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Abstract. In their interested paper [36] Y. Belov, A. Borichev, K. Fedorovskiy, establish and investigate the
existence of Nevanlinna domains with large boundaries, noticeable these domains can have boundaries of
positive planar measure. The sets of recognizable points introduced can be of any Hausdorff dimension between
one and two. As shown and produced of these results, we follow [36] with a bit change to verify and construct
for many given plenty of poles the rational functions univalent in the unit disc with large and long boundaries.
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I.  Introduction

Nevanlinna domains contains a high class of bounded simply connected domains in the space of
complex plane €. They play fundamental role in the progress in problems of uniform approximation of
special functions on compact sets in € by polynomial solutions of elliptic equations with constant
complex coefficients. We give a complete solution to the following problem posed early (see [36]): for
full dimension how large and long can be the boundaries of Nevanlinna domains?
1.1. Nevanlinna domains. Denote by [ the open unit disc {z € C: |z| < 1} and let T = 3l be the unit
circle. For an open set U < € let us denote by H (U) the set of all bounded holomorphic functions on U.
Definition 1 (see [10], Definition 2.1). A bounded simply connected domain G;, < C is a Nevanlinna
domain if there exist two functions u;,, v;, € H¥(G;,) with v;, # 0 such that the equality
Uy, (2)
TJ"J:O(Z)
holds on dGj, almost everywhere in the sense of conformal mappings.
Property (1.1) means the equality of angular boundary values

(u}n Jﬂ'o){(j
= 1.2
WO= 2 G )© -

for almost all { € T, where f;, is a conformal mapping from b onto G;,. Note that for every function
fj, € H* () and for almost all (with respect to Lebesgue measure on T ) points { € T there exists the
finite angular boundary value f;, ({).
‘We call Nevanlinna domains N-domains, and we denote by ND the class of all Nevanlinna domains.
A Nevanlinna domain does not depend on the choice of f; . In view of the Luzin-Privalov boundary
unigueness theorem, the quotient w;, /v, is uniquely defined in G;, (for a Nevanlinna domain ). If Gj, is a
Jordan domain with rectifiable boundary, then the equality (1.1) may be understood directly as the
equality of angular boundary values almost everywhere with respect to the Lebesgue measure on 3G, .
The equality (1.1) can be similarly understood on any rectifiable Jordan arc y;, < dGj, such that each
point a’o € y;, is not a limit point for the set 8G;, \ ¥;,. Note that for Jordan domains with rectifiable
boundaries the concept of a Nevanlinna domain was introduced in [15] in slightly different terms.
It can be readily verified that every disc is a Nevanlinna domain, while every domain which 1s bounded
by an ellipse which is not a circle, or by a polygonal line is not in ND. Yet another interesting example of
a Nevanlinna domain 1s Neumann's oval, 1.e. the domain bounded by the image of an ellipse (which 15 not
a circle) with center at the origin under the mapping z — 1/z.
We recall the concept of a Schwarz function and some its generalizations. Let ' be a simple closed
analytic curve. It is well-known (see [32, Sections 1,2] ) that in this case there exist an open set U, I’ < U,
and a function S holomorphic in U, such that

Fr={zelU:.z=5(z)}
The function § is called a Schwarz function of T

Z =

(1.1)
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Let now G, be a bounded (not necessarily simply connected) domain possessing the following property:
there exist a compact set K  ;, and a function S holomorphic in G;, \ K, continuous up to dG;,, and
such that zZ = 5(z) on dG;,. In the latter case the aforesaid function S is called the one-sided Schwarz
function of dG;,. Let us mention here Theorem 5.2 in [31] which says that if the boundary of some
domain admuits the one-sided Schwarz function, then it consists of fimitely many analytic curves.

It is known that the boundary of any quadrature domain (even of any quadrature domain in the wide
sense) admits the one-sided Schwarz function, see [32, Section 4.2]. We recall that a quadrature domain
in the wide sense is a domain satisfying the following property: there exists a distribution T with support
Supp(T) c G;, such that for every holomorphic and integrable function h; in G;, we have

'UGJ.J 2, hy,(2)dxdy = T(f;). If T has finite support, then G;, is a quadraturc domain (in the standard,

or classical sense).

For the Schwarz function see the books [11] and [32], and to the Harold S. Shapiro volume [13] and the

references theren.

The property of being a Nevanlinna domain is weaker than that of admitting the one-sided Schwarz

function. We compare the corresponding classes of domains, they are quite different.

Theorem 1 (see [36]). For every § € [1,2] there exists a domain G;, € ND such that dimy(9G;) = B,

where dimy stands for the Hausdorft dimension of sets.

