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ABSTRACT: We conduct a prior error analysis of eigenvalue problems for a class of second-order elliptic
equations with variable coefficients, focusing on the Interior Penalty Discontinuous (IPDG) finite element
method. Initially, we construct the IPDG scheme for the discrete problem using Green's formula, followed by
stability estimation. Subsequently, numerical experiments demonstrate the attainment of optimal convergence
order.
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I INTRODUCTION

The eigenvalue problem has significant physical implications and finds widespread applications in
quantum mechanics, fluid mechanics, modern science and technology, engineering, and other fields. Currently,
there exist numerous methods for solving eigenvalue problems, such as the finite element method, finite
difference method, and spectral method. In reference [1], a high-precision mixed-element method for the
second-order elliptic eigenvalue problem in a new variational form is discussed. Reference [2] explores the
penalty discontinuity finite element method on two grids for asymmetric or indefinite elliptic equations.
Literature [3] presents an effective method for solving eigenvalue problems based on multigrid discretization
with shift inverse iteration. Reference [4] discusses an HP-type symmetric interior penalty discontinuous
Galerkin finite element method for fourth-order elliptic problems. The discontinuous finite element method
serves as a fundamental discretization technique for numerically solving second-order elliptic eigenvalue
problems. It typically exhibits local conservation, stability, and high-order accuracy, making it adept at
resolving complex problems. For instance, it allows for handling changes in the types of eigenvalues across
different solution regions, permits hanging nodes in triangulation meshes, and facilitates hp adaptivity. In recent
years, the discontinuous finite element method has seen extensive application in elliptic eigenvalue problems.
Compared to the continuous element method, the discrete linear algebraic system with the discontinuous finite
element method boasts a higher degree of freedom. The interior penalty discontinuous Galerkin method was
initially analyzed by Arnold, Wheeler, and others, garnering significant attention from researchers worldwide.
Subsequently, Song, Yang, and others extended this method to nonlinear equation problems and furthered the
Galerkin theory analysis of internal penalty discontinuity.

In this study, we focus on the interior penalty discontinuous (IPDG) finite element method for second-
order elliptic eigenvalue problems with variable coefficients. We start by determining the HP-finite element
space through solution region splitting. Subsequently, we construct the discrete IPDG formulation using Green's
formula and establish its stability through theorem proving. Finally, we estimate the prior error and verify
optimal convergence through numerical experiments.

. BASIC THEORY PREPARATION
Let 2 be a bounded polygon region in R?, and the boundary 0.2 is Lipshitz continuous. Consider the
Dirichlet boundary condition eigenvalue problem: find A € € and u € H} (2), such that
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-V (aVu) = Au, inf.
{ (21)
u=0, on 0.
The coefficient a(x) satisfies C,, < a(x) < Cy,, x € 2, where C, and C,, are plus constant.
Define a bilinear form that is continuous
a(u,v) = (aVu,Vv), Yu,v € H}(Q). (2.2)

Where
(aVu,Vv) = faVu-Vvdx.
0

There exist two plus constants A and B that are independent of u and v, such that the bilinear form a(-,") is
satisfied

la V)| <Alulloll vl Vu,v e HiW),
la(v,v)| 2 Bllvll},, Vv € Hj(£2).
The weak form of (2.1) is for (4, u) € C X H}(12), u # 0,makes the following equation was established
a(u,v) = A(u,v), Vv € H} (). (2.4)
Let 7;, = {x} be a grid of regular shape divided by region 2, the length of the side in cell k is represented by h,,
the diameter of cell k is represented by h,, and h = max,cr, by - I, = L} U L2, where I} represents the inner
edge and I3 represents the edge on the boundary d12. Define the mean and jump values of v over e:

