Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 2 (2024) pp: 05-12 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

Soft Maximal open sets and Soft Paraopen sets in Soft Generalized Topological Spaces

M. Supriya^{1*} and Dr. R. Selvi²

 ¹Research Scholar (Reg. No: 20211202092007), Department of Mathematics, Sri Parasakthi College for Women, Courtallam - 627802, Tamilnadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India. E-mail ID: <u>supriyametha98@gmail.com</u>
 ²Associate Professor and Head, Department of Mathematics, Sri Parasakthi College forWomen, Courtallam -627802, Tamilnadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627012, Tamilnadu, India. E-mail ID: r.selvimuthu@gmail.com

Abstract

In this paper, we introduced the notion of some new types of soft μ -open sets namely soft maximal μ -open sets and soft para μ -open sets in soft generalized topological spaces. Using the basic concepts, some of the properties of soft maximal μ -open sets and soft para μ -open sets in soft generalized topological spaces are investigated. **Key words:** soft generalized topology, soft μ -open set, soft maximal μ -open set, soft para μ -open set and soft μ -open neighbourhood.

2010 Mathematics Subject Classification: 54A05, 54G20.

Received 09 Feb., 2024; Revised 22 Feb., 2024; Accepted 24 Feb., 2024 © *The author(s) 2024. Published with open access at www.questjournals.org*

I. Introduction:

In 1999 D. Molodtsov [10] initiated the concept of soft set theory as a mathematical tool for modelling uncertainties. A soft set is a collection of approximate descriptions of an object. Maji et al. [9] have further improved the theory of soft sets. N. Cagman et al. [1] modified the definition of soft sets which is similar to that of Molodtsov. Many researchers have worked on the topological structure of soft sets. Muhammad Shabir et al. [14] introducedsoft topological spaces. In 2002 A. Csaszar [5] introduced the concept of generalized topology and also studied some of its properties. Sunil Jacob John et al. [6] introduced the concept of soft generalized topological spaces in 2014. Qays Shakir [12] introduced and studied the concept of minimal and maximal soft open sets in soft topological spaces. B. Roy and R. Sen [13] introduced the concept of maximal μ -open and minimal μ -closed sets via generalized topology.

Motivated by the above concepts, we extend our further study in soft maximal μ -open sets and soft para μ -open sets in soft generalized topological spaces and some of their properties are investigated.

Definition: 2.1 [7]

II. Preliminaries:

A soft set F_A on the universe U is defined by the set of ordered pairs

 $F_A = \{(e, f_A(e)) / e \in E, f_A(e) \in P(U)\}$

where $f_A : E \to P(U)$ such that $f_A(e) = \emptyset$ if $e \notin A$. Here f_A is called an approximate function of the soft set F_A . The value of $f_A(e)$ may be arbitrary. Some of them may be empty, some may have nonempty intersection. The set of all soft sets over U with E as the parameter set will be denoted by $S(U)_E$ or simply S(U).

Definition: 2.2 [7]

Let $F_A \in S(U)$. If $f_A(e) = \emptyset$, for all $e \in E$, then F_A is called an empty soft set, denoted by F_{\emptyset} . $f_A(e) = \emptyset$ means there is no element in U related to the parameter *e* in E. Therefore we do not display such elements in the soft sets as it is meaningless to consider such parameters.

Definition: 2.3 [6]

Let $F_A \in S(U)$. If $f_A(e) = U$, for all $e \in A$, then F_A is called an A-universal soft set, denoted by $F_{\tilde{A}}$. If A = E, then the A-universal soft set is called an universal soft set, denoted by $F_{\tilde{E}}$.

Definition: 2.4 [6]

Let $F_A \in S(U)$. Then, the soft complement of F_A , denoted by (F_A) , is defined by the approximate function $f_{A^c}(e) = (f_A(e))$, where $(f_A(e))^c$ is the complement of the set $f_A(e)$, that is, $(f_A(e))^c = U \setminus f_A(e)$ for all $e \in E$.