This theorem 15 an immediate corollary of the main results. Thus, we can get far away from domains with

piccewise analytic boundaries (and, therefore, from quadrature domains) if we consider Nevanlinna

domains instead of domains whose boundaries admit the one-sided Schwarz function.
Constructing Nevanlinna domains with irregular boundaries is a rather difficult problem. It was
considered in [23,17,2,26,27].
The first example of N-domain with nowhere analytic boundary was constructed in [23]. Sewveral
constructions of V'-domains with boundaries belonging to the class C', but not to the class C'%, a €
(0,1), see [17] and [2]. Furthermore, it was shown in [2] that Nevanlinna domains may have "almost"
non-rectifiable boundaries. The first example of an N-domain with non-rectifiable boundary was
constructed in [26]. Finally, see [27], for an example of Nevanlinna domain G;, such that dimy (9G;,) >
1 was produced.
1.2. Nevanlinna domains with analytic boundaries and univalent rational functions. For G; bc a
Jordan domain with analytic boundary. There exist an open set U, dG;, < U, and a holomorphic function
S in U such that z = S5(z) on dG;,. In view of the Luzin-Privalov boundary uniqueness theorem, the
domain G;, in this case is a Nevanlinna domain if and only if § extends to a meromorphic function in G;, .
It follows from [11, Chapter 14, p.158] that S is meromorphic in G;, if and only if G;, is the image of the
unit disc under conformal mapping by some rational function R without poles on D and univalent in I,
We consider a quantitative version of the problem on the existence of Nevanlinna domains with non-
rectifiable boundaries. Namely, one studies the question on how the length of the boundary of the
(Nevanlinna) domain R(ID) grows in relation to the degree of the rational function R.
Given a positive integer n, we denote by R,, the set of all rational functions of degree at most n (thus, R,
consists of all functions of the form P(2)/Q(z), where P and Q are polynomials of degree at most n ) and
by RU, the set of all functions from R,, without poles in D and univalent in . Now, let RU,, ; be the set
of all functions R € RU,, such that || R ll.y< 1. Put

. log #(R) 1
yo = limsup sup ———, where £(R):= E[ IR'(D)|dT].
T

n—ow RERUy 10g
It is shown in [3] that 0 < B,(1) <y, < 1/2, where By, (1) is the value at | of the so called boundary
means spectrum for bounded univalent functions (see [30, Chapter 8] and [19, Chapter VI1Il]). This
inequality means that the length of the boundary of the domain R(ID), R € RU,, can grow at least like n¥
asn — oo for some y > 0.
The Nevanlinna domains of the form R(ID), R €U,., RU,, are dense in the set of all Jordan domains in
€ m the Hausdorff metric. This fact together with the observation concerning possible growth of the
length of boundaries of such domains makes more clear the fact why Nevanlinna domains with non-
rectifiable boundaries do exist.
We have the following,
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Theorem 2 (see [36]). For some absolute constant € = 0 and for every n = 1 we have
(1+ E)ﬁ < sup ¥(R) < 6mn,
RERUn 1

so that yy = 1/2.
The new result here is the lower estimate which we obtain by constructing a snake like domain R(ID) with
long boundary. The upper estimate comes from [3, Theorem 1.2, Proposition 1.3].
Since 0.23 < By (1) < 0.46 (scc [4] and [20]), it follows from Theorem 2 that the value By (1 + €),e =
0, of the boundary means spectrum for bounded umivalent functions cannot be attained at the class of
univalent rational functions. We note that the boundary means spectrum for univalent functions B(1 + €)
in the case € = 0 is attained on a certain class of univalent polynomials, see [21].
2. Background Information on the Nevanlinna Domains
2.1. Nevanlinna domains in problems of polyanalytic polynomial appreximation. The concept of a
Nevanlinna domain is closely related to uniform approximation of functions by polyanalytic polynomials
on compact sets in C.
We recall that a function g/ is called polyanalytic of order n (for integer n = 1) or, in short, n-analytic,
on an open sct U < C if it is of the form

g"(2) = g°(2) + 2g°(2) + -+ 2" g% , (), (2.1)
where gl°, ..., gJ* | are holomorphic functions in U. Note that the space of all n-analytic functions in U
consists of all continuous functions f; on U such that an fi, = 0 in U in the sense of the distributions,
where 4 is the standard Cauchy-Riemann operator. By n-analytic polynomials and n-analytic rational

