Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 2 (2024) pp: 28-34 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

k-Total Geometric Mean Cordial Labeling of Some Graphs

L.Vennila¹ Dr.P.Vidhyarani²

¹Research Scholar, [Reg. No: 19211202092025], Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, Affiliated to Manonmaniam Sundaranar University, Abisekapatti -627012, Tamilnadu, India.
²Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India.

Abstract:

Let G be a (p, q) graph. Let $f: V(G) \rightarrow \{1, 2, 3, ..., k\}$ be a function where $k \in \mathbb{N}$ and k>1. For each edge uv, assign the label $f(uv) = \left[\sqrt{f(u)f(v)}\right]$. f is called k-Total geometric mean cordial labeling of G if / tmf (i) $- \text{tmf}(j) \mid \leq 1$, for all i, $j \in \{1, 2, 3, ..., k\}$, where tmf (x) denotes the total number of vertices and edges labeled with x, $x \in \{1, 2, 3, ..., k\}$. A graph that admits the k- total geometric mean cordial labeling is called k-total geometric mean cordial graph.

"AMS Subject Classification 2010: 05C78" Keywords

k- total geometric mean cordial labeling, k-total geometric mean cordial graph, Path, Y_n -tree, F_n - tree, Cycle, Comb and Star graph.

Received 13 Feb., 2024; Revised 26 Feb., 2024; Accepted 28 Feb., 2024 © *The author(s) 2024. Published with open access at www.questjournals.org*

I. Introduction

Finite, simple and undirected graphs are considered here. Cordial labeling was introduced by Cahit [1]. For notations and terminology we follow [2]. The concept of Geometric mean labeling has been introduced in [3]. Geometric mean cordial labeling of graphs was introduced in [4]. k- total mean cordial labeling of graphs was introduced in [5]. In this paper we introducedk-total geometric mean cordial labeling of some graphs and investigated 4-total geometric mean cordial labeling behaviour of cycle, comb, star graph.

Definition 1.1.

Let G be a (p, q) graph. Let $f: V(G) \rightarrow \{0, 1, 2, 3, ..., k-1\}$ be a function where $k \in N$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all i, $j \in \{0, 1, 2, 3, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labeled with x, $x \in \{0, 1, 2, 3, ..., k-1\}$. A graph that admits a k-total mean cordial labeling is called k-total mean cordial graph.

Definition 1.2.

A Y_n - tree is obtained from a path P_n by attaching a pendant vertex to the $(n-1)^{th}$ vertex of

Pn. A tree on n+1vertices is denoted by Yn.

Definition 1.3.

A F_n - tree on n + 2 vertices denoted by F_n is obtained from a path P_n by attaching exactly two pendant vertices to $(n-1)^{th}$ and n^{th} vertex of P_n .

II. Main Results

Motivated by the concept of k- total mean cordial labeling, we introduce a new labelingcalled k- total geometric mean cordial labeling as given below.

Definition 2.1.

Let G be a (p, q) graph. Let $f: V(G) \rightarrow \{1, 2, 3, ..., k\}$ be a function where $k \in \mathbb{N}$ and k>1. For each edge uv, assign the label $f(uv) = \left[\sqrt{f(u)f(v)}\right]$. f is called k-Total geometric mean cordial labeling of G if | tmf (i) $- \text{tmf}(j) \mid \leq 1$, for all i, $j \in \{1, 2, 3, ..., k\}$ where tmf (x) denotes the total number of vertices and edges labeled with x, $x \in \{1, 2, 3, ..., k\}$. A graph that admits the k- total geometric mean cordial labeling is called k-total geometric mean cordial graph.

Theorem 2.2.

Any path P_n is k-total geometric mean cordial graph.

Proof:

Let P_n be a path on n vertices $u_1, u_2, u_3, ..., u_n$ and $n = kt + r, 0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, \dots, u_t$ Next assign the label k-1to the vertices k-2 $u_{t+1}, u_{t+2}, u_{t+3}, \dots, u_{2t}$ Now we assign the label to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, \dots, u_{3t}$ and assign the label k-3 to the vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, \dots, u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, \dots, u_{(k)t}$ and ukt+1. Now we consider the vertices ukt+2, ukt+3, ukt+4, ..., ukt+r.

Case (i) : k is even

"We assign the label to the vertices in the following manner".

