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Abstract

We introduce in this study, a new two-parameter lifetime distribution called the inverse Copoun distribution.
This distribution is derived using the inverse function to contribute to the growing need for upside-down bathtub
distributions. Some important mathematical properties of the new distribution such as the density, mode,
entropy, and reliability indices such as the stress-strength, existence measurement function and risk
measurement function were derived and the model parameters estimated using the maximum likelihood estimate
technique. Finally, the flexibility of the new inverse distribution was illustrated using a real life dataset and the
results showed that the new inverse distribution was the best amongst other competing two parameter
distributions.
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I.  The Distribution

In recent years, new two-parameter distributions have emerged in the literature. These new two-
parameter distributions have been shown to provide a better fit to complex real life datasets than the one-
parameter distributions. Some of the recently developed two-parameter distributions include the Darna
distribution (Shraa & Al-Omari, 2019), the Hamza distribution (Aijaz et al., 2020), the Samade distribution
(Aderoju, 2021), and the Alzoubi distribution (Benrabia & Alzoubi, 2021).

It is important to note that these distributions are a mixture of the Exponential and Gamma
distributions. These two distributions are known to have their weaknesses. The weakness of the Exponential
distribution is that the hazard rate function is constant; hence, it cannot handle datasets with monotone non-
decreasing hazard rates (Elechi et al., 2022; Epstein, 1958; Ronald et al., 2011; Shukla, 2018b; Shukla, 2018).
Furthermore, the weakness of the Gamma distribution is that the survival rate function cannot be expressed in
closed form (Elechi et al., 2022; Shanker, 2015a, 2015b). The weaknesses of these two distributions are what
the aforementioned one-parameter and two-parameter distributions address, providing distributions whose
survival rate function can be expressed in closed form and hazard rate functions capable of handling datasets
with monotone non-decreasing hazard rates.

In contributing to this gap in the literature, Uwaeme et al. (2023) proposed a new two-parameter
distribution called the Copoun distribution. The Copoun distribution is a two-component density of an
Exponential () and Gamma (4, ) distribution with mixing proportions ; and m, such that

glx;n, @) = ”191(35227])3‘*‘;[292(952 n) (1.1)
. = -nx . = —7] xle ™ = N = —
where g, (x;n) = ne™", g,(x;n) r@ T G and 7, @)
therefore,
' = -nx , 1 n?x3e7M* ¢

9Gaim @) =ne™ T T G (1.2)

Solving equation 2 gives the probability density function (pdf) of the new distribution
2 2,3
g(x;n,¢)=(¢"Tn)[1 +¢"Tx]e"7"; x>0,7>0,¢>0 (1.3)
The corresponding cumulative distribution function (cdf) of (3) is obtained as
. 4 o3 +on’x3+enx] gy
Grin,¢) =1 - 1+ PO (1.4)
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The authors introduced some of the mathematical properties of the new distribution. They showed that
the Copoun distribution exhibits shapes that are not bell-shaped, but positively skewed, unimodal, and right-
tailed (Uwaeme et al., 2023). One of the weaknesses of the Copoun distribution is that it does not have non-
monotone hazard rates. One way of overcoming this weakness is to introduce an extension of the Copoun
distribution using the inverse transformation technique. This technique produces a class of distribution known as
Inverse distributions. Inverse distributions are known for their interesting advantages such as having the same
parsimony as their corresponding parent distribution since no new parameter in required (Eliwa et al., 2018);
and they are known to have upside-down bathtub risk measurement functions (Abouammoh & Alshingiti, 2009;
Eliwa et al., 2018; E.W. Okereke et al., 2021; John et al., 2023; Lee et al., 2017).

From the foregoing therefore, the motivation of this paper is to propose a new inverse distribution
called the Inverse Copoun distribution and its statistical properties. The subsequent sections of the paper will be
arranged as follows. Section 2 discusses the new inverse distribution with the derivation of the pdf, the cdf, and
their plots, section 3 discusses the mathematical properties of the inverse Copoun distribution as well as the
plots of the risk measurement function to highlight the shape, section 4 looks at the application of the new
distribution with real datasets alongside other competing distributions, and section 5 concludes the paper with
some remarks.

1. The Inverse Copoun distribution

This section will introduce the pdf and the cdf of the Inverse Copoun distribution and illustrate the different
shapes of the Inverse Copoun distribution.