functions we mean the functions of the form (2.1), where gé”,,..,gf_l are polynomials and rational
functions in the complex variable respectively. Traditionally, 2-analytic functions are called bianalytic.
We describe the compact sets X such that every function f;, continuous on X and n-analytic on its interior
can be approximated uniformly on X by n-analytic rational functions with no singularities in X, or by n-
analytic polynomials.
These problems have attracted attention of analysts, but the main efforts were focused on the problem of
approximation by polyanalytic rational functions (see, [33,7,34] and [28] for this problem). J. Verdera
|34] formulated the following conjecture: if X is an arbitrary compact subset of the complex plane and if
fj, 1s continuous on X and bianalytic on its interior, then f; can be approximated uniformly on X by
bianalytic rational functions without singularities in X. Omitting here the reasons supporting this
conjecture (see for the [34]) and it was proved by M. Mazalov [24]. Later on this result was generalized to
the solutions of general elliptic equations with constant complex coefficients and locally bounded
fundamental solutions in [25] (see also [18]).
In [15] the third author found a necessary and sufficient condition on a rectifiable simple closed curve T
in order that the system of n-analytic polynomials (for every integer = 2 ) is dense in the space of
continuous functions on I'. In this result the concept of a Nevanlinna domain has appeared in the first
time.
For important results about uniform approximation by polyanalytic polynomials see [15,10, 6,8,1]. The
keynote ingredient of these results is the concept of a Nevanlinna domain and several its special
refinements and modifications.
A criterion for the uniform approximation of functions by polyanalytic polynomials on Caratheodory
compact sets in € was obtained in terms of Nevanlinna domains in [10]. A compact set X is called a
Carathéodory compact set if 8X = aX, where £ denotes the union of X and all bounded connected
components of € X.
Propesition 1 (see |10], Theorem 2.2). Let X be a Carathéodory compact set in €, and n = 2 be an
integer. In order that cach function f;  which 1s continuous on X and n-analytic mside X can be
approximated uniformly on X by n-analytic polynomials it is necessary and sufficient that every bounded
connected component of the set €\ X is not a Nevanlinna domain.
The approximation condition in this Proposition does not depend on n. For more complicated compact
sets, the approximation conditions do depend on n, see [9].
We also mention that Nevanlinna domains have arisen in problems of uniform approximation of functions
by polynomial solutions of general homogeneous second order elliptic equations on planar compact sets
(see, [35, Theorem 3]).
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2.2. Two equivalent description of M-domains. The following characterization of Nevanlinna domains
turns out to be both interesting and useful.
Proposition 2 (see [10], Proposition 3.1). A domain G; is a Nevanlinna domain if and only if a
conformal mapping f;, of the unit disc ID onto G;, admits a Nevanlinna-type pseudocontinuation, so that
there exist two functions (fj )1, (f;,)2 € H*(C\ D) such that (fj,), # 0 and for almost all points { € T
the equality f; () = (f;,)1(¢)/(f;,)2(€) holds, where (fj,)1({) and (f},)2({) are the angular boundary
values of the functions (fj,); and (fj,)2-
Some consequences of this descripton. If G;, is a Nevanlinna domain and g0 is a rational function with
poles outside (?J-U which is univalent in G;,, then the domain gJU(G,-U) is also a Nevanlinna domain.
Nevanlinna domains have the following "density" property: any neighbourhood of an arbitrary simple
close curve contains an analytic Nevanlinna contour (i.e. the boundary of some Jordan Nevanlinna
domain). In order to establish the latter property one needs to take some conformal mapping from the unit
disc onto the interior of the contour under consideration (in view of Carath¢odory extension theorem this
function is continuous in the closed unit disc), and to approximate it uniformly on D with appropriate rate
by univalent polynomials.
We establish some relations between the concept of a Nevanlinna domain and the theory of model
(sub)spaces. Then a function @ € H* = H* (D) is called an inner function if |@({)| = 1 for almost all
{ € T. We denote by H? the standard Hardy space. For an inner function ® we define the space

Kg:= (BH*)* = H2 © OH?,
In view of the Beurling theorem, the spaces Ky € H 2 are exactly the invariant subspaces of the backward
shift operator fj, = (fj,(2) — f;,(0))/z in HZ2. The spaces Kg are usually called model spaces (or model
subspaces).
Proposition 3. (see [17, Theorem 1], [2, Theorems A and B]) Let G;, be a bounded simply connected
domain in € and let f; be some conformal mapping from D onto Gj,. If G;, € NV, then there exists an
inner function © such that f; € K. Reciprocally, if © is an inner function, then any bounded univalent
function from the space Kg maps I conformally onto some Nevanlinna domain.
2.3. Univalent functions in Kg and constructions of Nevanlinna domains. The above proposition
gives us the following method for constructing Nevanlinna domains: in the space Kg (for a special @ )
one finds a univalent function which possesses certain analytic properties.
The description of @ for which the corresponding space Kg contains bounded univalent functions in [5].
Now every © can be expressed in the form 0(z) = e''*B(2)S(z), where ¢/o is some positive constant,
while B and S are some Blaschke product and singular inner function respectively. We know that a

Blaschke product 1s a function of the form
B(2) =y ]_[ Ia’“l Tt 22)

Jo n=1

where (af;“):nzl is some Blaschke sequence in D (that is, a;r{‘ ED for n€N and ¥71, Xj, (1-

|a;"|) < o), while a singular inner function is a function of the form

S(2) = exp( L g—dﬂs(f)) 23)

where pg is some finite positive singular (with respect to the arc length) measure on T. The result
established in [5, Theorem 1] is as follows.