If all the even numbers are $\leq k$, then we assign all such even integer labels as

k, k - 2, k - 4, k - 6 to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$

If all the even numbers are $\leq k$ are fully exhausted, then we assign the label 1 to the next vertices $u_{k+\frac{k+4}{2}}$, $u_{2k+\frac{k+4}{2}}$, $u_{3k+\frac{k+4}{2}}$,

Now, we assign the odd integer labels as $k - 1, k - 3, k - 5, \dots$ to all the remaining non labeled vertices.

In this case we observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is k-total geometric mean cordial labeling and P_n is k-total geometric mean cordial graph. Case (ii) : k is odd

If all the odd numbers are $\leq k$, then we assign the odd integer labels as 3, 5, 7, to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$

If all the odd numbers $\leq k$ are fully exhausted, then we assign the label 1 to the next vertices $u_{k+\frac{k+s}{2}}, u_{2k+\frac{k+s}{2}}, u_{3k+\frac{k+s}{2}}, \dots$

Now we assign the even integer labels as $k - 1, k - 3, k - 5, \dots$ to all the remaining non labeled vertices.

We observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is k-total geometric mean cordial labeling and P_n is k-total geometric mean cordial graph.

Theorem 2.3.

Any Y_n tree, $n \ge 3$ is a k- total geometric mean cordial graph.

Proof :

Let Y_n be a graph of n+1vertices and n edges. Let P_n be a path $u_1 u_2 u_3 \dots u_n$ and v_1 be the pendant vertex and $n = kt + r, 0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, ..., u_t$. Next assign the label k - 1 to the vertices $u_{t+1}, u_{t+2}, u_{t+3}, ..., u_{2t}$. Now we assign the label k - 2 to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, ..., u_{3t}$ and assign the label k - 3 to vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, ..., u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, ..., u_{(k)t}$ and u_{kt+1} .

Now we consider the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots, u_{kt+r}$.

We assign the label to the vertices in the following manner.

Case (i) : k is even

Assign the even number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots$ with the condition that even numbers are $\leq k$. Assign the odd number to the vertex v₁, which is less than k.

Case (ii) : k is odd

Assign the odd number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots$ with the condition that odd numbers are $\leq k$.

The labeling pattern of v1 is

Subcase:

(i) k = 3, assign the odd number to the vertex v_1 .

(ii) $k \ge 5$, assign the label 1 to the vertex v_1 , if k = n, 2n, 3n, ... otherwise v_1 is an even number which is less than k.

From all the above two cases we observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is k-total geometric mean cordial labeling and Y_n – tree is k-total geometric mean cordial graph.

Theorem 2.4.

Any F_n tree, $n \ge 3$ is a k- total geometric mean cordial graph.

Proof :

Let F_n be a graph of n+2 vertices and n+1 edges. Let P_n be a path $u_1 u_2 u_3 \dots u_n$ and v_1, v_2 be the pendant vertices and $n = kt + r, 0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, ..., u_t$. Next assign the label k - 1 to the vertices $u_{t+1}, u_{t+2}, u_{t+3}, ..., u_{2t}$. Now we assign the label k - 2 to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, ..., u_{3t}$, and assign the label k - 3 to the vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, ..., u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, ..., u_{(k)t}$ and u_{kt+1} .

Now we consider the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots$

Case (i) : k is odd

We assign the label to the vertices in the following manner.

If k = n = 3, assign the label 2 to the vertex u_1 , label 3 to the vertex u_2 and label 1 to the vertex u_n .

If n > 3, $k \ge 5$, assign the odd number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots$ with the condition that odd numbers are $\le k$.

The labeling pattern of v_1 and v_2 is given below

Subcase:

(i) If k = n = 3, assign the odd number to the vertex v_1 and even number to the vertex v_2 which are less than k. Otherwise v_1 and v_2 must be odd which are less than or equal to k.

(ii) If $k \ge 5$, assign the odd number to the vertex v_1 and even number to the vertex v_2 which are less than or equal to k.

Case (ii) : k is even

Assign the odd number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \dots$ with the condition that odd numbers are < k

Now the labeling pattern of v_1 and v_2 is given below

Subcase:

(i) If k = 4, the vertices v_1 and v_2 are odd or even alternatively, which are less than or equal to k.

(ii) If $k \ge 6$, assign the odd number to the vertex v_1 and even number to the vertex v_2 if k = n, 2n, 3n, ... otherwise v_1 and v_2 is an even number which are less than or equal to k.