Proposition 1: If a random variable Y follows the Copoun distribution with parameters n and ¢, then the
random variable X =% has Inverse Copoun distribution with parameters n and ¢ and its pdf and cdf are

respectively given by

9@ ) = s [P ey > 0, > 0,6 > 0 2.1)
and
G(y;n,¢)=[1+%(y De™ y>0>0¢>0 2.2)

Proof: If X follows the Copoun dlstrlbutlon with parameters n and ¢, the pdf of X is given as
_ ¢77 X -nx
feim®) =g [ ] €

Lety = x‘l, &X — _y=2 Thus, the pdf of X is given by
[ 2 (1))
— nz |1 + ¢r’ (y) |e—1]y_1 (i)
@+ n)[ 6 J y?
_ 1% [en*+6y3] _py-1.
~ 6(p+n) ys ]e 5 y>0n>0,¢>0.
The corresponding cdf for the Inverse Copoun distribution can be expressed as
v [¢n +6k3 k1
6Oin$) = o e ak (2.4)
- —7’2 ¢>n2fk‘5e"7"_1dk + 6fk-2e-n’<‘1dk
6(¢ +1) )

Lett =nk™Y k =nt™%,and dk = —nt~2dt.
Applying integration by parts techniques, we have,
y

¢n2fk-5e-vk‘1dk + 6fk-2e-nk‘1dk
0

2

n

Gly;n, @) “s@+m

[oe] [oe]

¢n2 f t3e~tdt + 697t f e~ tdt
ny2‘1 X ny~t
$n* +3¢ny + 6¢y° (1 ] 1
Gy;n ) =1+ (—) e
in. @) [ 66+ 1) 53

The Inverse Copoun distribution derived above is denoted by ICD(n, ¢). The graphical plots of the theoretical
density and distribution function (for some selected but different real points of n and ¢) of the Inverse Coupon
distribution are shown in the Figure 1 and Figure 2 below.

2

__n
6(¢ +n)
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Figure 1: The graphical plots of the probability density function (for some selected but different real
points of » and ¢) of an Inverse Coupon distribution.
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Figure 2: The graphical plots of the cumulative distribution function (for some selected but different real
points of n and ¢) of an Inverse Coupon distribution
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The curves displayed in Figure 1 are not bell-shaped, but are positively skewed, unimodal, and right tailed. In
addition, the curve shows that increasing the value of ¢ leads to a considerable increase in the peak of the curve.
In addition, the curves displayed in Figure 2 shows that the cumulative distribution function converges to one.

2. Statistical Properties of the Inverse Copoun Distribution

In this section, we derive and present some statistical properties of the Inverse Copoun distribution. These
includes the mode, survivorship or existence measurement function, risk measurement function, and average
residual measurement life-time function, stochastic ordering of random variate, absolute deviations from
average and mid points, bonferroni curve, lorenz curve, bonferroni and lorenz indices, entropy.

2.1 Mode

Theorem 1:

Given a continuous random variable Y which follows the Inverse Copoun distribution, the mode of Y, is given

as

_ n2(12y*-6ny3+5¢nZy—¢n®)e " 1
Mode = 6(m+¢)y7’ ’ 0<n< 2 (3.1)

0, otherwise

Proof:
From given a continuous random variable Y, the mode of Y, is obtained by

d
Mode = —=g(y;n,¢) =0 (3.2)
a( n* [¢n*+6y3] _py-1Y _
dy (6(¢+n) y5 ]e ) =0 (33)
2 4_ 003 2., _ 13\ ,-ny 1
L glyim, ) = - OO SOTypR)e_ (36)

6(p+my’
Which completes the proof.
2.2 Order statistics
Theorem 2:
Given a continuous random variable X, pdf and cdf of the pth order statistics, say X = X,,), is given respectively

by
' " _ . ~ p+i—-1
) = B i () o [ e (e [ )

6y°(¢+n) (p—1)!(n-p)! 6(¢+m) y3
and
(M (m—j dn2+30ny+6¢y2 1j+1
—yn n—j (" - _1\i i Yoy (1 \| p—ny~
G0 =5 215 (1) (177 o[+ ezt (]| @9
Proof:
Given a continuous random variable Y, the pdf of the pth order statistics, say Y = Y(;, is obtained by
_ gl ®) n-p (M =P 1y . d)P+i-1
gy = ey (M P) (C1 6 @) (39)
2 [¢n?+ey®] —py—1 p+i-1
_”!(s(gm) 5 ]e i ) n-p (M —P i o0’ +3¢ny+69y% (1 \] —py1
9 () = (r-D)!(n—p)! Zi=0( i )(_1) [1+ 6(p+1) (F)]e
(3.10)
ni(gn*+en2y3)e ™" Gnp M~ P i on°+3¢ny+6¢y? (M \] —py~1 P
B0 = G- sy (U T) e[ 6(p+m (F)]e
(3.11)