Proposition 4. Let 0 be an inner function in . The space Kg contains bounded univalent functions if and
only if one of the following two conditions is satisfied:

(1) © has a zero in ;

{(11) @ = § is a singular inner function and the measure pg is such that ug(E) > 0 for some Beurling-
Carleson set E T, which means that leﬂgdist((, E)|d{| > —co.

Beurling- Carleson sets first appeared as boundary zero sets of analytic functions in the disc which are
smooth up to the boundary. The property (11) in the latter proposition 1s also a necessary and sufficient
condition for the space Ky to contain mildly smooth functions (e.g., from the standard Dirichlet space in

), see [12].
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We return to the problem on how "bad" could be the boundary of a Nevanlinna domain. In many
situations, questions about the regularity or irregulanty of boundaries of planar domains may be reduced
to the corresponding questions about the boundary regularity of conformal mappings of the disc D onto
the domains under consideration. Thus, we need to be able to find bounded univalent functions possessing
certain boundary regularity (or irregularity) properties i the spaces Kg for specially chosen inner
functions 8. We study this question separately in two distinct cases: (1) ® = B 1s a Blaschke product, and
(i1) ® = § is a singular inner function (it may be readily verified that Kzs = Ky @@ BKs).

The first example of a Nevanlinna domain with nowhere analytic boundary was constructed in [23]. The
respective domain was constructed as the conformal i 1mage of the unit dlSC under a map f;, of the form

fi,(2) = Z Z 2z (2.4)

n=1"Jo

where (a"”)_ 1s some (infinmite) Blaschke a‘equencc ‘iatlﬁfymg, the Carlcsun condition
n Jomz1
inf E | |
nekl
k:n .

where (a" °) ) 1s some (infinite) Blaschke sequence satisfying the Carleson condition
nJjon=1

—ﬂ.
k )‘0,

b Jo Jo
a, —a
w2 | [erar| o
0 =70
T e
and (CJ ”) ozl is an appropriately chosen sequence of coefficients. Such Blaschke sequences are called
interpolating, and for any interpolating Blaschke sequence (a;, ) , the sequence of functions
P2
J1-lay]
i
1-a’z

forms a Riesz basis in the corresponding space Kg.

In [17, Theorem 3| it was shown that for every a € (0,1) there exists a Nevanlinna domain with
boundary in the class C* but not in the class C"*. The construction in [17] is rather complicated and
technically involved. The main idea is to use an orthonormal basis in the space Ky (namely, the
Malmquist-Walsh basis) instead of the Riesz basis consisting of the corrseponding Cauchy kemels. Later
on 1t was proved in [2, Theorem 2| that for every a € (0,1) and for every closed subset E € T there
exists an interpolating Blaschke sequence (a{f]ju . such that the set of its limit points is equal to £, and

the space Ky, where B is the corresponding Blaschke product, contains a univalent function f;, of the
form (2.4) which maps ID conformally onto a Nevanlinna domain f; (ID) with boundary in the class C*
but not in the class C1*.

Furthermore, in [2], there is a construction of a function fj, of the form (2.4) such that f; is univalent in
I but f,; & H*¢ for any € > 0. It means that the boundary of a Nevanlinna domain fi, (ID) is "almost"
non-rectifiable. The first example of a Jordan Nevanlinna domain with non-rectifiable boundary was
constructed in [26]. The corresponding domain is also f; (D), for some functions f; of the form (2.4)
univalent in the unit disc.

Finally, in [27] an example of a Nevanlinna domain G;, such that dimy (9G;,) = log, 3 was constructed.
As before, G;, = f;,(ID) for a suitable function f; of the form (2.4).

Now let § be a singular inner function. It follows from Proposition 4 that if the measure p¢ has atoms,
then the space K contains bounded univalent functions. In particular, this is the case when 5(z) =
EX]'J( ) Equivalently, the Paley-Wiener space PWq ), the Fourier image of L%[0,1], considcred as a
space of functions analytic in the upper half-plane C,, contains bounded univalent functions. Up to now
only a few explicit examples of bounded univalent functions in the Paley-Wiener space are known, and
all such examples map the upper half plane into domains with very regular boundaries, see [5].
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3. Main Results
We start with the concept of the Hausdorff dimension of sets. The definition was found in [22, Chapter 4],
but we present it here for the sake of completeness. Let D(a’e, 1 + €) stand for the open disc with center

at the point a’o € C and with radius € > —1. For a bounded set E c C its s-dimensional Hausdorff
measure H*(E) is defined as follows:

