Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 2 (2024) pp: 28-34 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Review Paper

k-Total Geometric Mean Cordial Labeling of Some Graphs

L.Vennila1 Dr.P.Vidhyarani2

¹Research Scholar, [Reg. No: 19211202092025], Department of Mathematics, Sri Parasakthi College for Women,Courtallam-627802, Affiliated to Manonmaniam Sundaranar University, Abisekapatti -627012, Tamilnadu, India. ²Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802,India.

Abstract:

Let G be a (p, q) graph. Let $f : V(G) \rightarrow \{1, 2, 3, \ldots, k\}$ *be a function where* $k \in N$ *and* $k > 1$ *. For each edge wv, assign the label f (uv)* = $\sqrt{f(u)f(v)}$. *f is called k-Total geometric mean cordial labeling of G if /tmf (i)* $−$ *tmf* (*j*) $/≤$ *l*, *for all i, j* $∈$ {*l*, 2, 3, ...,*k*}, where *tmf* (*x*) denotes the *total number of vertices and edges labeled with x,* $x \in \{1, 2, 3, \ldots, k\}$ *. A graph that admits the k- total geometric mean cordial labeling is called k-total geometric mean cordial graph.*

"AMS Subject Classification 2010: 05C78" Keywords

k- total geometric mean cordial labeling, k-total geometric mean cordial graph, Path, Yn -tree, Fn - tree, Cycle, Comb and Star graph.

Received 13 Feb., 2024; Revised 26 Feb., 2024; Accepted 28 Feb., 2024 © The author(s) 2024. Published with open access at www.questjournals.org

I. Introduction

Finite, simple and undirected graphs are considered here. Cordial labeling was introduced by Cahit [1]. For notations and terminology we follow [2]. The concept of Geometric mean labeling has been introduced in [3]. Geometric mean cordial labeling of graphs was introduced in [4]. k- total mean cordial labeling of graphs was introduced in [5] . In this paper we introducedk-total geometric mean cordial labeling of some graphs and investigated 4-total geometric mean cordial labeling behaviour of cycle, comb, star graph.

Definition 1.1.

Let G be a (p, q) graph. Let f: V (G) \rightarrow {0, 1, 2, 3, ..., k-1} be a function where k \in N and k >1. For each edge uv, assign the label f (uv) $=\left[\frac{f(u)+f(v)}{2}\right]$. f is called k-total mean cordial labeling of G if $\vert t_{\text{mf}}(i) - t_{\text{mf}}(j) \vert \le 1$, for all i, $j \in \{0, 1, 2, 3, ..., k-1\}$, where $t_{\text{mf}}(x)$ denotes the total number of vertices and edges labeled with x, $x \in \{0, 1, 2, 3, ..., k-1\}$. A graph that admits a k-total mean cordial labeling is called k-total mean cordial graph.

Definition 1.2.

A Y_n - tree is obtained from a path P_n by attaching a pendant vertex to the $(n-1)^{th}$ vertex of

 P_n . A tree on n+1 vertices is denoted by Y_n .

Definition 1.3.

A F_n - tree on $n + 2$ vertices denoted by F_n is obtained from a path P_n by attaching exactly two pendant vertices to $(n-1)$ th and n th vertex of P_n .

II. Main Results

Motivated by the concept of k- total mean cordial labeling, we introduce a new labelingcalled k- total geometric mean cordial labeling as given below.

Definition 2.1.

Let G be a (p, q) graph. Let $f: V(G) \rightarrow \{1, 2, 3, ..., k\}$ be a function where $k \in N$ and $k > 1$. For each edge uv, assign the label f (uv) = $\sqrt{f(u)f(v)}$. f is called k-Total geometric mean cordial labeling of G if | tmf (i) $-$ tmf (j) $| \le 1$, for all i, $j \in \{1, 2, 3,..., k\}$ where tmf (x) denotes the total number of vertices and edges labeled with x, $x \in \{1, 2, 3, \ldots, k\}$. A graph that admits the k- total geometric mean cordial labeling is called k-total geometric mean cordial graph.