Definition: 2.5 [6]

Let $F_A \in S(U)$. A Soft Generalized Topology (SGT) on F_A , denoted by μ (or) μ_{F_A} is a collection of soft subsets of F_A having the following properties:

i. $F_{\emptyset} \in \mu$

ii. $\{F_{A_{\dot{i}}} \subseteq F_A / i \in J \subseteq N\} \subseteq \mu \implies \bigcup_{i \in J} F_{A_{\dot{i}}} \in \mu$

The pair (F_A, μ) is called a Soft Generalized Topological Space (SGTS). Observe that $F_A \in \mu$ must not hold.

Definition: 2.6 [6]

Let (F_A, μ) be a SGTS. Then every element of μ is called a soft μ -open set.

Definition 2.7 [7]

Let (F_A, μ) be a SGTS and $\alpha \in F_A$. If there is a soft μ -open set F_B such that $\alpha \in F_B$, then F_B is called a soft μ -open neighbourhood (or) soft μ -nbd of α . The set of all soft μ -nbds of α , denoted by $\psi(\alpha)$, is called the family of soft μ -nbds of α . i.e. $\psi(\alpha) = \{F_B/F_B \in \mu, \alpha \in F_B\}$.

Definition: 2.8 [7]

Let (F_A, μ) be a SGTS and $F_B \subseteq F_A$. Then the soft μ -interior of F_B , denoted by $i_{\mu}(F_B)$ is defined as the soft union of all soft μ -open subsets of F_B . Note that $i_{\mu}(F_B)$ is the largest soft μ -open set that is contained in F_B .

Definition: 2.9 [7]

Let (F_A, μ) be a SGTS and $F_B \subseteq F_A$. Then the soft μ -closure of F_B , denoted by $c_{\mu}(F_B)$ is defined as the soft intersection of all soft μ -closed super sets of F_B . Note that $c_{\mu}(F_B)$ is the smallest soft μ -closed superset of F_B .

Definition 2.10 [11]

A proper nonempty open subset U of X is said to be a maximal open set if any open set which contains U is X or U.

Definition 2.11 [12]

A proper nonempty soft open subset F_K of a soft topological space $(F_A, \tilde{\tau})$ is said to be maximal soft open set if any soft open set which contains F_K is F_A or F_K .

Definition: 2.12 [6]

A soft generalized topology μ on F_A is said to be strong if $F_A \in \mu$.

Definition: 2.13 [16]

A proper non-empty soft μ -open subset F_K of a soft generalized topological space (F_A, μ) is said to be soft minimal μ -open set if any soft μ -open set which is contained in F_K is F_{\emptyset} or F_K . The family of all soft minimal μ -open sets in a soft generalized topological space (F_A, μ) is denoted by $S\mathcal{M}_{\mu} \cup O(F_A)$.

Definition: 2.14 [2]

Any open subset U of a topological space X is said to be a paraopen set if it is neither minimal open nor maximal open set.

Definition: 3.1

Δ Soft Maximal μ-open sets:

A proper non-empty soft μ -open subset F_K of a soft generalized topological space (F_A, μ) is said to be soft maximal μ -open set if any soft μ -open set which contains F_K is F_A or F_K . The family of all soft maximal μ -open sets in a soft generalized topological space (F_A, μ) is denoted by $SM_a \mu QF_A$).