) - 13 : S
| 4B y"m"{lgjgz b
where the infimum is taken over all coverings of E by families of discs {D;}, D; = D(z;,7;), of radius at
most & (it is clear that instead of the discs D; one can consider squares of side length at most §). By
definition, the Hausdorff dimension dimy(E) 1s the unique number such that HS(E) = oo for every
s < dimy(E), while 7*(E) = 0 for every t > dimy(E).
Given a bounded simply connected domain G;, we consider the set d,,j,G;, < dG;, which consists of all
points of dG;, being accessible from G;, by some curve. According to [30, Propositions 2.14 and 2.17],
the equality
340G, = iy ©):¢ € F(fi)}
takes place, where f; 1s some conformal mapping from the unit disc ID onto G;, and F(f; ) is its Fatou
set, that is the set of all points { € T, where the angular boundary values f; ({) exist. It can be shown that
0,40 G, is a Borel set (see, [8, Section 2]). It is clear that the set d ;. G;, depends only on the domain G,
but not on the choice of f;, .
The definition of Nevanlinna domains (sce (1.1) and 1ts interpretation (1.2)), imposes conditions only on
the accessible part @, G;, of their boundaries. By this reason it seems more accurate and adequate to
pose the question about the existence of Nevanlinna domains with large accessible boundaries.
Theorem 3 (see [36]). For every B € [1,2] there exists a function f; of the form (2.4) univalent in D and
such that the Nevanlinna domain G;, = f;, (D) satisfies the property dimy(8,i,G;,) = B.
Note that the function f;, from Theorem 3 belongs to the space Kp for some appropriately chosen
Blaschke product B. We would like to construct similar examples working with univalent function from
the space K, where § is some singular inner function. The simplest example of such a space K is the
Paley-Wiener space PW g, (which is considered, as mentioned above, as the space of functions analytic
in the upper half-plane C,).
Theorem 4 (see [36]). For cvery f§ € [1,2] there exists a univalent function f; belonging to the space
‘{PWIEIJ_ such that the Nevanlinna domain G;, = f; (C, )satisfies the property dimy (9G;,) = .
4. Proof of Theorem 3 and Related Topics
Before proving Theorem 3 we establish one more simple result of the same nature. Namely, in Theorem 5
below we give a hedgehog ke construction of a Nevanlinna domain G;, such that m,(8G; ) > 0. To
formulate this theorem we need yet another concept of dimension of sets.
The Hausdorff dimension is defined by considering all coverings of a given set by small balls D; =
D(:zj-,:'}-) and inspecting the sums ¥;7°. One natural modification of this definition of dimension is
obtained when we consider coverings with balls (cubes) of the same size. Such modification leads to the
concept of the Minkowski dimension (or the hox-counting dimension) dimy,, see [22, Section 5.3] and
[14, Section 3.1]. Skipping here the formal definition of Minkowski dimension we recall that the value
dim,, (E) of a bounded non-empty set E is calculated as
. log Mp(N)
fim 2
where Mg (N) is the minimal number of cubes (boxes) of side length 27V required to cover E.
It can be verified that

dimy(E) < dimy(E) < 2
and both inequalities can be strict.
Theorem 5 (see [36]). There exists a function f; of the form (2.4) univalent in D such that the
Nevanlinna domain G;, = f;, (ID) satisfies the properties m,(3G;,) > 0,dimy(8,,G;,) = 2.
Proof. We start with the following building block, sometimes called "Mazalov's needle”, see [26, Section
2]. For every sufficiently small € = 0 there exists a rational function Flj;ff with simple poles {wy}f-, in
€\ ID such that

*Corresponding Author: Tamer Magzoub 6 | Page



Application on Nevanlinna Domains with Large and long Boundaries

IEL ()| + [(F)e(@| <146 zeD\D(LVIte),
|F2.(2)| <1+ eand |(F’fﬂ):+€(z)‘ <1, z€D\D(L1+e),

1 _

-5 z€D, (4.1)

ImEP (z2)] <1+e¢ zeDND(1+6)
Fie =3,

Re(Fl)},c(2) =

and, finally,

L
Z (Wil —1) <1+e (4.2)
k=1

For I c R,, E c [0,2m) we use the notation

SUE)={re e :r € 1,0 € E}.
Let us choose a nowhere dense compact set K of positive one-dimensional Lebesque measure on the unit
circle T. We have T\ K =Uj5, I;, where I; = {e': |t —a;| < y;} are open arcs. Set [] = {e*: |t — a;| <
]"ﬂ'/ 2]' _
We define a sequence [qp,i"] of rational functions, a sequence of unimodular numbers {em“] and a
sequence of positive numbers {b,} in the following inductive procedure. Set qa{{"(z} = z. On the step

n = 0 we have
n
| _ i J —i#
Pn'(2) = 2+Z Z e'%IF)(ze™1%).
=1 o

1
We assume that @)° satisfies the following properties:
(a) the set I3, = @/°(T) is a simple closed curve,

(b) arg ;" ( D(e"™,b,) n JIE) clf,1<j<n,
(c) I © $((0.5,1.5),[0,2m) U U}, S((L4).I),
(d) |p(e®)|>2, 1<) <n,
(e) the index of T}, with respect to the point 0 is equal to 1.
By (e), for every t € |0,2m] there exists € € [0,2m] such that
arg g’ (') = .