From all the above two cases we observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., n\}$

 $k\}$ and hence f is k-total geometric mean cordial labeling and F_n-tree is k-total geometric mean cordial graph.

Theorem 2.5.

Any Cycle Cn is a 4-total geometric mean cordial graph.

Proof :

Let $u_1 u_2 \ \dots \ u_n u_1$ be the cycle C_n

Case (i) : $n \equiv 1 \pmod{4}$

The $\frac{n+2}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n+3}{4}}$ are labeled with 1, the $\frac{n-1}{4}$ vertices $u_{\frac{n+7}{4}}, u_{\frac{n+11}{4}}, \dots, u_{\frac{n+1}{2}}$ are labeled with 2, the label 3 to the $\frac{n-1}{4}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+3}{2}}, \dots, u_{\frac{3n+1}{4}}$ are labeled with 3. Finally the $\frac{n-1}{4}$ vertices $u_{\frac{3n+5}{4}}, u_{\frac{3n+5}{4}}, \dots, u_n$ are labeled with 4.

Case (ii) : $n \equiv 2 \pmod{4}$

The $\frac{n+2}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n+2}{4}}$ are labeled with 1, the $\frac{n-2}{4}$ vertices $u_{\frac{n+6}{4}}, u_{\frac{n+10}{4}}, \dots, u_{\frac{n}{2}}$ are labeled with 3, the $\frac{n-2}{4}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \dots, u_{\frac{n-2}{4}}$ are labeled with 2. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{n+2}{4}}, u_{\frac{n+4}{4}}, \dots, u_{\frac{n-2}{4}}$ are labeled with 2. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{n+2}{4}}, u_{\frac{n+4}{4}}, \dots, u_{n}$ are labeled with 4.

Case (iii) :
$$n \equiv 3 \pmod{4}$$

The $\frac{n+1}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n+1}{4}}$ are labeled with 1, the $\frac{n+1}{4}$ vertices $u_{\frac{n+5}{4}}, u_{\frac{n+9}{4}}, \dots, u_{\frac{n+1}{2}}$ are labeled with 4, the $\frac{n+1}{4}$ vertices $u_{\frac{n+5}{2}}, u_{\frac{n+5}{2}}, \dots, u_{\frac{n-1}{4}}$ and u_n are labeled with 2. Finally the $\frac{n-3}{4}$ vertices $u_{\frac{n+5}{4}}, u_{\frac{n+5}{2}}, \dots, u_{\frac{n-1}{4}}$ and u_n are labeled with 2. Finally the $\frac{n-3}{4}$ vertices $u_{\frac{n+5}{4}}, u_{\frac{n+5}{4}}, \dots, u_{n-1}$ are labeled with 3.

Case (iv) : $n \equiv 4 \pmod{4}$

It is easy to verify $n \le 8$.

If $n \ge 12$, The $\frac{n+4}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n}{4}}$ and u_{n-1} are labeled with 1, the $\frac{n-4}{4}$ vertices $u_{\frac{n+4}{4}}, u_{\frac{n+2}{4}}, \dots, u_{\frac{n-2}{2}}$ are labeled with 3, the $\frac{n-4}{4}$ vertices $u_{\frac{n}{2}}, u_{\frac{n+2}{2}}, \dots, u_{\frac{n-1+2}{4}}$ and u_{n-2} are labeled with 2. Finally the $\frac{n+4}{4}$ vertices $u_{\frac{n-4}{4}}, u_{\frac{n-4}{4}}, u_{\frac{n-4}{4}}, u_{\frac{n+4}{4}}, u_{\frac{n+4}{4}}, \dots, u_{n-3}$ and u_n are labeled with 4.

Nature of n	t _{mf} (1)	$t_{mf}(2)$	$t_{mf}(3)$	$t_{mf}(4)$
$n \equiv 1 \bmod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n-1}{2}$
$n{\equiv}2 \bmod 4$	$\frac{n}{2}$	$\frac{n}{2}$	<u>n</u> 2	<u>n</u> 2
$n{\equiv} 3 \bmod 4$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$
n≡ 4 mod 4	<u>n</u>	$\frac{n}{2}$	<u>n</u>	<u>n</u>

The vertex labeling f is a 4- total geometric mean cordial labeling

In all the above four cases we see that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is 4-total geometric mean cordial labeling and Cn is 4-total geometric mean cordial graph.

Theorem 2.6.

The Comb Pn ⊙ K1 is a 4-total geometric mean cordial graph.