Which completes the proof.
Correspondingly, given a continuous random variable Y, the cdf of the pth order statistics, say ¥ = Y, is
obtained by

6o = 2,213 (7) (M 7)) (C D6 G @) (312)
) ) ) j+1
Gy(y) = X, Xd (7) (n l—l) (-1)! [[1 + %(%)} e_ﬂy_l] (3.13)

Which completes the proof.

2.3 Entropy
Entropy measures the uncertainties associated with a random variable of a probability distributions. Shannon
(Shannon, 1951) and Rényi’s entropy (Rényi, 1961)are widely used in the literature.
Theorem 3:
Given a random variable Y, which follows the Inverse Copoun distribution g(y;n, ¢). The Rényi entropy is
given by
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2\B-J i .
$n? ﬁ 6/T(58-3j-1)
Proof:
The Rényi entropy is given by
Ta(B) = 5108, 9n 0 D)y (3.15)
_ w( 12 [en?+6y3] _..-1\P
Tr(B) —Tlog [f (6(¢>+n) yS ]e e ) dy] (3.16)
318 _
TR(B) = log [eﬁ(¢+,,)ﬁf ¢n? +6y ] e—bny ldy] (3.17)
Recall that (a + x)? = ¥7_ (z)x a?k andf z W‘le_g dz = LW) Substituting,

we Bny 1

e zﬁlog [el”gpwzﬁo (j)(‘lb"z)ﬂ_j <6j Jo SeFr dx)] (3.18)
RS TR (ﬁ) = ﬁlog (¢772)ﬁ_] Zfzo <f> w]

6P (p+mP (Bm)SB-3i-1
Which completes the proof.
2.4 Reliability Indices
Given any probability distribution, the reliability analysis is always considered based on the Existence
Measurement Function and Risk Measurement Function. Hence, for the Inverse Copoun distribution, the
Existence Measurement Function and Risk Measurement Function is given below.
2.4.1  Existence Measurement Function
The existence measurement function (also known as survival function) is defined as the probability that an item
does not fail prior to some time t (Elechi et al., 2022; Epstein, 1958; Ronald et al., 2011; Shanker & Shukla,

2020).
The existence measurement function of the Inverse Copoun distribution is given by
s)=1-6W;n¢) (3.19)
—1_ P> +3¢ny+6¢y> —py~1
s =1-1 4 SRSty (y D]e™ ™ y>01>0¢>0 (3.20)

2.4.2  Risk Measurement Function

The risk measurement function (also known as hazard rate function) on the other hand can be seen as the
conditional probability of failure, given it has survived to the time t (Elechi et al., 2022; Ronald et al., 2011;
Shanker, 2016b; Umeh & Ibenegbu, 2019). It is obtained as

The risk measurement function of the Inverse Copoun distribution is given by

9y P)
h(y) = Ty ) (3.21)

n?  [¢n?+ey ] —ny~1
h(y) — 6(p+m) y5
T
2 2 3
h(x) = L LRDE (3.23)
y2|6(g+my?(em ™ -1)-[pn2+3¢my+60y?]

2

(3.22)
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Figure 3: The graphical plots of the risk measurement function (for some selected but different real
points of n and ¢) of an Inverse Coupon distribution

25 Stochastic Ordering

Stochastic ordering of positive continuous random variables is an important tool for judging their comparative
behaviour. According to Shanker (2015), a random variable X is said to be smaller than a random variable Y in
the

> Stochastic order (S <, Q) if Gs(y) = Go(y) forally.
> Hazard rate order (S <g,. Q) if hs(y) = hy(y) forally.
> Mean residual life order (S <,,,; Q) if msg(y) = my(y) forally.
> Likelihood ratio order (S <;,, Q) if (js—((yy))) decreases iny.
Q
Theorem 7:

