E % < & < 4} and satisfies
> et =1¢eRr\ (0}
KL j

Then the smooth version of §2 is the discretization of the g-function m (5):

d1s(~g} {“C:] (Z |(¢Jj)k’gj(’f:]| ) ceR

for any (nice) function g; on R. Then
k+1

IZ f;(x)g;(x)dx —Z Z Z J-Sk fi) 1)(%) = g;(x)dx.

keE J]l}_ -

Thus by the Hélder mequahry

[ Z AOTIOLY E aZ Is* (5N, N6 ()L, e

However. it is well known 1'}.1"{1

DOI: 10.35629/0743-101289113 www.questjournals.org 111 | Page



Sharp Best Constants of Higher Optimal Orders in Littlewood-Paley Inequalities
S) @+ Ng e

@i,
Z Gy ()
i 2426 i

This 1s also the diserete analogue of Theorem 2 (1). It then follows that

[ smgtd]s@+o) IS8, 10 vz
B 7

Taking the supremum over all g; with || g; ll;4,.= 1 yiclds the desired mequality on f;.
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