Proof :

Let P_n be a path $u_1 u_2 u_3 \dots u_n$. Let $V(P_n \odot K_1) = V(P_n) \cup \{v_i : 1 \le i \le n\}$ and

 $E (P_n \odot K_1) = E (P_n) \cup \{u_i v_i : 1 \le i \le n\}$

Case (i) : n is even

The n-1 vertices $v_1, v_2, v_3, ..., v_{n-1}$ are labeled with 1, the label 2 to the one vertex v_n , the $\frac{n}{2}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n}{2}}$ are labeled with 3. Finally the $\frac{n}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, ..., u_n$ are

labeled with 4.

Case (ii) : n is odd

The n-1 vertices $v_1, v_2, v_3, ..., v_{n-1}$ are labeled with 1, the label 2 to the one vertex v_n , the $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n-1}{2}}$ and u_n are labeled with 3. Finally the $\frac{n-1}{2}$ vertices $u_{\frac{n+1}{2}}, u_{\frac{n+3}{2}}, ..., u_{n-1}$ are labeled with 4. Clearly $t_{mf}(1) = n-1$ and $t_{mf}(2) = t_{mf}(3) = t_{mf}(4) = n$

In the above two cases we see that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is 4-total geometric mean cordial labeling and $P_n \bigcirc K_1$ is 4-total geometric mean cordial graph.

Theorem 2.7.

Star $K_{1,n}$, $n \ge 3$ is a 4-total geometric mean cordial graph.

Proof :

Let u be the centre vertex of the star $K_{1,n}$. Let u_i $(1 \le i \le n)$ be the pendant vertices adjacent to u. Assign the label 3 to the vertex u.

Case (i) : $n \equiv 1 \pmod{4}$

The $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, \dots, u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{2}}, u_{\frac{n+1}{2}}, \dots, u_{\frac{n+1}{4}}$ are labeled with 3. Finally the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{2}}, u_{\frac{n+1}{2}}, u_{\frac{n+1}{2}}, \dots, u_n$ are labeled with 4.

Case (ii) : $n \equiv 2 \pmod{4}$

The $\frac{n}{2}$ vertices $u_1, u_2, \dots, u_{\frac{n}{2}}$ are labeled with 1, the $\frac{n-2}{4}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \dots, u_{\frac{nn-2}{4}}$ are labeled with 3. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{nn+2}{4}}, u_{\frac{nn+4}{4}}, u_{\frac{nn+4}{4}}, \dots, u_n$ are labeled with 4.

Case (iii) : $n \equiv 3 \pmod{4}$

The $\frac{n+1}{2}$ vertices $u_1, u_2, \dots, u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n-3}{4}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \dots, u_{\frac{3n-1}{4}}$ are labeled with 3. Finally the $\frac{n+1}{4}$ vertices $u_{\frac{3n+5}{4}}, u_{\frac{3n+5}{4}}, u_{\frac{3n+1}{4}}, \dots, u_n$ are labeled with 4.

Case (iv) : $n \equiv 4 \pmod{4}$

The $\frac{n}{2}$ vertices $u_1, u_2, u_3, \dots, u_{\frac{n}{2}}$ are labeled with 1, the $\frac{n}{4}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \dots, u_{\frac{sn}{4}}$ are labeled with 3. Finally the $\frac{n}{4}$ vertices $u_{\frac{sn+4}{4}}, u_{\frac{sn+8}{4}}, u_{\frac{sn+12}{4}}, \dots, u_n$ are labeled with 4.

Nature of n	$t_{mf}(1)$	t _{mf} (2)	$t_{mf}(3)$	$t_{mf}(4)$
$n \equiv 1 \mod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$
$n \equiv 2 \mod 4$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n+2}{2}$
$n \equiv 3 \mod 4$	<u>n+1</u> 2	$\frac{n+1}{2}$	$\frac{n-1}{2}$	<u>n+1</u> 2
$n \equiv 4 \mod 4$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n+2}{2}$	<u>n</u> 2

The vertex labeling f is a 4 total geometric mean cordial labeling

From the above four cases we observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all i, $j \in \{1, 2, 3, ..., k\}$ and hence f is 4-total geometric mean cordial labeling and $K_{1,n}$ is 4-total geometric mean cordial graph.

Theorem 2.8.

The graph Pn ⊙ 2K1 is a 4-total geometric mean cordial for all values of n.