Let S~ CD (171, 1) and Q~ CD (1, ¢2). If ny =1, and ¢; = ¢, and ¢y = ¢, (or if ¢, = ¢, and n; =7, and
N1 =13), then S <, @ and hence S <z, Q,S <,y Q and S <, Q

Proof:

Let S~ CD (14, ¢,) and Q~ CD (15, ¢,). We obtain that

fs@) _ nils(otny)] | -iZn2)

= 3.24
fol@®)  n3l6(p1+n1)] ( )
and
fs(@) nil6(p2+12)]]  (1-7m2)
Iste) _ — 2
Be rom ~ 08¢ [n§[6(¢1+771)] v (3.25)
Hence,
d fs(@) _ (m1-1m2)
—1 = = 3.26
do °% fo(e) @2 (3.26)

Which completes the proof.
S SSOT Q

S Smrl Q
distribution is ordered in the likelihood ratio and consequently has risk measurement, average residual

measurement life, and stochastic orderings. These results has been established in the literature for stochastic
ordering of distributions (Shaked & Shanthikumar, 1994; Shanker, 2016a; Uwaeme et al., 2023).

This implies that S <, Q = S <por Q :{ This clearly indicates that the Inverse Copoun
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2.6 Stress-Strength Reliability and Maximum Likelihood Estimations
Let Y and X be independent stress and strength random variables that follow Inverse Copoun distribution with
parameter (14, ¢,) and (n,, ¢,) respectively. Then, the stress-strength reliability (R) is given by

Rss = P[X < Y] = [°[X <Y|Y = ylg,(»)dy (3.27)
= [, 93N, 06 (V3 n2, ) dy. (3.28)
— o ¢1771+6y -n y ¢2712+3¢2?723'+6¢2y n y
f“ (6(¢1+n1)[ ] ' )[1 + 6(p2+12) (y )]e z dy (3.29)
_(m1-m2) 2 2 Mm1+12)
¢1771+6y v nin, ¢1771+6y $2m5+3P2M2Y+6¢P2y —y
6(¢1+n1)f [ ] dy + 36(¢1+n1)(¢>z+nz)f [ ] [ = ]e dy.
(3.30)
B _(m1+n2) © _(m14n2)
6(¢1+n)[¢1n1f yPe Y dy+6[ yte v dy|+
UEP) (@101 +6y°][d2n3+3d2n2y+642y%] —@ ]
36(b1+11) (P2 +712) [f e ]e ay| (3.31)
Applying the gamma function, we obtain the expression for the Stress-strength reliability as
R n? [¢1U1F(4) 6I'(1) nin2 G102m3030(7) | 3102miN2T(6) | 6¢192miT(5) | 6¢2n3T(4)
S = s@r+n L+t T uanl T 36D @atn) L (ann)? (M1+712)® (1+712)° (m1+m2)*
18¢21m2T(3) | 32¢,I(2) (3.32)
(m14m2)3 (n1+12)? '
and
2 2 3 3 504061 ¢2n7N5+2160¢1 Paninz (M1 +12)+720¢1 $2n% (1 +12)%+ }
Rgs = 711{[1444’1TI1+36(711+7]2) [¢z+n2)rs +ra) +772[ 1446513 (111+112)3 +108¢15 (714+712)*+72¢5 (1 +12)°

36(p1+11) (P2 +12) (M1 +12)7

(3.33)
Since R is the Stress-Strength Reliability function with parameters (4, ¢1) (12, ¢2), we need to obtain the
maximum likelihood estimators (MLEs) of (n,,¢,) and (1, ¢,) to compute the maximum likelihood
estimation R under Invariance property of the maximum likelihood estimation. Suppose X;,X,, X5, ..., X, is a
Strength random variable sample from Inverse Copoun distribution (n,¢,) and Y;,Y,,Y;, ..., Y,, is a Stress
random sample from Inverse Copoun distribution (n,, ¢,). Thus, the likelihood function based on the observed
sample is given by

(n qb/&,z) = [Ii21 Ing(x; @) (3.34)
7]1n7]%m n ¢1n1+6x ¢2712+6yj —(Va+12V2)
(7) ¢/x J’) 6™ (1 +11)6M (P +12)™ [ ]H [—y] ] 1V1Thzv2 (335)
1 1
Where V; = R V, = T

