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Abstract: The purpose of this study is to provide a new three-variable quadratic functional equation follow as: 
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then use the fixed point approach and direct method in Random Normal Spaces to address the Hyers-Ulam 

stability of this equation.  
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I. Introduction 

The stability of quadratic functional equations in random normed spaces is a fascinating topic in 

mathematics, particularly in the field of functional analysis. It deals with the behavior of solutions to functional 

equations when they are perturbed or approximated. The concept originates from a question posed by Stanislaw 

Ulam [17] in 1940 regarding the stability of group homomorphisms, and it was further developed by Donald 

Hyers [10], who provided the first affirmative answer in the context of Banach spaces. In random normed 

spaces, the stability of functional equations like the quadratic functional equation is studied under various 

conditions and norms. The quadratic functional equation typically takes the form: 

 

ℑ(𝜍1 + 𝜍2) + ℑ(𝜍1 − 𝜍2) = 2ℑ(𝜍) + 2ℑ(𝜍2) 

 Afterwards, Aoki [2] expanded on Hyers’s theorem’s result for additive mapping in 1950. For approximately 

linear mapping, Rassias ([5],[6]) offered a generalized version of Hyers in 1978. 

Since then, the researchers gave many new functional equations and discussed their stability in various spaces 

see ([1], [3], [4] ,[11], [12], [13], [16]). 

The fuctional equation  

 ℑ(𝜍1 + 𝜍2) + ℑ(𝜍1 − 𝜍2) = 2ℑ(𝜍1) + 2ℑ(𝜍2) (1) 

is referred to as a quadratic functional equation since it has a quadratic function as a solution, ℑ(𝜍1) = 𝑎𝜍1
2. 

To prove our main result, we need some basic notions from literature as follows: 

A mapping Ϝ:𝑅 ∪ {−∞, +∞} → [0,1] , if it is left-continuous, non-decreasing and satisfies the following 

condition as : Ϝ(0) = 0  and Ϝ(∞) = 1 , is called a distribution function. Set A contains all probability 

distribution functions Ϝ  with Ϝ(0) = 0 . A set consisting all function Ϝ ∈ 𝐴  for which Ϝ(∞) =1, where 

𝑙−Ϝ(𝜍1) = lim𝜏→𝜍1
−Ϝ(𝜏) is a subset of A and denoted by 𝐷+. 𝜖𝑎  is the element of 𝐷+ for any 𝑎 ≥ 0, which is 

defined as follow: 

𝜖𝑎 =  
0,  𝑖𝑓   𝜏 ≤ 𝑎
1,  𝑖𝑓   𝜏 > 𝑎.

  

 

Definition 1 [16] Let ζ represent a real linear space, ϰ represent a function from ζ into D+ (for any ς1 ∈
ζ,ϰ(ς1) is represented by ϰς1

) and Υ represent a continuous norm. If ϰ satisfies the following conditions: 

(𝑅𝑁1)𝜘𝜍1
(𝜏) = 𝜖𝑜(𝜏) for all 𝜏 > 0 if and only if 𝜍1 = 0; 
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(𝑅𝑁2)𝜘𝛼𝜍1
(𝜏) = 𝜘𝜍1

(
𝜏

|𝛼|
) for all 𝜍1 ∈ 𝜁, 𝛼 ≠ 0 and all 𝜏 ≥ 0; 

(𝑅𝑁3)𝜘𝜍1+𝜍2
(𝜏 + 𝑠) ≥ Υ(𝜘𝜍1

(𝜏),𝜘𝜍2
(𝑠))for all 𝜍1, 𝜍2 ∈ 𝜁 and all 𝜏, 𝑠 > 0. 

Then triple (𝜁,𝜘, 𝜏) is called a random normed space (briefly 𝑅𝑁-space [12]). 

 

Example 1 For any normed space (𝜁, ∥. ∥), there is a 𝑅𝑁-space (𝜁,𝜘,𝛶𝑀), where 𝛶𝑀  is the minimal 𝜏-norm 

and 𝜘𝜍1
(𝜏) =

𝜏

𝜏+∥𝜍1∥
 for all 𝜏 > 0. We refer to this space as induced random normed space.  