Proof:

Let P_n be a path $u_1, u_2, u_3 \dots \dots u_n$, and v_i , w_i be the pendant vertices adjacent to u_i $(1 \le i \le n)$. It is easy to verify that $|V(P_n \odot 2K_1)| + |E(P_n \odot 2K_1)| = 6n-1$. **Case (i):** $n \equiv 1 \pmod{4}$

The $\frac{3n-1}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_{\frac{n-1}{2}}$ are labeled with 1, the $\frac{3n+1}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{3n+1}{4}}$ are labeled with 3. Finally allocate the label 4 to the $\frac{3n+1}{4}$ vertices $\frac{u_{3n+5}, u_{3n+9}, u_{3n+13}, ..., u_n}{4}$ and $\frac{w_{n+1}}{2}, \frac{w_{n+3}, w_{\frac{n+5}{2}}, ..., w_n}{2}$ **Case (ii):** $n \equiv 2 \pmod{4}$ The $\frac{3n}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_{\frac{n}{2}}$ are labeled with 1, the $\frac{3n+2}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{3n-2}{4}}$ and w_n are labeled with 3. Finally the $\frac{3n-2}{4}$ vertices $\frac{u_{3n+2}, u_{3n+4}, ..., u_n}{4}$ and $w_{\frac{n+2}{2}}, w_{\frac{n+4}{2}}, ..., w_{n-1}$ are labeled with 4. Case (iii): $n \equiv 3 \pmod{4}$ The $\frac{3n-1}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_{\frac{n-1}{2}}$ are labeled with 1, the $\frac{3n+3}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n+1}{4}}$ are labeled with 3, the $\frac{3n-1}{4}$ vertices $u_{\frac{n+1}{4}}, u_{\frac{n+1}{4}}, u_{\frac{n+1}{2}}, ..., u_n$ and $w_{\frac{n+1}{2}}, w_{\frac{n+1}{2}}, w_{\frac{n+1}{2}}, ..., w_n$ are labeled with 4. Case (iv): $n \equiv 4 \pmod{4}$ The $\frac{3n}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_n$ are labeled with 1, the $\frac{3n+4}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n}{4}}$ and w_n are labeled with 3, the $\frac{3n-4}{4}$ vertices $u_{\frac{n+4}{4}}, u_{\frac{n+1}{4}}, u_{\frac{n+1}{4}}, ..., u_n$ and $w_{\frac{n+2}{2}}, w_{\frac{n+4}{2}}, ..., w_{n-1}$ are labeled with 4.

The vertex labeling f is a 4 total geometric mean cordial labeling

Nature of n	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$	$t_{mf}(4)$
n≡1 mod 4	$\frac{3n-1}{2}$	$\frac{3n-1}{2}$	$\frac{3n-1}{2}$	$\frac{3n+1}{2}$
$n \equiv 2 \mod 4$	$\frac{3n}{2}$	$\frac{3n}{2}$	$\frac{3n-2}{2}$	$\frac{3n}{2}$
$n \equiv 3 \mod 4$	$\frac{3n-1}{2}$	$\frac{3n-1}{2}$	$\frac{3n+1}{2}$	$\frac{3n-1}{2}$
$n \equiv 4 \mod 4$	$\frac{3n}{2}$	$\frac{3n}{2}$	$\frac{3n}{2}$	$\frac{3n-2}{2}$

From the above four cases we observe that $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{1, 2, 3, ..., k\}$ and hence f is 4-total geometric mean cordial labeling and $P_n \odot 2K_1$ is 4-total geometric mean cordial graph.

References:

- [1]. I.Cahit, Cordial graphs: A weaker version of Graceful and Harmonious graphs, ArsCombin. 23(1987),201-207
- [2]. F.Harary, Graph Theory, Addition Wesley, New Delhi, 1969.
- [3]. S. Somasundaram, R. Ponraj and P. Vidhyarani, Geometric mean labeling of graphs, Bulletinof pure and applied sciences, vol. 30E, no 2, (2011), pp.153-160.
- K.Chitra Lakshmi and K.Nagarajan, Geometric mean cordial labeling of graphs, International journal of mathematics and soft computing vol.7,no.1(2017),75-87.
- [5]. R.Ponraj, S.Subbulakshmi and S.Somasundaram, k-Total mean cordial graphs, J.math.comput.sci.10(2020),no 5,1697-1711.issn:1927-5307.
- [6]. R.Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from wheel, J.math.comput.sci.11(2021),no 1,467-476.issn:1927-5307.