The log-likelihood function is given by;
LL (Qv d/x, Y) = 2nln(n,) + 2mIn(n,) — nln(6(<,‘b1 + 771)) - mln(6(¢2 + 772)) —mVi—n.V, +
Z?;1l <¢1111+6x ) + Z <¢271i'$"63/i3> (3.36)

j

13

In order to maximize the Iog-likelihood, we solve the nonlinear likelihood equations obtained from the partial
differentiation of (3.36) w.r.t n and ¢ as shown below;

%}%&Q - fv_? ~ Gy Vit I [mzvgljﬁlx?] (3:37)
aLL(g.i/z.z) A * [%] (3.39)
F) , : 2

LL(gq;gl/zz) - (¢1:l'711) + 7-1_1 [4’1";'1"6’5?] (3.39)
aLL(aﬁi/&X) - (¢:nz) 2 [qbzngiy? ] (3.40)

We obtain the Maximum Likelihood Estimators (MLE) of ¢,,7n, and ¢, 1, say ¢,,7; and ¢,, 7, respectively
as the solution of the equations above as

2
niVigy —nny + diniVy — 2 + (D1 +17) Xl —4;1711 3] =0 (3.41)
¢17]1+6x1
Similarly,
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2
n5Vapy — miy + pn, Vo — 2¢,m + (¢om, +13) oy [¢ ¢;z+?762 3] =0 (3.42)
212 y}
Also,
__n n nf _
@rp T 2=t [¢1n§+6x§] 0 (3.43)

Similarly,
(¢2+Uz) Z] ! [¢271 +6y]] =0 (3.44)
Hence, using the invariance property of the MLE, the maximum likelihood estimator R,,, of Rgs can be
obtained by substituting 7, in place of 1, and ¢, in place of ¢,, for k = 1,2
{ [144¢1n2+36(n1+12)3](P2+12) (M1 +12)3 }
2
: ]

n3 504001 2n2n3+2160¢1P2n7n2(N1+12)+720¢1 207 (1 +12)2+
B = 1446215 (M1+12)3+108¢2m2 (1 +72)* +72¢2 (71 +12)° 345
mle — 7 ( . )
36(p1+11)(P2+m2)(M1+12)
) ) =T Pr=Pr:k=12
2.7 Parameter Estimation

Let ¥1,Y,,Ys, ..., Y, be a random sample of size m from the Inverse Copoun distribution g(y,;n, ¢). Then the
log-likelihood function of parameters is given by

Ly, Y2, Y30 .ym, @) =12 Ingi; ) (3.46)
L(y m (p) 2m m |:¢772+6y?] e—nV (3 47)
' [6(¢>+17)m] ¥ '
Where V = m—y
i=1Yi
The log-likelihood function is given by;
2,6y3

LL(y;n,¢) = 2mIn(n) — mln(6(<;b + n)) nV+Yt,In <¢"y#> (3.48)

In order to maximize the log-likelihood, we solve the nonlinear likelihood equations obtained from the partial
differentiation of (3.48) w.r.t n and ¢ as shown below;

oLL _ 2m _ _ 2¢7

an n (¢+n) V4L [ 12 +6yi3] (3.49)

OLL —__m m n?

a¢ @m T 2= +6y} (3.50)

In order to obtain the estimates of the parameters using the nonlinear equations above, we equate equations to
zero and solve simultaneously. The solutions cannot be solved analytically. Hence, we solve numerically using
the MaxL.ik package of in the R software (Toomet et al., 2015) with “BFGS” algorithm.

3. Application

This section discusses the flexibility and superiority of the Inverse Copoun distribution (ICD) to some
competing distributions using two real life data sets. The first dataset represents lifetime data relating to times
(in months) of 200 patients who were diagnosed with Hepatitis B where second visit is the event of interest.

The dataset is shown below

27, 32, 8, 30, 34, 23, 41, 36, 28,16, 30, 3, 24, 77, 30, 33, 17, 38, 36, 29, 17, 14, 7, 27, 12, 32, 32, 26, 15, 31, 34,
28,27,6,7,28,44,31, 27,32, 7, 32, 35, 26, 16, 3, 8, 28, 35, 32, 29, 28, 27, 32, 33, 10, 14, 10, 1, 26, 23, 32, 29,
27, 31, 32, 36, 28, 39, 10, 2, 26, 23, 31, 29, 30, 31, 28, 34, 23, 39, 10, 9, 26,18, 31, 46, 30, 39, 33, 34, 31, 19, 3,
6, 27, 23, 30, 46, 38, 39, 33, 37, 30, 29, 3, 6, 32, 26, 30, 33, 48, 40, 32, 30, 25, 30, 3, 7.