Therefore, we can choose 8,,,, € [0,2m) satisfying

arg g, (') = apyy.
Set

Pr1(2) = 9y (2) + 'O 7 (ze™1ne).
For sufficiently small 1 + € € (0,27™) the condition (b) on @.%, holds for 1 < j <nand for j =n + 1
by continuity. The same is true for (c) and (d). A simple continuity argument together with condition (c)
shows that the index of [},,, with respect to 0 is equal to 1. Fix such small 1 + ¢ < 27" and denote it by
Jo

b,+1. Since Re(@/)),1 = 1/4 on I, the function (pj“ is univalent. Since ;% , is rational, we obtain

n+1
(a). This completes the induction step.

We define
ph(z)=z+ Z z eiﬁf%i?(ze_mf).

_ J=1
The function /o is analytic in the unit disc and belongs to the space Ky for some Blaschke product B (it
follows from property (4.2) of the function Fljfe and the estimate by, < 27"). Since the arcs [; are

disjoint, by property (b) the sets D(e'?, bj) N D are disjoint. Now, the estimates on the derivative of Fljf .
yicld that @0 is univalent (because Re(@/t)' >0 on ). Thus, G;, = @/o(D) is a (hedgchog like) 1
Nevanlinna domain.

Next, by (c),
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@/ (D) < D(0,1.5) U U S ((1.5,41.1;).
j=1
The function ¢/ is continuous on D(e'®,b,) N D,j = 1, and
oh(e)] 22,21
By continuity of @/ on D, we have
M nS({r}Ij)+ 0, 15<r<2,j=>1,

and hence,
dplM)NS({r}1;) =0, 1.5sr<2,j=1,
Therefore,
dplo (D) o S([1.5,2],K)
and hence,

my (39 (D)) > 0.
In order to finish the proof of Theorem 5 we need to calculate the Minkowski dimension of the set
0 4i0 Gy, (i.e. the set of the accessible points of the boundary of G;, = Jo(bY).

Suppose that the set K satisfies the condition ¥, = n = 1. For every j = 1, to cover the set

nlogZ(n+1)°
3,106, N S([1.5,2,1})
we need at least 2V~ boxes of side length 27", Since for different n with y, > 21~ these boxes are
disjoint, we obtain that
M@n}.og}.o{N) = 2V card {n:y, > 27"},
which yileds that dimy (9,,G;,) = 2.
Remark 6. N. Makarov proved that for every simply connected domain, the support of harmonic measure
has Hausdorfl dimension 1. Later on, P. Jones and T. Wollf proved that for every planar domain, the
support of harmonic measure has Hausdorff dimension at most 1 . For these results see [19, Section 6.5].
In order to link this observation with our subject we need to recall that the harmonic measure on 9G;,
lives on @, Gj,, which means that the harmonic measure of the set E'\ d,j,G;, 1s zero for any Borel set
E c 0G;,. Moreover, in the definition of a Nevanlinna domain we are dealing with the equality (1.1)
which holds, essentially, on @, Gj, .
Proof of Theorem 3 [36]. Fix £ € (0,1). We are going to construct a Nevanlinna domain G;, = (Gj, ).
such that dimy, (8 ,j,G;,) = 2 — £. In order to construct a Nevanlinna domain G;, with dimy(8 ,,G;,) =
2 we just need to merge our constructions with g, = 0,k — oo, see Step VI below.
Step I. Binary words. Denote by W the sct of all binary words, 1.e. words n the alphabet {0,1}. For a
given word w € W we denote by |w] its length (i.c. the number of digits in ) and by }w the sum of its
digits. Furthermore, we set sgnw = |w| — Yw. Given two words w,, w; € W we denote by w,w; = w; -
w, their concatenation. The empty word will be denoted by e. Finally, for a word w = af, where
a,f € Wand |f| = 1weput @:= a.
Step I1. H-tree and its neighborhood Q. Fix £ € (0,107%) and set A = 2744 — £, We define a system
of (closed) intervals 1,2 =1, ¢ = 2,2, + {,], @ € W. Set lﬁg“(ufn) =, 1. = Ip; = [0,1], so that
z, = 0 and {. = 1. Furthermore, we define the mappings
w,i:’.]_: uiln =z, + (1 - E)(m + i‘l{{nujuJ

Viyoi iy = Zo + (1= )0, — i,
and the segments [, , and [,,., of the next generation

loa:= ll’if'.l(l'c) = !zw+(1—£)(w,:'.lg‘m’

Lyo:= V20U = Lt (1-e)zy —idze-
We have
lrw.-'l,llm.@ 1 Iﬁ!l
“w-ll = |"m-U| = "lum|
Furthermore, if w,, w; € W, then
Ja ° Jo — o Jo . (43)

g aq )y -t
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Application on Nevanlinna Domains with Large and long Boundaries

Set
H = U !m’
m_EW
H, =H\H.