(2.3)

v} = %(v+ +v7), [W]]=vinf +vng,
Where e = 0k™ N k™, v+ = v|,+, v~ = v|,-, nis the unit external normal vector from k* tok~. Ife € I;? ,
define the mean and jump values of v over e:
w=v, [W]]=vn
The fragment function space on partition 7;, is introduced:
H5(T) = {v € L2(N):v|,, € H(x), VK € T,},
Using p,c = 1 to represent the degree of the polynomial in unit k € T, denoted by p = {p,c},e7,, the hp-finite
element space is now defined as:
SP(T;) = {v € L2():v|, € SPx(k), VK € Tp,}.
Introducing the functions h and p into the relevant local grid size and approximation order in L (I},) is:
min{hy, b}, x € e, max{py, bx} X € ey,
h=h(x):= p=pk):=
h;cr X € €yp, Pie X € €yp,
Where e,.,.r = int(dk N 0k'), e, = int(0x N 00).
Multiply both sides of the first equation of formula (2.1) by v, which is obtained by Green's formula:

—jV-(aVu) : vdx=JaVu- Vvdx—J aVu- v-nds, (2.5)
K K ok
flu-vdx=faVu-Vvdx—f aVu- v-nds, (2.6)
K K ok
And
Zj/lu-vdx=ZJaVu-Vvdx—ZjaVu-v-nds, (2.7)
KETR K KEIp K KEIp ox
And
Z J aVu-v-nds = z JaVu v-nds = Z j{aVu}-[[v]]ds, (2.8)
KETR oK e€l'y e€lry €
Then
f/lu cvdx = Z J-aVu - Vvdx — J-{aVu} [[v]]ds, (2.9)
KETR K eel'p

And because [[u]] ison e € I}, there is

f Au-vdx = Z f @ Vu - Vodx — {aVu} - [[v]]ds — Z f [[u]] - {aVv}ds,

KETR e€lry e
(2.10)
Finally written as

Llu-vdx - Z LaVu-Vvdx— Z fe{aVu} [[v]]ds — Z f[[u]] {aVv)ds

KETR e€ry e€l'y €
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+ 3 [apn - s, 211)
eelry €
Where 7 is the penalty parameter.
Define
(o) = Y [ @y vy = ) [ (Vi) [[uallds
KETp e€lp
Z f [[unll - {@Vvp}ds + Z np*h;t f[ [wnl] - [[vallds.  (2.12)
eelrp € eelrp
The finite element approximation of (2.4) is to find (1, ,u,) € C X SP(7},),u;, # 0, such that
ah(uh ) Uh) = Ah(uh ) Uh), Vvh € Sp(g;l) (213)
The source problem of (2.4) is: find w € H} (), such that
a(w,v) = (f,v), Vv € H} (). (2.14)
The finite element approximation of (2.14) is: find w;, € SP(I},), such that
an(wy ,vp) = (f,vh) , Vv, € SP(Tp). (2.15)
Define linear bounded operator T: L2(2) — H () satisfies
a(Tf,v) = (f,v), Vf€EL*W), veHD), (2.16)
Then (2.4) the equivalent operator form is:
1
Tu = T (2.17)
It is satisfied by (2.13) the corresponding discrete solution operator T},: L?(2) — SP(I3,) that can be defined
an(Tof,v) = (f,v), Vf€L*(Q), VveSP). (2.18)
Then the equivalent operator form of (2.13) is:
1
Thuh = ——Up. (219)
An

Introduce a sum space V(h) = SP(I;) + Hi (1) endowed with a locally discontinuous finite element norm,
where the discontinuous finite element norm is:

lvn = > NaVo, Wt D 2 e ol (2.20)
KETR e€ery
And the h-norm is defined on the fragment function space H*5(7;,) (s > 2) as:
I v I5=1 vy 15+ z P~% hell{aVvp I3 .. (2.21)
eelp
Note that on a discontinuous finite element space S?(7;,), || - llg and || - ||;, are equivalent.