Definition 2 [16] Assume that (𝜁,𝜘,𝛶) be a Random Normed space. 

(1) If, for every 𝜏 > 0 and 𝜆 > 0, there exists a positive integer 𝑁 such that  

𝜘𝜍1𝑛−𝜍1
 𝜏 > 1 − 𝜆, whenever 𝑛 ≥ 𝑁, then a sequence {𝜍1𝑛

} in 𝜁 is said to be convergent to a point 𝜍1 ∈ 𝜁. 

Here, 𝜍1  is referred to as the limit of the sequence {𝜍1𝑛
} , and it is represented by the notation 

lim𝑛→∞𝜘𝜍1𝑛−𝜍1
(𝜏) = 1. 

(2) If, for every 𝜏 > 0 and 𝜆 > 0, there exists a positive integer 𝑁 such that 𝜘𝜍1𝑛−𝜍1𝑚
(𝜏) > 1 − 𝜆 whenever 

𝑛 ≥ 𝑚 ≥ 𝑀, then the sequence {𝜍1𝑛
} in 𝜁 is referred to as a Cauchy sequence. 

(3) Each Cauchy sequence in 𝜁  that converges to a point in 𝜁  indicates that the 𝑅𝑁  -space (𝜁,𝜘,Υ)  is 

complete.  

Theorem 1 [15] If {ς1n
} is a sequence of ζ and (ζ,ϰ,Υ) is a random normed space such that ς1n

→ ς1 then 

limn→∞ϰς1n
(τ) = ϰς1

(τ) almost everywhere. 

Definition 3 [15] If Υ satisfies the following conditions: 

(1) Υ is continuous, 

(2) Υ is associative and commutative, 

(3) Υ(𝑎, 1) = 1 for each 𝑎 ∈ [0,1], 
(4) Υ(𝑎, 𝑏) ≤ Υ(𝑐,𝑑) whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for each 𝑎, 𝑏, 𝑐,𝑑 ∈ [0,1], 
then the mapping Υ: [0,1] × [0,1] → [0,1] is called a continuous 𝜏-norm (briefly, a triangular norm). 

The examples of continuous 𝜏 -norm are as follows: 

Υ𝑀(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑎, 𝑏},Υ𝑃(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑎, 𝑏},Υ𝐿(𝑎, 𝑏) = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1,0} 

Recall that , if Υ is a 𝜏-norm and {𝜍1𝑛
} is a sequence of number in [0,1], then Υ𝑖=1

𝑛 𝜍1𝑖
 is defined recurrently 

by Υ𝑖=1
1 𝜍1𝑖

= 𝜍11
 and Υ𝑖=1

𝑛 𝜍1 𝑖
= Υ(Υ𝑖=1

𝑛−1𝜍1𝑖
, 𝜍1𝑛

) = Υ(𝜍11
, 𝜍12

, 𝜍13
, . . . 𝜍1𝑛

)  for each 𝑛 ≥ 2  and Υ𝑖=1
∞ 𝜍1𝑛

 is 

defined as Υ𝑖=1
∞ 𝜍1𝑛+𝑖

 [9].  

For the sake of this article, let 𝜁  represent a real linear space, (Ψ,𝜘′,Υ𝑀) an Random Normed space, and 

(𝜓,𝜘,Υ𝑀) a complete Random Normed space. 

For mapping ℑ: 𝜁 → 𝜓, we define 

𝐷ℑ(𝜍1, 𝜍2 , 𝜍3) = ℑ(𝜍1 + 𝜍2 − 2𝜍3) + ℑ(𝜍1 − 2𝜍2 + 𝜍3) − ℑ(2𝜍2 − 2𝜍3) − ℑ(𝜍1 − 𝜍3) − ℑ(𝜍1 − 𝜍2) (2) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁. 

In this work, we apply the fixed-point and direct methods to investigate the generalized Hyers-Ulam stability of 

the quadratic functional equation (1) under the minimum 𝜏-norm in random normed spaces. 

 

II. Results 
Here, the new quadratic functional equation will be introduced and its stability in random normed space will be 

discussed using both the direct and fixed point methods.  