Theorem 2.2.

Any path P_n is k-total geometric mean cordial graph.

Proof:

Let P_n be a path on n vertices $u_1, u_2, u_3, ..., u_n$ and $n = kt + r$, $0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, ..., u_t$ Next assign the label $k-1$ to the vertices label $k-2$ $u_{t+1}, u_{t+2}, u_{t+3}, ..., u_{2t}$ Now we assign the to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, \ldots, u_{3t}$ and assign the label $k-3$ to the vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, \ldots, u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, \ldots, u_{(k)t}$ and u_{kt+1} . Now we consider the vertices u_{kt+2} , u_{kt+3} , u_{kt+4} , ..., u_{kt+r} .

Case (i) : k is even

"We assign the label to the vertices in the following manner".

If all the even numbers are $\leq k$, then we assign all such even integer labels as

 $k, k-2, k-4, k-6$ to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$

If all the even numbers are $\leq k$ are fully exhausted, then we assign the label 1 to the next vertices $u_{k+\frac{k+4}{2}}$, $u_{2k+\frac{k+4}{2}}$, $u_{3k+\frac{k+4}{2}}$, ...

Now, we assign the odd integer labels as $k - 1$, $k - 3$, $k - 5$, ... to all the remaining non labeled vertices.

In this case we observe that $|\text{t}_{\text{mf}}(i) - \text{t}_{\text{mf}}(j)| \leq 1$, for all i, j $\in \{1, 2, 3, \ldots, k\}$ and hence f is ktotal geometric mean cordial labeling and P_n is k-total geometric mean cordial graph. Case (ii) : k is odd

If all the odd numbers are $\leq k$, then we assign the odd integer labels as 3, 5, 7, ... to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$

If all the odd numbers $\leq k$ are fully exhausted, then we assign the label 1 to the next vertices $u_{k+\frac{k+5}{2}}$, $u_{2k+\frac{k+5}{2}}$, $u_{3k+\frac{k+5}{2}}$, ...

Now we assign the even integer labels as $k - 1$, $k - 3$, $k - 5$, ... to all the remaining non labeled vertices.

We observe that $|\text{t}_{\text{mf}}(i) - \text{t}_{\text{mf}}(j)| \leq 1$, for all i, $j \in \{1, 2, 3, \ldots, k\}$ and hence f is k-total geometric mean cordial labeling and P_n is k-total geometric mean cordial graph.

Theorem 2.3.

Any Y_n tree, $n \ge 3$ is a k- total geometric mean cordial graph.

Proof:

Let Y_n be a graph of n+1vertices and n edges. Let P_n be a path u_1 u_2 u_3 ... u_n and v_1 be the pendant vertex and $n = kt + r$, $0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, ..., u_t$. Next assign the label $k-1$ to the vertices $u_{t+1}, u_{t+2}, u_{t+3}, \ldots, u_{2t}$. Now we assign the label $k-2$ to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, \ldots, u_{3t}$ and assign the label $k-3$ to vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, \ldots, u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, \ldots, u_{(k)t}$ and u_{kt+1}

Now we consider the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, \ldots, u_{kt+r}$.

We assign the label to the vertices in the following manner.

Case (i) : k is even

Assign the even number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$ with the condition that even numbers are $\leq k$. Assign the odd number to the vertex v_1 , which is less than k.

Case (ii) $: k$ is odd

Assign the odd number to the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$ with the condition that odd numbers are $\leq k$.

The labeling pattern of v_1 is

Subcase:

(i) $k = 3$, assign the odd number to the vertex v_1 .

(ii) $k \ge 5$, assign the label 1 to the vertex v_1 , if $k = n$, 2n, 3n... otherwise v_1 is an even number which is less than k.

From all the above two cases we observe that $|\text{t}_{\text{mf}}(i) - \text{t}_{\text{mf}}(j)| \leq 1$, for all i, $j \in \{1, 2, 3, \ldots, k\}$ and hence f is k-total geometric mean cordial labeling and Y_n – tree is k-total geometric mean cordial graph.

Theorem 2.4.