According to literature [8] and Green's formula, the consistency of the local discontinuous finite
element method can be deduced. Combined with equation (2,15), the error formula can be obtained as follows:

ah(W — Wy, 'Uh) = 0, V'Uh € Sp(Th) (222)
It is not difficult to see that the following continuity and ellipticity hold:
1
lan (up, vi)l SIup pll vy ly, Yup, vy, € SP(T3) + HYS(T) <s > E)’ (2.23)
I up 15 lag (un, up)l- (2.24)

Let w be the solution to (2.14), and f € L?(2), assume that the following regularity estimates hold

1
Wlhes S I, (3<s5<1).
Lemma 2.1 (Proposition 4.9 in [9]) Letk € 7, and v € H(x), s, = 1 exist, then there is a polynomial
Hpk v € SPx,p, = 1,2,... that satisfies (0 <m < s,)

||v — mx S R MPHLSOTI S || (2.25)

Px U"

m,K
. 1 1

lo = oll s BT 2 (2.26)
Now the global discontinuous interpolation opefator 17{}: H}(Q) — SP(T3,) is introduced so that 17{,‘ W), =
M, (ul,), for a vector-valued function r = (ry, 1y, -+, 1), defines 11} (1), = (2w, [T18r,, -+, T)1,).
Theorem 2.1 Let w and wy, be solutions to equations (2.14) and (2.15) respectively, w satisfies w|,, € H%< (i),
and for all k € 7}, and s, = 1, the following inequalities are true

lw—=wyllp s inf [lw—vullp. (2.27)

VRESH
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3
w=wyll, < Z thm(pK+1,SK)—1 PE_SK"W"SK,K. (2.28)
KETR
Proof First, we prove that equation (2.27), by using equation (2.22), equation (2.23) and equation (2.24), can
be derived
lvn —will} S lap(vy — wy, vy, — wp)|
S apn(vp —w, v, —wy) +ay(W — wy, vy, — wy,) (2.29)
S vy —wil, vy —will,,
Using the triangle inequality
lw—=wy lpsllw—=vy ll, +ll vy —w . (2.30)
From formula (2.29) and formula (2.30), formula (2.27) can be obtained.
Below we prove that formula (2.28) is derived from formula (2.21),so that E,(w) = w — H{}w has

1 2
I En(w) 12 Z laVy B, WG , h 2p[ Ep(w)] ] o hep~ {aV,E,(w)}
KETpR 0e
1
S D VB WG, + Z > (hezanh(w)uo_e + hZp™" I @V, B (w) ng,e)
KETR k€T ecik
:=11 +12 +I3. (2.31)
I, is estimated, which can be obtained from equation (2.25)
2
laVaEr W)l s (AP il ) (232)
I, is estimated, which can be obtained from equation (2.26)
1 . 3 s 2
h2plE,WII;, S (hxmln(”"+1’s“)‘1p,§ ° ||w||s,€,,c> . (2.33)
I is estimated, which can be obtained from equation (2.26)
1 2
hp=1 || aV,E, (w) 12, < pIn @it LSO, 2T, ||SK,,C> , (2.34)
It is obtained by formula (2.32), (2.33) and (2.34)
3
A P i A T (2.35)
KETh
Error estimation formula and interpolation error formula are the following formula
inf llw— vy lISlw - mw . (2.36)
VhE€VR

Formula (2.28) is obtained from formula (2.27), formula (2.35) and formula (2.36), and the proof is complete.
Theorem 2.2 Let w and w,, be solutions to equations (2.14) and (2.15) respectively, and let w satisfy w|, €
H®%<(x), and for all k € 7}, and s, > 1, the following inequalities hold

1
lw — Wh”o,n s hrpf_r Iw—wy . (2.37)
”W _ Wh”O,fz < Z hmin(p+1,s)+r—1p2—s—r"W"Sﬂ’ (2.38)
KETR

Where s = min,eg, s¢ = 1,% <r<1. (2.36)

Proof  Consider the source problem a(v,w*) = (v,g), Yv € H (), for any fixed g € L2(Q), let w;;, =