The second dataset employed represents the survival times of a group of patients suffering from Head and Neck
cancer disease and were treated using radiotherapy (RT). It was reported by (Umeh & Ibenegbu, 2019) and used
by (Enogwe et al., 2020).

The data is shown below.
6.53,7,10.42,14.48,16.10,22.70,34,41.55,42,45.28,49.40,53.62,63,64,83,84,91,108,112,129,13
3,133,139,140,140,146,149,154,157,160,160,165,146,149,154,157,160,160,165,173,176,218,
225,241,248,273,277,297,405,417,420,440,523,583,594,1101,1146,1417.

This dataset is then fitted with the Inverse Copoun distribution (ICD) and compared with the Inverse Akash
distribution (IAD) (Okereke et al., 2021), Inverse Suja distribution (ISD) (John et al., 2023), and Inverse
Lindley distribution (ILD) (Sharma etal., 2015) with corresponding pdfs.

Iup(x;n) = 147 (ﬂ x (4.1)
3 1 _n
Guap (1) = 7 ( e (4.2)
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5 4 M
Gisp (6 ®) = o (e (43)

4424 ~ x6

This comparison is done using some measures for testing the goodness of fit of a distribution. The measures
used are the parameter estimates, the log likelihood, the Akaike Information Criteria (AIC) and the Bayesian
Information Criteria (BIC) -2InL, Akaike Information Criterion (AIC) (Club, 2016), Bayesian Information
Criterion (BIC) (Pollock et al., 1999), Consistent Akaike information criterion (CAIC), Hannan-Quinn
information criterion (HQIC). In general, the smaller the values of AIC, BIC, CAIC, and HQIC the better the fit
to the data.

AIC = 2k —21nL (4.4)
BIC =klnn—2InL (4.5)
CAIC = AIC + % (4.6)
HQIC = 2kIn(In(n)) — 2InL 4.7)

where k is the number of parameters, n is the sample size of the dataset, and L is the likelihood function.

Table 1: Goodness of fit for the Hypertention Data

Distribution  MLE’s S.E -2In L AIC BIC CAIC HQIC

IC f1=16.1872 15470 5322033  1068.407  1073.965 106851  1067.535
¢ =0.8882  0.5687

1A f=14275 1326 5353027  1072.605 1080.164  1072.709  1073.734

IS f=14.037 1211 5351981  1072.396  1079.954 10725 1073.525

IL =14.884 1.326  542.0826  1086.165  1093.723  1086.269  1087.294

The parameter estimates and their goodness of fit of the different models for the first dataset are presented in
Table 1. From the results, the Inverse Copoun distribution (ICD) performed better than the competing
distributions.

Table 2: Goodness of fit for the Hypertention Data

Distribution  MLE’s S.E -2InL AIC BIC CAIC HQIC
IC f1=74431 4194 3813487  766.6974  770.8183  766.9156  765.5

¢ =7.029  2.966
1A f1=59.193 2966  385.6517  773.3033  779.4242 7735215  774.1059
IS 1 =59.126 2422 3856861  773.3722  779.4931 7735904  774.1748
IL 1 =60.094 4194  386.5834 7751669  781.2878 7753851  775.9695

The parameter estimates and their goodness of fit of the different models for the second dataset are presented in
Table 2. From the results, the Inverse Copoun distribution (ICD) performed better than the competing
distributions.

Il.  Conclusion

This paper proposed a new two-parameter distribution known as the Inverse Copoun distribution (ICD).
The statistical properties of the Inverse Copoun distribution such as the mode, order statistics, entropy,
stochastic ordering, stress-strength reliability, and reliability indices was derived and presented. The properties
of the new Inverse Copoun distribution showed that the Copoun distribution can be used to model lifetime
datasets with unimodal, positively skewed, and right tailed properties. Furthermore, the risk measurement
function of the Inverse Copoun distribution can model datasets with upside-down bathtub shape in survival
analysis. In addition, the method of maximum likelihood estimate was adopted to derive the estimates of the
parameters. The flexibility of the new Inverse Copoun distribution was compared with other competing
distributions using two different real life datasets. The results obtained showed that the new Inverse Copoun
distribution gave the best fit to the data based on some model selection criteria. Hence, the new Inverse Copoun
distribution is therefore recommended as an alternative to other existing distributions.
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