Any F_n tree, $n \ge 3$ is a k- total geometric mean cordial graph.

Proof:

Let F_n be a graph of n+2 vertices and n+1 edges. Let P_n be a path $u_1 u_2 u_3 ... u_n$ and v_1, v_2 be the pendant vertices and $n = kt + r$, $0 \le r < n$

Consider the vertices $u_1, u_2, u_3, ..., u_t$. Assign the label k to the vertices $u_1, u_2, u_3, ..., u_t$. Next assign the label $k-1$ to the vertices $u_{t+1}, u_{t+2}, u_{t+3}, \ldots, u_{2t}$. Now we assign the label $k-2$ to the vertices $u_{2t+1}, u_{2t+2}, u_{2t+3}, \ldots, u_{3t}$, and assign the label $k-3$ to the vertices $u_{3t+1}, u_{3t+2}, u_{3t+3}, \ldots, u_{4t}$. Proceeding like this assign the label 1 to the vertices $u_{(k-1)t+1}, u_{(k-1)t+2}, u_{(k-1)t+3}, \ldots, u_{(k)t}$ and u_{kt+1} .

Now we consider the vertices $u_{kt+2}, u_{kt+3}, u_{kt+4}, ...$

Case (i) : k is odd

We assign the label to the vertices in the following manner.

If $k = n = 3$, assign the label 2 to the vertex u_1 , label 3 to the vertex u_2 and label 1 to the vertex u_n.

If n > 3, k \ge 5, assign the odd number to the vertices $u_{k+1}u_{k+2}u_{k+3}$, u_{k+4} with the condition that odd numbers are \leq k.

The labeling pattern of v_1 and v_2 is given below

Subcase:

(i) If $k = n = 3$, assign the odd number to the vertex v_1 and even number to the vertex v_2 which are less than k. Otherwise v_1 and v_2 must be odd which are less than or equal to k.

(ii) If $k \ge 5$, assign the odd number to the vertex v_1 and even number to the vertex v_2 which are less than or equal to k.

Case (ii) : k is even

Assign the odd number to the vertices u_{kt+2} , u_{kt+3} , u_{kt+4} , ... with the condition that odd numbers are $\leq k$

Now the labeling pattern of v_1 and v_2 is given below

Subcase:

(i) If $k = 4$, the vertices v_1 and v_2 are odd or even alternatively, which are less than or equal to k.

(ii) If $k \ge 6$, assign the odd number to the vertex v_1 and even number to the vertex v_2 if $k =$ n, 2n, 3n,... otherwise v_1 and v_2 is an even number which are less than or equal to k.

From all the above two cases we observe that $|\mathbf{t}_{\text{mf}}(i) - \mathbf{t}_{\text{mf}}(j)| \leq 1$, for all $i, j \in \{1, 2, 3, \ldots,$

k} and hence f is k-total geometric mean cordial labeling and F_n – tree is k-total geometric mean cordial graph.

Theorem 2.5.

Any Cycle C_n is a 4-total geometric mean cordial graph.

Proof:

Let $u_1 u_2 \ldots u_n u_1$ be the cycle C_n

Case (i) : $n \equiv 1 \pmod{4}$

The $\frac{n+3}{4}$ vertices $u_1, u_2, \ldots, u_{\frac{n+5}{4}}$ are labeled with 1, the $\frac{n-1}{4}$ vertices $u_{\frac{n+7}{4}}, u_{\frac{n+11}{4}}, \ldots, u_{\frac{n+1}{2}}$ are labeled with 2, the label 3 to the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{2}}, u_{\frac{n+1}{2}}, \dots, u_{\frac{3n+1}{4}}$ are labeled with 3. Finally the $rac{n-1}{4}$ vertices $u_{\frac{5n+5}{4}}$, $u_{\frac{5n+9}{4}}$, $u_{\frac{5n+15}{4}}$, ..., u_n are labeled with 4.