Example: 3.2

Let $\mathcal{K} = \{\kappa_1, \kappa_2, \kappa_3, \kappa_4\}, E = \{x'_1, x'_2, x'_3\}, A = \{x'_1, x'_2\}$, then $(F_A, \mu) = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}\}$ is a soft generalized topological space where

$$\begin{split} F_{\phi} &= \{(x_{1}', \phi), (x_{2}', \phi)\} \\ F_{A} &= \{(x_{1}', \{\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\}), (x_{2}', \{\kappa_{2}, \kappa_{3}, \kappa_{4}\})\} \\ F_{A_{1}} &= \{(x_{1}', \{\kappa_{1}, \kappa_{2}, \kappa_{3}\}), (x_{2}', \{\kappa_{2}, \kappa_{3}\})\} \\ F_{A_{2}} &= \{(x_{1}', \{\kappa_{1}, \kappa_{2}\}), (x_{2}', \{\kappa_{2}, \kappa_{3}\})\} \\ F_{A_{3}} &= \{(x_{1}', \{\kappa_{3}\}), (x_{2}', \{\kappa_{2}\})\} \\ F_{A_{4}} &= \{(x_{1}', \{\kappa_{1}, \kappa_{3}\}), (x_{2}', \{\kappa_{2}\})\} \\ Here F_{A_{1}} is a soft maximal \mu-open set. \\ Then S\mathcal{M}_{a}\mu O(F_{A}) = \{(x_{1}', \{\kappa_{1}, \kappa_{2}, \kappa_{3}\}), (x_{2}', \{\kappa_{2}, \kappa_{3}\})\} \end{split}$$

Proposition: 3.3

Let F_M and F_N be soft μ -open subsets of a soft generalized topological space (F_A, μ). If F_M is a soft maximal μ -open set, then $F_M \widetilde{\bigcup} F_N = F_A$ or $F_N \widetilde{\subseteq} F_M$.

Proof:

Suppose $F_M \widetilde{\bigcup} F_N \neq F_A$. Then $F_N \cong F_M \widetilde{\bigcup} F_N$ and F_M is soft maximal μ -open set $F_M \widetilde{\bigcup} F_N = F_M$. Hence $F_N \cong F_M$.

Proposition: 3.4

Let F_M and F_N be soft maximal μ -open subsets of a soft generalized topological space (F_A, μ) . If F_M is a soft maximal μ -open set, then $F_M \widetilde{\cup} F_N = F_A$ or $F_M = F_N$.

Proof:

Suppose $F_M \cup F_N \neq F_A$. Then $F_M \subseteq F_M \cup F_N$ and F_N is soft maximal μ -open set $F_M \cup F_N = F_M$. Hence $F_M \subseteq F_N$. Similarly, F_M is soft maximal μ -open set, we get $F_N \subseteq F_M$. Therefore $F_M = F_N$.

Proposition: 3.5

Let F_M be a soft maximal μ -open set of a soft generalized topological space (F_A, μ). If $\alpha \in F_M$, then $F_M \cup F_N = F_A$ or $F_N \subseteq F_M$, for any soft μ -open neighbourhood F_N of α .

Proof:

Let F_M be a soft maximal μ -open set and F_N be a soft μ -open neighbourhood of α . If $F_M \widetilde{\bigcup} F_N = F_A$, then there is nothing to prove. Suppose $F_M \widetilde{\bigcup} F_N \neq F_A$. Then $F_N \cong F_M \widetilde{\bigcup} F_N$ and $F_M \widetilde{\bigcup} F_N$ is a soft μ -open set, we have $F_M \widetilde{\bigcup} F_N = F_A$ or $F_M \widetilde{\bigcup} F_N = F_M$. But by our assumption $F_M \widetilde{\bigcup} F_N \neq F_A$. Hence $F_M \widetilde{\bigcup} F_N = F_M$ which implies $F_N \cong F_M$.

Proposition: 3.6

Let F_Z be a soft maximal μ -open set of a soft generalized topological space (F_A, μ) . Then

 $F_Z = \widetilde{U} \{F_X / F_X \widetilde{U} F_Z \neq F_A \text{ where } F_X \text{ is a soft } \mu - \text{ open neighbourhood of } \alpha \}$ for any element $\alpha \in F_Z$.