Proposition 2 The functional equation 

 ℑ(𝜍1 + 𝜍2 − 2𝜍3) + ℑ(𝜍1 − 2𝜍2 + 𝜍3) = ℑ(2𝜍2 − 2𝜍3) + ℑ(𝜍1 − 𝜍3) + ℑ(𝜍1 − 𝜍2) (3) 

is a quadratic functional equation.  

Proof: Putting 𝜍1 = 𝜍2 and 𝜍3 = 0 in equation (3), we get 

 ℑ(2𝜍2) + ℑ(−𝜍2) = ℑ(2𝜍2) + ℑ(𝜍2) + ℑ(0) 

 ℑ(−𝜍2) = ℑ(𝜍2) + ℑ(0). (4) 

Taking 𝜍1 = 𝜍2 = 𝜍3 in equation (3) it will be ℑ(0) = 0. 

Then equation (4) becomes  

 ℑ(−𝜍2) = ℑ(𝜍2). (5) 

Taking 𝜍3 = 0 in equation (3), we get  

 ℑ(𝜍1 + 𝜍2) + ℑ(𝜍1 − 2𝜍2) = ℑ(2𝜍2) + ℑ(𝜍1) + ℑ(𝜍1 − 𝜍2) 

 ℑ(𝜍1 + 𝜍2) = ℑ(2𝜍2) + ℑ(𝜍1) + ℑ(𝜍1 − 𝜍2) − ℑ(𝜍1 − 2𝜍2). (6) 

Similarly, taking 𝜍3 = 0 and 𝜍2 = −𝜍2 in equation (3), we obtain  

 ℑ(𝜍1 − 𝜍2) = ℑ(−2𝜍2) + ℑ(𝜍1) + ℑ(𝜍1 + 𝜍2) − ℑ(𝜍1 + 2𝜍2). (7) 

Adding equation (6) and equation (7), and using ℑ(−𝜍2) = ℑ(𝜍2) we have 

 2ℑ(2𝜍2) + 2ℑ(𝜍1) = ℑ(𝜍1 − 2𝜍2) + ℑ(𝜍1 + 2𝜍2). 
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Now putting 𝜍2 =
𝜍2

2
, we obtain  

 2ℑ(𝜍1) + 2ℑ(𝜍2) = ℑ(𝜍1 + 𝜍2) + ℑ(𝜍1 − 𝜍2), (8) 

taking 𝜍1 = 𝜍2, in above equation, we get 

 ℑ(2𝜍1) = 22𝑓(𝜍1), (9) 

clearly, this equation become a quadratic equation.  

Theorem 3 (Direct Method) Let ϕ: ζ3 → Ψ be a function such that for some 0 < 𝛼 < 32, 

 𝜘′𝜙(3𝜍1 ,3𝜍2 ,3𝜍3)(𝜏) ≥ 𝜘′𝛼𝜙 (𝜍1 ,𝜍2 ,𝜍3)(𝜏), (10) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0 and 

 lim
𝑛→∞

𝜘′𝜙(3𝑛 𝜍1 ,3𝑛 𝜍2 ,3𝑛 𝜍3)(32𝑛𝜏) = 1, (11) 

 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

If ℑ: 𝜁 → 𝜓 is a mapping with ℑ(0) = 0 such that 

 𝜘𝐷ℑ(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍1 ,𝜍2 ,𝜍3)(𝜏), (12) 

for all 𝜍1 ∈ 𝜁 and 𝜏 > 0, then there exists a unique quadratic mapping Θ: 𝜁 → 𝜓, which satisfies equation (2) 

such that 

 𝜘(ℑ(𝜍1)−Θ(𝜍1))(𝜏) ≥ 𝜘′𝜙(𝜍1 ,2𝜍1 ,3𝜍1)((32 − 𝛼)𝜏) (13) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0.  