H,’,‘w*, derived using Galerkin orthogonality and equation (2.23) for the duality problem of formula (2.4).
W=whg) = aW—wpw?) = a,w—w,w" —w;)

. (2.39)
Sllw —wy gl w* —wp .
Estimated by equation (2.28) and the assumption of elliptic regularity, Iet g = w — wy, be obtained
W* = wi IpS Kp2 " I W™ lly4p0S AT P2 "w = wy llog- (2.40)
It is obtained by formula (2.39) and formula (2.40)
(W —wp, 9)I 1
lw =Wy o= sup 2920 < prya lw — wy Iy,
gerz@) N1gloq

Formula (2.37) can be obtained.
Below we prove formula (2.38), obtained from formula (2.28) and formula

lw— W), ”0[2 h" pz " w—wy, "h hmln(p+1s)+r 1p2 S— r”W”Sﬂ
Thus formula (2.38) can be obtained, and the proof is complete. (2.41)
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Takings, =1+r (g <r< 1) from equation (2.28), the following stable estimation can be

obtained by regularization estimation

ITufll, S Tuf = TFN, + TSI,
| Tof = Tf Ny +1 TF Il

) 1
RPREO 2N TF gy I TS 1y

11l o-

S
=

(2.41)

NN

I1l.  APRIORI ERROR ANALYSIS

3.1 A Priori Error Analysis For Eigenvalue Problems

Let A be the j eigenvalue of (2.4) with algebraic multiplicative g, where A; = 4;,; =...= Aj,4_1.
When ||IT, — T|lo, — 0, the q eigenvalues 4; p,... 4,41, Of (2.13) converge to A. Let M(2) be the generalized
eigenvector space of formula (2.4) related to A, M, (1) the direct sum of the generalized eigenvector space of
formula (2.13) related to 1, and A, converges to A.

Given two closed subspaces of V and U, the gap between these two subspaces is expressed as

6(U, V) = sup inf lu—vllgg, §(U,V) = max{s(U,V),s(V,U)}.

u€v llullg o=1ve€V

A = %Z{;‘."l A stands for arithmetic average.  (3.1)

Theorem 3.1 Set M(1) c H*"() G <r< 1), then the following inequality is true

A, — A S h2Tpl=2r, 3.1
Let u, € M, (1) be the direct sum of the generalized eigenvector space of (2.13), then there exists an eigenvalue
function u of (2.4) that makes

3
lu—u, ll,s A" 1p27". (3.2)
lu—up llgoS K2 2p3 2" lu—up lly. (3.3)
Proof Tf =wandT,f = wy,, combined with the operator form, regularity estimation and (2.38) formula, can
be obtained

Il Tf - Thf ”0,.{2 Iw— Wy "(),_Q
IT—Tyllpp= sup ————F———= —_—
0#f€ELZ() l f "0,!2 0#£fELZ(2) Il f "0,!2
h2r—2 3-2r
S su P 17 log S h*2p372" - 0,(h > 0,p - ).
0#f€ELZ2(N) I f "o,a
Theorems (7.1), theorems (7.2) and theorems (7.4) in [10], there are
S(M), My () S 1T = Tdlwa (34)
j+q-1
2
=2l s Y 1T =Teuel + 1T = Tl (3:5)
il=j
lu —uplon = I(T - Th)lM(A)"O’_Q' (3.6)
Where {p;}/97" and {p,}/>#~" constitutes a basis for M ().
From theorem 2.1 and theorem 2.2, it can be inferred
(T - Th)|M(/1)||0!2 = sup I Tf = Trf oo
’ reM@lifllo.o=1
S sup RZT2p3 72T I Tf lryao- (3.7)

feM@),Ifllo,n=1
Using operator properties, the regularity estimate can be obtained from Galerkin orthogonality and the (2.23)
formula