Proof:

Let F_X be a soft μ -open neighbourhood of α . Then by proposition 3.5, $F_Z \cong \widetilde{\cup} \{F_X / F_X \widetilde{\cup} F_Z \neq F_A$ where F_X is a soft μ – open neighbourhood of $\alpha\} \cong F_Z$. Hence $F_Z = \widetilde{\cup} \{F_X / F_X \widetilde{\cup} F_Z \neq F_A$ where F_X is a soft μ – open neighbourhood of $\alpha\}$ for any element $\alpha \in F_Z$.

Proposition: 3.7

Every soft maximal μ -open set is a soft μ -open set.

Proof:

By definition 3.1, every soft maximal µ-open set is a soft µ-open set.

Proposition: 3.8

Let F_Y be a soft maximal μ -open set of a strong soft generalized topological space (F_A, μ) and $\alpha \notin F_Y$. Then $F_Y^{\vec{c}} \cong F_V$ for any soft μ -open set F_V containing α .

Proof:

Let F_V be a soft μ -open set containing α and $\alpha \notin F_Y$ which implies $F_V \notin F_Y$. By proposition 3.3, $F_Y \cup F_V = F_A$ which means $F_Y^{\tilde{c}} \cong F_V$.

Proposition: 3.9

Let F_L be a soft maximal μ -open set of a strong soft generalized topological space (F_A, μ) . Then either of the following holds:

(i). For each $\alpha \in F_L^{\tilde{c}}$ and any soft μ -open set F_Q containing α , we have $F_Q = F_A$.

(ii). There exists a soft μ -open set F_Q such that $F_L^{\tilde{c}} \cong F_Q$ and $F_Q \cong F_A$.

Proof:

Suppose (i) does not hold. Then there exists $\alpha \in F_L^{\tilde{c}}$ and a soft μ -open set F_Q containing α , such that $F_Q \cong F_A$ and by proposition 3.8, we get $F_L^{\tilde{c}} \cong F_Q$.

Proposition 3.10

Let F_L be a soft maximal μ -open set of a strong soft generalized topological space (F_A, μ) . Then either of the following holds:

(i). For each $\alpha \in F_L^{\tilde{c}}$ and any soft μ -neighbourhood F_Q containing α , we have $F_L^{\tilde{c}} \subseteq F_Q$. (ii). There exists a proper soft μ -open set F_Q such that $F_L^{\tilde{c}} = F_Q$.

Proof:

Suppose (ii) does not hold. Then there exists $\alpha \in F_L^{\tilde{c}}$ and a soft μ -neighbourhood F_Q containing α and by proposition 3.9, we get $F_L^{\tilde{c}} \cong F_Q$.

4. Soft Para µ-open sets:

Definition: 4.1

A proper non-empty soft μ -open subset F_K of a soft generalized topological space (F_A, μ) is said to be soft para μ -open set if it is neither a soft minimal μ -open set nor a soft maximal μ -open set. The family of all soft para μ -open sets in a soft generalized topological space (F_A, μ) is denoted by $SP_a\mu O(F_A)$.

Example: 4.2

Consider $\mathcal{K}' = \{ \mathscr{K}'_1, \mathscr{K}'_2, \mathscr{K}'_3, \mathscr{K}_4' \}, \mathfrak{N}' = \{ \mathscr{F}'_1, \mathscr{F}'_2, \mathscr{F}'_3' \}, \mathfrak{A} = \{ \mathscr{F}'_1, \mathscr{F}'_2' \}$, then $(F_{\mathfrak{A}}, \mu) = \{ F_{\emptyset}, F_{\mathfrak{A}_1}, F_{\mathfrak{A}_2}, F_{\mathfrak{A}_3} \}$ is a soft generalized topological space where