Case (ii) : $n \equiv 2 \pmod{4}$

The $\frac{n+2}{4}$ vertices $u_1, u_2, ..., u_{\frac{n+2}{4}}$ are labeled with 1, the $\frac{n-2}{4}$ vertices $u_{\frac{n+6}{4}}, u_{\frac{n+10}{4}}, ..., u_{\frac{n}{2}}$ are labeled with 3, the $\frac{n-2}{4}$ vertices $u_{\frac{n+2}{2}}$, $u_{\frac{n+4}{2}}$, ..., $u_{\frac{n-2}{4}}$ are labeled with 2. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{\pi n+2}{4}}$, $u_{\frac{\pi n+6}{4}}$, $u_{\frac{\pi n+10}{4}}$, ..., u_n are labeled with 4.

Case (iii) : $n \equiv 3 \pmod{4}$

The $\frac{n+1}{4}$ vertices $u_1, u_2, \ldots, u_{\frac{n+1}{4}}$ are labeled with 1, the $\frac{n+1}{4}$ vertices $u_{\frac{n+5}{4}}, u_{\frac{n+9}{4}}, \ldots, u_{\frac{n+1}{2}}$ are labeled with 4, the $\frac{n+1}{4}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \ldots, u_{\frac{n-1}{4}}$ and u_n a $u_{\frac{3n+5}{4}}$, $u_{\frac{3n+7}{4}}$, $u_{\frac{3n+11}{4}}$, ..., u_{n-1} are labeled with 3.

Case (iv) : $n \equiv 4 \pmod{4}$

It is easy to verify $n \leq 8$.

If n≥12, The $\frac{n+4}{4}$ vertices $u_1, u_2, ..., u_{\frac{n}{4}}$ and u_{n-1} are labeled with 1, the $\frac{n-4}{4}$ vertices $u_{\frac{n+4}{4}}$, $u_{\frac{n+8}{4}}$, ..., $u_{\frac{n-2}{2}}$ are labeled with 3, the $\frac{n-4}{4}$ vertices $u_{\frac{n}{2}}$, $u_{\frac{n+2}{2}}$, ..., $u_{\frac{3n-12}{4}}$ and u_{n-2} are labeled with 2. Finally the $\frac{n+4}{4}$ vertices $u_{\frac{3n-8}{4}}$, $u_{\frac{3n-4}{4}}$, $u_{\frac{3n+4}{4}}$, $u_{\frac{3n+8}{4}}$, ..., u_{n-3} and u_n are labeled with 4.

The vertex labeling f is a 4- total geometric mean cordial labeling

In all the above four cases we see that $|\text{tmf (i)} - \text{tmf (j)}| \le 1$, for all i, $j \in \{1, 2, 3, \ldots, k\}$ and hence f is 4-total geometric mean cordial labeling and Cn is 4-total geometric mean cordial graph.

Theorem 2.6.

The Comb $P_n \odot K_1$ is a 4-total geometric mean cordial graph.

Proof:

Let P_n be a path $u_1 u_2 u_3 ... u_n$ Let V $(P_n \odot K_1) = V(P_n) \cup \{v_i : 1 \le i \le n\}$ and

E (P_n \odot K₁) = E (P_n) \cup {u_iv_i: 1 ≤ i ≤ n}

Case (i) : n is even

The n-1 vertices $v_1, v_2, v_3, ..., v_{n-1}$ are labeled with 1, the label 2 to the one vertex v_n , the $\frac{\pi}{2}$ vertices $u_1, u_2, u_3, ..., u_{\frac{\pi}{2}}$ are labeled with 3. Finally the $\frac{\pi}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, ..., u_n$ are

labeled with 4.

Case (ii) : n is odd

The n-1 vertices $v_1, v_2, v_3, ..., v_{n-1}$ are labeled with 1, the label 2 to the one vertex v_n , the $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n-1}{2}}$ and u_n are labeled with 3. Finally the $\frac{n-1}{2}$ vertices $u_{\frac{n+1}{2}}$, $u_{\frac{n+1}{2}}$, ..., u_{n-1} are labeled with 4. Clearly $t_{\text{mf}}(1) = n-1$ and $t_{\text{mf}}(2) = t_{\text{mf}}(3) = t_{\text{mf}}(4) = n$

In the above two cases we see that $|\mathbf{t}_{\text{mf}}(i) - \mathbf{t}_{\text{mf}}(j)| \leq 1$, for all i, $j \in \{1, 2, 3, \ldots, k\}$ and hence f is 4-total geometric mean cordial labeling and $P_n \odot K_1$ is 4-total geometric mean cordial graph.