Proof: Replacing (𝜍1 , 𝜍2, 𝜍3) by (𝜍3 , 2𝜍3, 3𝜍3) in equation (12), we get 

 𝜘 1

32ℑ(3𝜍3)−ℑ(𝜍3)
(𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)(9𝑡). (14) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. Replacing 𝜍3 by 3𝑛𝜍3 in equation (14), we get 

 𝜘
 
ℑ(3𝑛+1𝜍3)

32 −ℑ(3𝑛 𝜍3) 
(𝜏) ≥ 𝜘′𝜙(3𝑛 𝜍3 ,2.3𝑛 𝜍3 ,3.3𝑛 𝜍3)(9𝜏) (15) 

 𝜘
 
ℑ(3𝑛+1𝜍3

32 𝑛+1 
−
ℑ 3𝑛 𝜍3 

32𝑛  
 𝜏 ≥ 𝜘 ′ 𝜙 𝜍3 ,2𝜍3 ,3𝜍3   

32

𝛼
 
𝑛

 9𝜏  , (16) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0, since  

 
ℑ(3𝑛 𝜍3)

32𝑛 − ℑ(𝜍3) =  𝑛−1
𝑗=0  

ℑ(3𝑗+1𝜍3)

32(𝑗+1) −
ℑ(3𝑗 𝜍3)

32𝑗   

 𝜘
(
ℑ(3𝑛 𝜍3)

32𝑛 −ℑ(𝜍3))
( 𝑛−1

𝑗=0
1

9
(
𝛼

32)𝑗 𝜏) ≥ Υ𝑀((𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)(𝜏)) 

 = 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)(𝜏), (17) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. Replacing 𝜍3 by 3𝑚𝜍3 in equation (17), we get 

 𝜘
 
ℑ(3𝑛+𝑚 𝜍3)

32(𝑛+𝑚 ) −
(3𝑚 𝜍3)

32𝑚  
(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)  

9𝜏

 𝑛+𝑚−1
𝑗=𝑚 (

𝛼

32)𝑗
 . (18) 

This implies that {
ℑ(3𝑛 𝜍3)

32𝑛 } is a Cauchy sequence in complete 𝑅𝑁-space, so it converges to some point Θ(𝜍3) ∈

𝜓, for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Letting 𝑚 = 0 in equation (18) we get 

𝜘
 
ℑ(3𝑛 𝜍3)

32𝑛 −ℑ(𝜍3) 
(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)  

9𝜏

 𝑛−1
𝑗=0 (

𝛼

32)𝑗
  (19) 

 Let Θ(𝜍3) = lim𝑛→∞
ℑ(3𝑛 𝜍3)

3𝑛
, and for any 𝛿 > 0 we have 

𝜘Θ(𝜍3)−ℑ(𝜍3)(𝛿 + 𝜏) ≥ Υ𝑀  𝜘
Θ(𝜍3)−

ℑ(3𝑛 𝜍3)

32𝑛

(𝛿),𝜘ℑ(3𝑛 𝜍3)

32𝑛 −ℑ(𝜍3)
(𝜏)  

 ≥  𝜘
Θ(𝜍3)−

(3𝑛 𝜍3)

3𝑛
(𝛿),𝜘′𝜙(𝜍3 ,2𝑧,3𝑧)  

9𝜏

 𝑛−1
𝑗=0 (

𝛼

32)𝑗
  , (20) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0.  

Letting 𝑛 → ∞, in equation (20) , we get  

 𝜘Θ(𝜍3)−ℑ(𝜍3)(𝛿 + 𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)((32 − 𝛼)𝜏) (21) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Letting 𝛿 → 0, we obtain 

 𝜘Θ(𝜍3)−ℑ(𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)((32 − 𝛼)𝜏) (22) 

So, condition of equation (12) holds. 

Replacing 𝜍1 by 3𝑛𝜍1, 𝜍2 by 3𝑛𝜍2 and 𝜍3 by 3𝑛𝜍3 in equation (12) respectively, we get  

 𝜘𝐷𝑓 (3𝑛 𝜍1,3𝑛 𝜍2,3𝑛 𝜍3)

32𝑛

(𝜏) ≥ 𝜘′𝜙 (3𝑛 𝜍1 ,3𝑛 𝜍2 ,3𝑛 𝜍3)(32𝑛𝜏) (23) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. Letting 𝑛 → ∞, in equation (23), we get, Θ satisfy the equation (2). 
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To prove the uniqueness: let, if possible, there exists 𝑊: 𝜁 → 𝜓 which satisfing equation (2) and (6). Hence  