Let now €, be the £/100-neighborhood of [, _
0, =)

0 :Uﬂ"”'

weW
Next we establish several geometrical properties of the above described fractal construction.

Lemma 4.1 (see [36]).

(a) Every point of H, is an accessible point of 9{L.

(b) dimy(He) = 2 — 10e.

(¢) If w € W, then

diam(Q,,) = A'®l,

(d)y If wy, wy, € W and w, # wy + 5, @y # w, + 5,5 € {0,1}, then

dist(Q,,,Q,,, ) = Amin (o:llw:D,

Proof. Properties (¢) and (d) are easily vernified for w, = e. After that, we just apply the self-similanty

property (4.3).

Next, property (a) follows immediately from the construction of (.

Finally, property (b) is a direct consequence of Frostman's lemma (see, for example, [22, Section 8]). It
suffices to consider the weak limit of the probability measures equidistributed (with respect to the length)
on Uw&W:lwlZ'r:Iwrn =+ 0,

Step 1. Mazalov type construction. Our next ingredient is a Mazalov type lemma, compare to [26].
SetC, ={z € C:Rez = 0}.
Lemma 4.2 (see [36]). Given 1 + € € (0, 1072), there exists a rational function

M

. Cfn
i — — k
Fio(z) = (@) = ) Z —
k=1 Jg

with ¢)* > 0,w, > 0,1 < k < M, such that
(@) [Fio(2)| + |(FP) @] < A + )%z € ¢\ DO +6),

(b) Re Fio(z) = —(1+ €)%, Re(F/) (2) = —(1 + €)%,z € C,,

(c) |ImFlo(z)| < (1+€)%z€C,,

(d) |Fle(0)—11<(1+€)3*ReFlo(z2) <1+ (1+¢€)z€C,

() Xher Xy, (e +wi) = (1+6e)2

(NIt € [1,3],6 =exp(—2(1—te)/(1+ €)3),y € (w/2,31/2), then
|Re Fio(§e™) — (1 —te)| < (1 +¢€)°,

(1+ €)*(Flo)'(se™)

Zexp(2(1 —te)/(1 + €)?)

for some absolute constant € = 0.

Thus, the image of the left half-plane under the map z = z + F/°(z) is the union of the slightly perturbed

left half-plane and a thin domain (needle) close to the interval [0,1]. Property (f) means that we have good

control on (F/0)'(z) while F/o(z) is close to 1 — £ and Re z is close to 0.
Proof. Let N be the integer part of exp((1 + €)™%). We start with the function

+e | < (14¢6)3

(1+r3)2J"“E dt  (1+e)? l1+e—z
. = — = ’ E »
Gl == ) etz 2 B reoNz-z G
where log is the principal branch of the logarithm function.
This function has the following simple properties:
G;,(0) = n?cax ReGj, = (1+ €)?logN, (4.4)
L
ReG; (2) >0, z€C;, < (4.5)
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Application on Nevanlinna Domains with Large and long Boundaries

and
(1+e)? , (1+e)?
|Gjo (Z)l = _|Z| » 16y, (Z}l = lz|z2 z€C\DO1+6), (46)
for some absolute constant € = 0. Furthermore,
ReG;,'(z2) =—(1+¢€), z€C, “.7N
ImG; (2)] <n(l+e)? z€C,. (4.8)
Finally, if t € [1,3],8 = exp(—2(1 — t&)/(1 + €)?), ¥ € (m/2,31/2), then
ReG; (8e) — (1 —te)| < (1 +€)3, 49
Jo
1+€)%G; '(8e' .
(1 + €76, (8e") +e ¥ < (146 (4.10)

2exp(2(1 = te) /(1 4+ €)?)
Next, like in [26], we use the Newton-Cotes quadrature formula of degree 2 (the Simpson quadrature
formula). This formula claims that given an interval [, € + a] € Rand f;, € C*([a, € + a]), we have

e € e° @
L Z fisdx - e Ezssox’é?i’?nz (O R
a 1]
where
2
ja+(2—)et+a
'?:ZZ djfj-u(" ¢ 2”{ ]),d0=d2=1,d1=4.