$$\begin{split} F_{\emptyset} &= \{(r_{1}', \emptyset), (r_{2}', \emptyset)\} \\ F_{\mathfrak{A}} &= \{(r_{1}', \{k_{1}', k_{2}', k_{3}', k_{4}'\}), (r_{2}', \{k_{1}', k_{3}', k_{4}'\})\} \\ F_{\mathfrak{A}_{1}} &= \{(r_{1}', \{k_{1}', k_{2}', k_{4}'\}), (r_{2}', \{k_{1}', k_{4}'\})\} \\ F_{\mathfrak{A}_{2}} &= \{(r_{1}', \{k_{1}', k_{2}'\}), (r_{2}', \{k_{4}'\})\} \\ F_{\mathfrak{A}_{3}} &= \{(r_{1}', \{k_{2}', k_{4}'\}), (r_{2}', \{k_{1}', k_{4}'\})\} \end{split}$$

Here F_{A_2} is a soft para μ -open set. Then $S\mathcal{P}_a\mu O(F_A) = \{(\mathcal{F}_1', \{\mathcal{K}_1', \mathcal{K}_2'\}), (\mathcal{F}_2', \{\mathcal{K}_4'\})\}$

Proposition: 4.3

Every soft para μ -open set is a soft μ -open set. But the converse need not be true and is shown by the following illustration.

Example: 4.4

Let $\mathfrak{U}' = \{u_1', u_2', u_3', u_4', u_5'\}, \mathcal{E} = \{\widehat{\mathfrak{e}_1}, \widehat{\mathfrak{e}_2}, \widehat{\mathfrak{e}_3}\}, \mathcal{A} = \{\widehat{\mathfrak{e}_1}, \widehat{\mathfrak{e}_2}\}$, then $(F_{\mathcal{A}}, \mu) = \{F_{\emptyset}, F_{\mathcal{A}_1}, F_{\mathcal{A}_2}, F_{\mathcal{A}_3}, F_{\mathcal{A}_4}\}$ is a SGTS where

$$F_{\phi} = \{ (\widehat{e_{1}}, \phi), (\widehat{e_{2}}, \phi) \}$$

$$F_{\mathcal{A}} = \{ (\widehat{e_{1}}, \{u_{1}', u_{2}', u_{3}', u_{4}'\}), (\widehat{e_{2}}, \{u_{1}', u_{2}', u_{4}'\}) \}$$

$$F_{\mathcal{A}_{1}} = \{ (\widehat{e_{1}}, \{u_{1}', u_{2}', u_{3}'\}), (\widehat{e_{2}}, \{u_{1}', u_{2}'\}) \}$$

$$F_{\mathcal{A}_{2}} = \{ (\widehat{e_{1}}, \{u_{2}', u_{3}'\}), (\widehat{e_{2}}, \{u_{1}', u_{2}'\}) \}$$

$$F_{\mathcal{A}_{3}} = \{ (\widehat{e_{1}}, \{u_{3}'\}), (\widehat{e_{2}}, \{u_{2}'\}) \}$$

$$F_{\mathcal{A}_{4}} = \{ (\widehat{e_{1}}, \{u_{1}', u_{3}'\}), (\widehat{e_{2}}, \{u_{2}'\}) \}$$

Proposition: 4.5

Soft union and soft intersection of a soft para μ -open set need not be a soft para μ -open set.

Example: 4.6

Let $\mathcal{N}' = \{n_1', n_2', n_3', n_4', n_5'\}, P' = \{p_1', p_2', p_3'\}, \mathbb{A} = \{p_1', p_2'\}$, then $(F_{\mathbb{A}}, \mu) = \{F_{\emptyset}, F_{\mathbb{A}_1}, F_{\mathbb{A}_2}, F_{\mathbb{A}_3}, F_{\mathbb{A}_4}\}$ is a soft generalized topological space where