Θ(3𝑛𝑧) = 32𝑛Θ(𝜍3) 

𝑊(3𝑛𝜍3) = 32𝑛𝑊(𝜍3) 
Thus  

 𝜘Θ(𝜍3)−𝑊(𝜍3)(𝜏) = 𝜘Θ (3𝑛 𝜍3)

32𝑛 −
𝑊 (3𝑛 𝜍3)

32𝑛

(𝜏) (24) 

 ≥ Υ𝑀  𝜘
(
Θ (3𝑛 𝜍3)

32𝑛 −
ℑ(3𝑛 𝜍3)

32𝑛

𝜏),𝜘ℑ(2𝑛 𝜍3)

22𝑛 −
𝑊 (2𝑛 𝜍3)

22𝑛

 
𝜏

2
 

2

  (25) 

 ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)  (32 − 𝛼)  
32

𝛼
 
𝑛

𝑡 ,(26) 

 

for all 𝜍3 ∈ 𝜁 and all 𝜏 > 0. Since, 

 lim
𝑛→∞

 (32 − 𝛼)  
32

𝛼
 
𝑛

𝑡 = ∞ 

we have 

 𝜘Θ(𝜍1)−𝑊(𝜍1)(𝜏) = 1 

for all 𝜏 > 0. 

Thus, the Quadratic mapping Θ is unique. 

Theorem 4 Let 𝜙: 𝜁3 → 𝛹 be a function such that, for some 32 < 𝛼, 

 𝜘′𝜙(
𝜍1
3

,
𝜍2
3

,
𝜍3
3

)(𝜏) ≥ 𝜘′𝜙 (𝜍1 ,𝜍2 ,𝜍3)(𝛼𝜏) (27) 

and lim𝑛→∞𝜘′32𝑛𝜙(
𝜍1
3𝑛

,
𝜍2
3𝑛

,
𝜍3
3𝑛

)(𝜏) = 1  for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁  and all 𝜏 > 0 . If ℑ: 𝜁 → 𝜓  is mapping such that 

ℑ(0) = 0 and satisfies equation (11), then there exists a unique quadratic mapping Θ: 𝜁 → 𝜓 such that 

 𝜘ℑ(𝜍3)−Θ(𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)(𝛼 − 32)𝜏), (28) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Proof: It follows from equation (11) that 

 𝜘(ℑ(𝜍3)−32ℑ(
𝜍3
3

))(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)(𝛼𝜏), (29) 

for all 𝜍3 ∈ 𝜁. Using the triangular inequality and equation (28), we get 

 𝜘(ℑ(𝜍3)−32𝑛ℑ(
𝜍3
3𝑛

))(𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)  
𝛼𝜏

 𝑚+𝑛−1
𝑗=𝑚 (

32

𝛼
)𝑗
 , (30) 

for all 𝜍3 ∈ 𝜁  and 𝑚,𝑛 ∈ Ψ  with 𝑛 > 𝑚 ≥ 0 . In the complete random normed spces, then the sequence 

{32𝑛ℑ(
𝜍3

3𝑛
)} is a Cauchy sequence, so it converges to some point Θ(𝜍1) ∈ 𝜓. We can define a mapping Θ: 𝜁 →

𝜓 by 

 Θ(𝜍3) = lim
𝑛→∞

32𝑛ℑ(
𝜍3

3𝑛
), 

for all 𝜍3 ∈ 𝜁. Then the above mapping satisfies the equation (1) and (28) . The remaining proof is same as in 

Theorem 2, one can easily deduce it. 

Corollary 1. Let 𝜃 be a non negative real number and (𝜍3)0 be a unique fixed point of Ψ. If ℑ: 𝜁 → 𝜓 is a 

mapping with ℑ(0) = 0 which satisfies 

 𝜘𝐷(ℑ(𝜍1 ,𝜍2 ,𝜍3))(𝜏) ≥ 𝜘′𝜃𝜍30
(𝜏), (31) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0, then there exists a unique quadratic mapping 𝐶: 𝜁 → 𝜓 such that 

 𝜘ℑ(𝜍3)−Θ(𝜍3)(𝜏) ≥ 𝜘′𝜃𝜍30
(8𝜏), (32) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Proof: Let 𝜙: 𝜁3 → Ψ be defined by 𝜙(𝜍1, 𝜍2, 𝜍3) = 𝜃(𝜍3)0. Then, the proof follow from Theorem 1 by taking 

𝛼 = 1. This complete the proof. 