Theorem 2.7.

Star K_{1, n}, n \geq 3 is a 4-total geometric mean cordial graph.

Proof:

Let u be the centre vertex of the star $K_{1,n}$. Let u_i ($1 \le i \le n$) be the pendant vertices adjacent to u. Assign the label 3 to the vertex u.

Case (i) : $n \equiv 1 \pmod{4}$

The $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, ..., u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n-1}{4}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, ..., u_{\frac{n+1}{4}}$ are labeled with 3. Finally the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{4}}, u_{\frac{n+1}{4}}, u_{\frac{n+13}{4}}, \dots, u_n$ are labeled with 4.

Case (ii) : $n \equiv 2 \pmod{4}$

The $\frac{n}{2}$ vertices $u_1, u_2, ..., u_{\frac{n}{2}}$ are labeled with 1, the $\frac{n-2}{4}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, ..., u_{\frac{3n-2}{4}}$ are labeled with 3. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{3n+2}{4}}$, $u_{\frac{3n+6}{4}}$, $u_{\frac{3n+10}{4}}$, ..., u_n are labeled with 4.

Case (iii) : $n \equiv 3 \pmod{4}$

The $\frac{n+1}{2}$ vertices $u_1, u_2, \ldots, u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n-3}{4}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \ldots, u_{\frac{n}{4}}$ are labeled with 3. Finally the $\frac{n+1}{4}$ vertices $u_{\frac{3n+3}{4}}$, $u_{\frac{3n+7}{4}}$, $u_{\frac{3n+11}{4}}$, ..., u_n are labeled with 4.

Case (iv) :
$$
n \equiv 4 \pmod{4}
$$

The $\frac{n}{2}$ vertices $u_1, u_2, u_3, ..., u_n$ are labeled with 1, the $\frac{n}{4}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, ..., u_{\frac{3n}{4}}$ are labeled with 3. Finally the $\frac{n}{4}$ vertices $u_{\frac{sn+4}{4}}$, $u_{\frac{sn+8}{4}}$, $u_{\frac{sn+12}{4}}$, ..., u_n are labeled with 4.

Nature of n	$t_{\text{mf}}(1)$	$t_{\rm mf}(2)$	$t_{\rm mf}(3)$	$t_{\rm mf}(4)$
$n \equiv 1 \mod 4$	$n+1$	$n+1$	$n+1$	$n-1$
$n \equiv 2 \mod 4$	\mathbf{r}	72	72	$n+2$
$n \equiv 3 \mod 4$	$n+1$	n + 1	$n-1$	$n + 1$
$n \equiv 4 \mod 4$	72	71	$n+2$	n

The vertex labeling f is a 4 total geometric mean cordial labeling

From the above four cases we observe that $|\tan(i) - \tan(i)| \le 1$, for all i, $j \in \{1, 2, 3, ...\}$ and hence f is 4-total geometric mean cordial labeling and $K_{1,n}$ is 4-total geometric mean cordial graph.

Theorem 2.8.

The graph $P_n \odot 2K_1$ is a 4-total geometric mean cordial for all values of n.