(T =T o) = an(To; — Tro, Te))
= an(To; = Thpi, Tor — Thp1)
SITe; —Thoi Inll Tor — Ty I (3.8)
3 3
S K27 N T@; Ny K027 1T gy
s h2r—2p3—2r_
Formula (3.1) is obtained by substituting formula (3.7) and formula (3.8) into formula (3.5).
Because of u = ATu and u;, = A4, T, uy, using the triangle inequality, (2.41), (3.1), (3.6) and (3.7) can
be derived
[llu — upll, = llu — AThuIIh| S llup — ATpull, = IThApun — A, S 1Apup — Aully, S h2r—2p3-2
(3.9
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It is obtained by formula (2.27) and formula (2.28)
3
lu — ATpull, = IATu — ATpull, < AlTu — Thull, < v;relghIITu —ll, S llu—ugll, s h1p27"
(3.10)

Formula (3.2) is obtained from formula (3.9) and Formula (3.10).
It is obtained by formula (2.27) and formula (2.37)

3
—1,.5—T
0.0 <||Tu - Thullm Sh 7 p2  |ITu — Thullh

3 3
S h''p2 ru,ifel]gh"Tu —vpll, S A p2 T lu — uyll,

llu = upll

Formula (3.3) is obtained, and the proof is complete.

3.2 Numerical Experiment
In this section, we present several numerical experiments to demonstrate the effectiveness of our

approach in tackling problem (2.1), where @ = 1 Our program is implemented using the iFEM package, and we
employ the IPDG method (1 = 10) for the computations. We consider two distinct test domains: the L-shaped
domain 2, = (—1,1)?\([0,1] x (-1, 0]), the square domain g, and the vertex to (0, —1), (1,0), (0,1), (—1,0).
As the exact eigenvalue is unknown, we utilize a reference eigenvalue A; = |r|?/4 + 9.63972384472 for the
L-shaped domain and A; = |r|?/4 + 19.7392088022 for the Square domain. Analysis of the results in Table 1
and Table 2 reveals that the algorithm achieves optimal convergence rates.

Table 1 When a = 1, the numerical solution results of primary eigenvalues for region 2,

Domin P h=1/2 h=1/4
dof Ay dof M
4 360 9.654223671970552 1440 9.645448483439346
5 504  9.648715340175682 2016 9.643290842030046
6 672  9.645712947540130 2688 9.642101993127229
o 7 864  9.643927734108718 3456  9.641393750545754
8 1080 9.642797464972297 4320 9.640944521432180
9 1320 9.642050421427307 5280 9.640669450151195

Table 2 When a = 1, the numerical solution results of primary eigenvalues for region Qg

Domin P h=1/2 h=1/4
dof A dof A
120 19.740215197598424 480  19.739213395401787

168  19.739230145337821 672  19.739208824379499
224 19.739209161483238 896  19.739208805789204
360  19.739208781824644 1440 19.739208930658755
440  19.739208300464178 1760 19.739209092565559
10 624  19.739208792357033 2496  19.739209099626390

© o o o1 b~

*Corresponding Author: Wang Dandan 28 | Page



Interior penalty discontinuous finite element method for second-order elliptic eigenvalue problems

T &
't
-
v
-
A
0L - E
0
-
-~
o -
2 10 Fs .
58] / -
2
s
1t L .
-
Pz —&— S-shape eigenvalue error
15 B —&— L-shape eigenvalue error
R — — —The line with slope 1.95
P
-~
- L
10"

The mesh size h
Figurel: When a = 1, the error curve of the primary eigenvalues

In Table 1 and Table 2, we present the numerical solutions of eigenvalues computed using the IPDG

method. Additionally, we depict the eigenvalue error curve of primary elements in the figure. It is evident from
both the numerical results in the figure and the tables that our method attains the optimal convergence order of
eigenvalues and provides the optimal order error estimation of eigenvalue functions. Numerical experiments
corroborate the effectiveness of the proposed algorithm.
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