Corollary 2. Let 𝑝, 𝑞, 𝑟 ∈ 𝑅 be a positive real number with 𝑝, 𝑞, 𝑟 < 3 and (𝜍3)0 be a fixed unit point of Ψ. If 

ℑ: 𝜁 → 𝜓 is a mapping with ℑ(0) = 0 which satisfies  

 𝜘𝐷ℑ(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ 𝜘′(∥𝜍1∥
𝑝+∥𝜍2∥

𝑞+∥𝜍3∥
𝑟)(𝜍3)0

(𝜏), (33) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0, then there exists a unique quadratic function Θ: 𝜁 → 𝜓 such that  

 𝜘ℑ(𝜍3)−Θ(𝜍3)(𝜏) ≥ 𝜘′∥𝜍1∥
𝑝 𝜍30

((32 − 3𝑝)𝜏), (34) 

for all 𝜍1, 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Proof: Let 𝜙: 𝜁3 → Ψ be defined by 𝜙(𝜍1, 𝜍2 , 𝜍3) = (∥ 𝜍1 ∥
𝑝 +∥ 𝜍2 ∥

𝑞+ ∥ 𝜍3 ∥
𝑟)(𝜍3)0. Then the proof follow 

from Theorem 1 by 𝛼 = 3𝑝 . This complete the proof. 

 

Theorem 5 [7]. Suppose that J:Ω → Ω is a strictly contractive mapping and (Ω, d) is a complete generalized 

metric space with Lipschitz constant L < 1 . Then, for each ς1 ∈ Ω  , either d(Jnς1, Jn+1) = ∞  for all 

non-negative integers n ≥ 0 or there exists a natural number n0 such that 
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(1) 𝑑(𝐽𝑛𝜍1, 𝐽𝑛+1𝜍1) < ∞ for all 𝑛 ≥ 𝑛0; 

(2) The sequence {𝐽𝑛𝜍1} is convergent to a fixed point 𝜍2
∗ of 𝐽; 

(3) 𝜍2
∗ is the unique fixed point of 𝐽 in the set 𝐴 = {𝜍2 ∈ Ω:𝑑(𝐽𝑛0𝜍1, 𝜍2) < ∞}; 

(4) 𝑑(𝜍2, 𝜍2
∗) ≤

1

1−𝐿
𝑑(𝜍2 , 𝐽𝜍2) for all 𝜍2 ∈ 𝐴.  

 

Theorem 6 (Fixed Point Method) Let ϕ: ζ3 → D+ be a function such that, for some 0 < 𝛼 < 32,  

𝜘′𝜙(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≤ 𝜘′𝜙 (3𝜍1 ,3𝜍2 ,3𝜍3)(𝛼𝜏), (35) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0.If ℑ: 𝜁 → 𝜓 is a mapping with ℑ(0) = 0 such that 

 𝜘𝐷𝑓(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍1 ,𝜍2 ,𝜍3)(𝜏), (36) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜓 and 𝜏 > 0, then there exists a unique quadratic mapping Θ: 𝜁 → 𝜓 such that 

𝜘ℑ(𝜍1)−Θ(𝜍1)(𝜏) ≥ 𝜘′𝜙 (𝜍1 ,2𝜍1 ,3𝜍1)((32 − 𝛼)𝜏), (37) 

for all 𝜍1, 𝜍3 ∈ 𝜓 and 𝜏 > 0. 

Proof: Taking 𝜍1 = 𝜍3, 𝜍2 = 2𝜍3 and 𝜍3 = 3𝜍3 in equation (35), we get 

 𝜘 1

32(3𝜍3)−ℑ(𝜍3)
(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)(9𝜏), (38) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. Let Ω = {ð: 𝜁 → 𝜓, ð(𝜍1) = 0} and the mapping 𝑑 defined on Ω by 

 𝑑(ð,ℏ) = inf{𝑐 ∈ [0,∞):𝜘ð(𝜍3)−ℏ(𝜍3)(𝑐𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)(𝜏),∀𝜍3 ∈ 𝜁}. 