$$\begin{split} F_{\emptyset} &= \{(p_{1}', \emptyset), (p_{2}', \emptyset)\} \\ F_{\mathbb{A}} &= \{(p_{1}', \{n_{1}', n_{2}', n_{3}', n_{4}'\}), (p_{2}', \{n_{2}', n_{3}', n_{4}'\})\} \\ F_{\mathbb{A}_{1}} &= \{(p_{1}', \{n_{1}', n_{2}', n_{3}'\}), (p_{2}', \{n_{2}', n_{3}'\})\} \\ F_{\mathbb{A}_{2}} &= \{(p_{1}', \{n_{1}', n_{2}'\}), (p_{2}', \{n_{2}', n_{3}'\})\} \\ F_{\mathbb{A}_{3}} &= \{(p_{1}', \{n_{3}'\}), (p_{2}', \{n_{2}'\})\} \\ F_{\mathbb{A}_{4}} &= \{(p_{1}', \{n_{1}', n_{3}'\}), (p_{2}', \{n_{2}'\})\} \end{split}$$

Proposition: 4.7

Let (F_A, μ) be a soft generalized topological space with a non-empty soft para μ -open subset F_P of (F_A, μ) . Then there exists a soft minimal μ -open set F_R such that $F_R \cong F_P$.

Proof:

By definition of soft minimal μ -open set, it is clear that $F_R \cong F_P$.

Proposition 4.8

Let (F_A, μ) be a soft generalized topological space with a non-empty soft para μ -open subset F_D of (F_A, μ) . Then there exists a soft maximal μ -open set F_S such that $F_D \cong F_S$.

Proof:

By definition of soft maximal μ -open set, it is clear that $F_D \cong F_S$.

Proposition 4.9

Let (F_A , μ) be a soft generalized topological space. Then the following holds:

- (i). If F_W is a soft para μ -open set and F_C is a soft minimal μ -open set then $F_W \cap F_C = F_{\emptyset}$ or $F_C \cong F_W$.
- (ii). If F_V is a soft para μ -open set and F_U is a soft maximal μ -open set then $F_U \cup F_V = F_A$ or $F_V \subseteq F_U$.
 - (iii). If F_M and F_T are soft para μ -open sets in (F_A , μ), then their intersection is either a soft para μ -open set or a soft minimal μ -open set.

Proof:

(i) Let F_W be a soft para μ -open set and F_C be a soft minimal μ -open set in (F_A, μ) . If $F_W \cap F_C = F_{\emptyset}$, then there is nothing to prove. Suppose $F_W \cap F_C \neq F_{\emptyset}$, then $F_W \cap F_C$ is a soft μ -open set and $F_W \cap F_C \cong F_W$ which implies $F_C \cong F_W$.

(ii) Let F_V be a soft para μ -open set and F_U be a soft maximal μ -open set in (F_A, μ) . If $F_U \widetilde{\cup} F_V = F_A$, then the result follows. Suppose $F_U \widetilde{\cup} F_V \neq F_A$, then $F_U \widetilde{\cup} F_V$ is a soft μ -open set and $F_V \cong F_U \widetilde{\cup} F_V$. Since F_U is a soft maximal μ -open set, $F_U \widetilde{\cup} F_V = F_U$ which implies $F_V \cong F_U$.

(iii) If F_M and F_T are soft para μ -open sets in (F_A, μ) . If $F_M \cap F_T$ is a soft para μ -open set then the proof is obvious. Suppose $F_M \cap F_T$ is not a soft para μ -open set. Then by definition, $F_M \cap F_T$ is a soft minimal μ -open set or a soft maximal μ -open set. If $F_M \cap F_T$ is a soft minimal μ -open set then the result is true. Suppose $F_M \cap F_T$ is not a soft minimal μ -open set, then $F_M \cap F_T \cong F_M$ and $F_M \cap F_T \cong F_T$ which is a contradiction to F_M and F_T are soft para μ -open sets (By Proposition 4.7). Therefore $F_M \cap F_T$ is a soft minimal μ -open set.