Proof:

Let P_n be a path $u_1, u_2, u_3, \ldots, u_n$, and v_i, w_i be the pendant vertices adjacent to u_i $(1 \le i \le n)$. It is easy to verify that $|V(P_n \odot 2K_1)| + |E(P_n \odot 2K_1)| = 6n-1$. Case (i): $n \equiv 1 \pmod{4}$

The $\frac{2n-1}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_{\frac{n-1}{2}}$ are labeled with 1,the $\frac{2n+1}{4}$ vertices $u_1, u_2, u_3, \ldots, u_{\frac{n+1}{4}}$ are labeled with 3. Finally allocate the label 4 to the $\frac{\frac{3n+1}{4}}{4}$ vertices $u_{\frac{3n+5}{4}}, u_{\frac{3n+9}{4}}, u_{\frac{3n+13}{4}}, \ldots, u_n$ and $w_{\frac{n+1}{2}}, w_{\frac{n+3}{2}}, w_{\frac{n+5}{2}}, \ldots, w_n$ Case (ii): $n \equiv 2 \pmod{4}$ The $\frac{2\pi}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_n$ are labeled with 1, the $\frac{2\pi + 2}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{3n-2}{4}}$ and w_n are labeled with 3. Finally the $\frac{3n-2}{4}$ vertices $u_{\frac{3n+2}{4}}$, $u_{\frac{3n+6}{4}}$, ..., u_n and $w_{\frac{n+2}{2}}$, $w_{\frac{n+4}{2}}$, ..., w_{n-1} are labeled with 4.

Case (iii): $n \equiv 3 \pmod{4}$ Case (iii): n = 5 (mod 4)
The $\frac{3n-1}{2}$ vertices v_1 , v_2 , v_3 , ..., v_n and w_1 , w_2 , w_3 , ..., $w_{\frac{n-1}{2}}$ are labeled with 1, the $\frac{3n+3}{4}$ vertices u_1 , u_2 , u_3 , ..., $u_{\frac{3n+3}{4}}$ are labe $u_{\frac{sn+\tau}{4}}, u_{\frac{sn+ns}{4}}$, $u_{\frac{sn+ns}{4}}, \ldots, u_n$ and $w_{\frac{rn+1}{2}}, w_{\frac{rn+s}{2}}, \ldots, w_n$ are labeled with 4. Case (iv): $n \equiv 4 \pmod{4}$ The $\frac{3n}{2}$ vertices $v_1, v_2, v_3, ..., v_n$ and $w_1, w_2, w_3, ..., w_n$ are labeled with 1, the $\frac{3n+4}{4}$ vertices $u_1, u_2, u_3, ..., u_{\frac{3n}{4}}$ and w_n are labeled with 3, the $\frac{3n-4}{4}$ vertices $u_{\frac{5n+4}{4}}$, $u_{\frac{5n+8}{4}}$, $u_{\frac{5n+12}{4}}$, ..., u_n and $w_{\frac{n+2}{2}}$, $w_{\frac{n+4}{2}}$, $w_{\frac{n+6}{2}}$, ..., w_{n-1} are labeled with 4.

The vertex labeling f is a 4 total geometric mean cordial labeling

From the above four cases we observe that $|\mathbf{t}_{\text{mf}}(i) - \mathbf{t}_{\text{mf}}(j)| \leq 1$, for all i, $j \in \{1, 2, 3, \ldots, k\}$ and hence f is 4-total geometric mean cordial labeling and $P_n \odot 2K_1$ is 4-total geometric mean cordial graph.

References:

- [1]. I.Cahit, Cordial graphs: A weaker version of Graceful and Harmonious graphs, ArsCombin. 23(1987),201-207
- [2]. F.Harary, Graph Theory, Addition Wesley, New Delhi, 1969.
[3]. S. Somasundaram, R. Ponraj and P. Vidhyarani, Geometric m
- [3]. S. Somasundaram, R. Ponraj and P. Vidhyarani, Geometric mean labeling of graphs, Bulletinof pure and applied sciences, vol. 30E, no 2, (2011), pp.153-160.
- [4]. K.Chitra Lakshmi and K.Nagarajan, Geometric mean cordial labeling of graphs, International journal of mathematics and soft computing vol.7,no.1(2017),75-87.
- [5]. R.Ponraj, S.Subbulakshmi and S.Somasundaram, k-Total mean cordial graphs, J.math.comput.sci.10(2020),no 5,1697-1711.issn:1927-5307.
- [6]. R.Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from wheel, J.math.comput.sci.11(2021),no 1,467-476.issn:1927-5307.