In this case, (Ω,𝑑) is a generalized complete metric space, where inf𝜙 = −∞, as usual. Let’s now examine the 

mapping 𝐽:Ω → Ω, which is defined as 

 𝐽ð(𝜍3) =
1

32 ð(3𝜍3) 

for each ð ∈ Ω and 𝜍3 ∈ 𝜁. 

Let ð,ℏ ∈ Ω and 𝑐 ∈ [0,∞) be an arbitrary constant 𝑑(ð,ℏ) < 𝑐.Then 

 𝜘ð(𝜍3)−ℏ(𝜍3)(𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)(𝜏) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0 and so  

 𝜘𝐽ð(𝜍3)−𝐽ℏ(𝜍3)(
𝛼𝑐𝜏

32 ) = 𝜘ð(3𝜍3)−ℏ(3𝜍3)(𝛼𝑐𝜏) 

 ≥ 𝜘 ′ 𝜙 𝜍3 ,2𝜍3 ,3𝜍3 
 𝜏 , (39) 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. Hence, we have 

𝑑 𝐽ð, 𝐽ℏ ≤
𝑎𝑐

32
≤

𝛼

32
𝑑 ð,ℏ , 

for all ð,ℏ ∈ Ω. Then 𝐽 is a contractive mapping on Ω with Lipchitz constant 𝐿 =
𝛼

32 < 1. 

So, by using Theorem 3 there exists a unique fixed point of 𝐽 in the set of function Ω1 = {ð ∈ Ω:𝑑(ð,ℏ) < ∞}, 

which is Θ: 𝜁 → 𝜓, such that 

 Θ 𝜍1 = lim
𝑛→∞

ℑ 32𝜍1 

32𝑛 , 

 for each 𝜍1 ∈ 𝜁 since lim𝑛→∞𝑑(𝐽𝑛𝑓,Θ) = 0 also from 

 𝜘
ℑ(

3𝜍3
32 )−ℑ(𝜍3)

(𝜏) ≥ 𝜘′𝜙(𝜍3 ,2𝜍3 ,3𝜍3)(9𝜏), 

it follows that 𝑑(ℑ, 𝐽ℑ) ≤
1

32 therefore using Theorem 3 again, we get  

 𝑑 ℑ,Θ ≤
1

1−𝐿
𝑑 ℑ, 𝐽ℑ ≤

1

32−𝛼
 

This means that 

 𝜘ℑ(𝜍3)−Θ(𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍3 ,2𝜍3 ,3𝜍3)((32 − 𝛼)𝜏), 

for all 𝜍3 ∈ 𝜁 and 𝜏 > 0. 

Also, by substituting 3𝑛𝜍1 for 𝜍1, 3𝑛𝜍2 for 𝜍2 and 3𝑛𝜍3 for 𝜍3 in equation (35), respectively, we get  

 𝜘𝐷𝑄(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ lim
𝑛→∞

𝜘′𝜙(3𝑛 𝜍1 ,3𝑛 𝜍2 ,3𝑛 𝜍3)(32𝑛𝜏) 

 = lim
𝑛→∞

𝜘′𝜙(𝜍1 ,𝜍2 ,𝜍3)   
32

𝛼
 
𝑛

𝜏 = 1, (40) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. By using (𝑅𝑁1), the mapping Θ is quadratic 

Assume that there is a quadratic mapping Θ′: 𝜁 → 𝜓 that fulfills (36) in order to demonstrate the uniqueness. 

As a result, Θ is a fixed point in Ω1 for 𝐽. Even so, 𝐽 has just one fixed point in Ω1, as Theorem 3 indicates. 

Thus, Θ = Θ′. This concludes the proof.  