References:

- [1]. H. AKTAS, N. CAGMAN, Soft sets and soft groups, Inform. Sci. 177 (2007), pp.2726 2735. https://doi.org/10.1016/j.ins.2006.12.008.
- [2]. BASAVARAJ M. ITTANAGI, S. S. BENCHALLI and R. S.WALI, On Paraopen sets and Maps in Topological Spaces, Kyungpook Math. J. 56 (2016), pp.301 – 310. http://dx.doi.org/10.5666/ KMJ.2016.56.1.301.
- [3]. S. S. BENCHALLI, BASAVARAJ M. ITTANAGI and R. S. WALI, On Minimal Open Sets and Maps in Topological Spaces, J. Comp. & Math. Sci., Vol.2 (2), (2011),pp.208 – 220.

*Corresponding Author: M. Supriya

- [4]. C. CARPINTERO, E. ROSAS, M. SALAS-BROWN and J. SANABRIA, Minimal open sets on generalized topological space, Proyecciones Journal of Mathematics, Vol. 36, No.4, December 2017, pp.739 – 751.doi: 10.4067/S0716-09172017000400739.
- [5]. A. CSASZAR, Generalized topology, generalized continuity, Acta Mathematica Hungarica, 96 (2002), pp.351 357. https://doi.org/10.1023/A:1019713018007.
- [6]. JYOTHIS THOMAS, SUNIL JACOB JOHN, On Soft Generalized Topological Spaces, Journal of New Results in Science, 4 (2014), pp.01 – 15.
- [7]. JYOTHIS THOMAS, SUNIL JACOB JOHN, Soft π -open sets in Soft Generalized Topological Spaces, Journal of New Theory, 5 (2015), pp.53 66.
- [8]. P. K. MAJI, R. BISWAS, A. R. ROY, An application of soft sets in a decision making problem, Computers and Mathematics with Applications 44 (2002), pp. 1077
- 1083.https://doi.org/10.1016/S0898-1221(02)00216-X.
- P. K. MAJI, R. BISWAS, A. R. ROY, Soft set theory, Computers Math. Appl. 45 (2003), pp. 555 562. https://doi.org/10.1016/S0898-1221(03)00016-6.
- [10]. D. MOLODTSOV, Soft set theory-first results, Computers Math. Appl. 37(1999), pp.19 31.https://doi.org/10.1016/S0898-1221(99)00056-5.
- [11]. F. NAKAOKA and N. ODA, Some properties of maximal open sets. Int. J. Math. Sci., 21(2003), pp.1331 1340. http://dx.doi.org/10.1155/S0161171203207262.
- [12]. QAYS SHAKIR, Minimal and Maximal Soft Open Sets, Malaya J. Mat. 4 (1) (2016), pp.53 58.
- [13]. B. ROY, R. SEN, On Maximal μ-open and Minimal μ-closed sets via Generalized Topology, Acta Math. Hungar., 136 (4) (2012), pp.233 – 239. http://dx.doi.org/10.1007/s10474-012-0201-z.
- [14]. M. SHABIR, M. NAZ, On soft topological spaces, Computers Math. Appl. 61 (2011), pp.1786 1799. https://doi.org/10.1016/j.camwa.2011.02.006.
- [15]. K. SHAKILA, R. SELVI, A Note on Fuzzy Soft Maximal open set and Fuzzy Soft Minimal open set, International Journal of Scientific Research and Review, Volume 7, Issue 7, 2018, pp.472 – 477. http://doi.org/10.28919/jmcs/4339.
- [16]. M. SUPRIYA, R. SELVI, Soft Minimal open sets on Soft Generalized Topological Spaces, Proceedings of the International Conference on Recent Innovations in Applications of Mathematics (2023), ISBN: 978-93-91563-72-1, pp.152-157.
- [17]. I. ZORLUTUNA, M. AKDAG, W. K. MIN. and S. ATMACA, Remark on SoftTopological Spaces, Annals of Fuzzy Mathematics and Informatics, (2011), 3(2), pp.171 – 185.