Theorem 7 Let ϕ: ζ3 → D+ be a function such that, for some 0 < 32 < 𝛼, 

 𝜘′𝜙(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ 𝜘′𝜙 (
𝜍1
3

,
𝜍2
3

,
𝜍3
3

)(𝛼𝜏), (41) 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. If ℑ: 𝜁 → 𝜓 is a mapping with ℑ(0) = 0 which satisfies (30) then there exists 

a unique quadratic mapping Θ: 𝜁 → 𝜓 such that 

 𝜘ℑ 𝜍3 −Θ 𝜍3 
 𝜏 ≥ 𝜘 ′ 𝜙 𝜍3 ,2𝜍3 ,3𝜍3   𝛼 − 32 𝜏 , 

for all 𝜍3 ∈ 𝜁  𝑎𝑛𝑑  𝜏 > 0. 
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Proof: The intended result can be easily obtained by making a tweak to the proof of Theorems 4 and 6. The 

proof is now complete.  

Corollary 3. Let 𝜁 be a Banach space , 𝜖 and 𝑝 be a positive real number with 𝑝 ≠ 2. Assume that ℑ: 𝜁 → 𝜓 

is a function with ℑ(0) = 0 which satisfies  

 ∥ 𝐷ℑ(𝜍1, 𝜍2, 𝜍3) ∥≤ 𝜖(∥ 𝜍1 ∥
𝑝 +∥ 𝜍2 ∥

𝑝 +∥ 𝜍3 ∥
𝑝), 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁.Then there exists a unique quadratic function Θ: 𝜁 → 𝜓 such that  

 ∥ Θ(𝜍1) − ℑ(𝜍1) ∥≤
𝜖(1+2𝑝+3𝑝 )∥𝜍1∥

𝑝

|32−3𝑝 |
, 

for all 𝜍1 ∈ 𝜁 and 𝜏 > 0. 

Proof: Define 𝜘: 𝜁 × ℝ → ℝ by 

𝜘𝜍1
(𝜏) =  

𝜏

𝜏+∥ 𝜍1 ∥
,  𝑖𝑓   𝜏 > 0

0,  𝑖𝑓   𝜏 ≤ 0.

  

for all 𝜍1 ∈ 𝜁 and 𝜏 ∈ ℝ.Then (𝜁,𝜘,Υ𝑀) is a complete 𝑅𝑁-space. Denote 𝜙: 𝜁 × 𝜁 → 𝑅 by  

 𝜙(𝜍1 , 𝜍2, 𝜍3) = 𝜖(∥ 𝜍1 ∥
𝑝 +∥ 𝜍2 ∥

𝑝 +∥ 𝜍3 ∥
𝑝), 

for all 𝜍1, 𝜍2, 𝜍3 ∈ 𝜁 and 𝜏 > 0. It follows from ∥ 𝐷ℑ(𝜍1, 𝜍2 , 𝜍3) ∥≤ 𝜃(∥ 𝜍1 ∥
𝑝 +∥ 𝜍2 ∥

𝑝 +∥ 𝜍3 ∥
𝑝) that  

 𝜘𝐷ℑ(𝜍1 ,𝜍2 ,𝜍3)(𝜏) ≥ 𝜘′𝜙 (𝜍1 ,𝜍2 ,𝜍3)(𝜏), 

 for all 𝜍1, 𝜍2 , 𝜍3 ∈ 𝜁 and 𝜏 > 0, where 𝜘′:ℝ × ℝ → ℝ given by 

𝜘′𝜍1
(𝜏) =  

𝜏

𝜏+∥ 𝜍1 ∥
,  𝑖𝑓   𝜏 > 0

0,  𝑖𝑓   𝜏 ≤ 0.

  

is a RN on ℝ.Then all the condition of Theorem 6 and 7 hold and so there exists a unique quadratic mapping 

Θ: 𝜁 → 𝜁 such that 

 
𝜏

𝜏+∥Θ(𝜍1)−ℑ(𝜍1)∥
= 𝜘Θ(𝜍1)−ℑ(𝜍1)(𝜏) 

 ≥ 𝜘′𝜙(𝜍1 ,2𝜍1 ,3𝜍1)(|32 − 𝛼|𝜏) 

=
|32−𝛼|𝜏

|32−𝛼 |𝜏+𝜖(1+2𝑝+3𝑝 )∥𝜍1∥
𝑝 , 

So, we can obtain the required result after taking 𝛼 = 3𝑝 .  
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