J=0 g
Now we split the interval [(1 + €)(2 + 2¢)7%,1 + €] into N — 1 subintervals [(1 + €)k™%, (1 + €)(k —
1) ?[,2 <2+ € <2+ 2¢, und set

2+2e

Fj.u(z)=(1+€}zz ( 1+e€ _l+e )i d;

12 (2+e)—1)2 (2+e)/ L4 jll+e) (2-D(1+¢)

=0 J=0 2(2+E)2+2((2+E}—1)2_

Then Flo is a finite sum of simple fractions ci“j(z —wy) withwy, € [(1+6e)(2+26)7%,1+ E],céig >

0,
Z Ware < (14 €), Z Z o<t

2+¢ 2+¢e  fo
for some absolute constant A, and property (¢) follows.
Applying estimate (4.11) with f; (x) = 1/(x — z) and with f; (x) = 1/(x — z)* we obtain

5 2
16, 9(2) - (F)D(2)] < (1 +€)? Z ( 14e€ ) ((2+e)

54
< A(1+e)* 4.12
(2 +¢)8 ‘1+£) <Ail+e) ( )

forz € C;,j = 0,1, and for some absolute constant A;.

Now, (4.12) and (4.4)- (4.8) give propertics (a)-(d).

Finally, property (f) follows from (4.12), (4.9), (4.10).

Step 1V. Conformal maps. Consider an enumeration W = {w,},z¢ such that if w,, w,, € W and
|wy| < @], then n < m. In particular, wy = e. Denote Wy = {wg, @y, ..., wy_1 L, Wy = 0.

Set ¢,°(z) = z— 1. Then @)°(ID) < C,. The functions @;’,n > 1, will be constructed in the following
inductive procedure.

On step N = 0 we have a set {b,,: @ € Wy} of positive numbers, a set {@,,: @ € Wy} of real numbers and
a rational function

Gh@D=@-D+ ) D (~E@EIES(zemi - 1)
wWEWy  jg
such that

spmccu |
weWy
and forevery w € Wy, x € 1,
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|

100°

dist (x, :p,ﬂ“[l[ﬂ]) <
Givenw € W and € = 0, set _
Owite:= {Z € D:RE(ZE_W‘U) > —.r,-'}J
3
dwi = exp (—E) B

Uy = Owaz \ (Ow-l.b,,,.j U Om‘ﬂ,hm_n)-
We have
. 1
Re((p/o)} (z) (—1)sent@jlwl) > 5 2 € Uy, € Wy \fe}, (4.13)
If w-1¢& Wy, then we define Uy, = Oyq,, \ Ouw.op,, 0. and make an analogous modification if w -0 &

Wyorif N =1.
Furthcrmore, iIf N = 2, then

. 1 _
Re ((qain);,(z)) >z, 2 €U, =D\ (015, U Oop,). (4.14)
Thus, qa,{r" is univalent on every set U, w € W,.
Next, if wy, w, € Wy, @y # w,, w; # w3, 0, # 0j,x; €U, ,x, €U, then
|ox (ea) = | () 1> Aqmin ez, (4.15)
for some absolute constant 4 > 0.
Ifw,w-s € W" for some s € {0,1},x; € Uy, \ Ugy.5, X € Oy5p, . then
. lox Cer) —|on (x2) 1> d,. (4.16)
As a conseqguence, :pl{,u 15 univalent on . The case N = 1 is treated in a similar way.
Let wy = @y. Wilhoul loss of generality assume thal wy = wy - 1. Set I =1, = [z,z + {]. Choose
O, > 0

Wy

such that the projection L)fcp‘,{.” (ei®=n) onto I is z + (1 — £)¢, and set
O (2) = 93 (2) + (=1 BN (@) N F) (ze 00w — 1),

Then by Lemma 4.2(a), (c), and (d),

Cp}fﬂl(]m) cCu U Qe

wEWN+L

[

and for every x € [, w € W41,
) el
3 0
dISt(x'(pN'l-l(m)) < 100

for sufficiently small positive b < 27™.

Furthermore, for sufficiently small (1 + €), incqualities (4.13), (4.14) hold for gﬂ;&l and for w € Wy, .
Here we use L.emma 4.2 (a) for w # wy and Lemma 4.2 (b),(f) for @ = w,,. Next, for sufficiently small
(1 + &), inequahities (4.15), (4.16) hold for 50:{r°+1 and for w € Wy, . Once again, we use Lemma 4.1 (d)
for wy, w,, w - 5 € Wy and Lemma 4.2 (a), (f), and (g) otherwise. This completes the induction step.

Step V. Limit map. Passing to the limit N — oo we obtain a univalent function /o on the unit disc such

that
o

Ph@=(-D+) Y

k=1 jy

Y (el + Qwid = 1) < o,

=1 T

@ cC ul.

We have used here Lemma 4.2 (e). Finally, for every x € H, there exists a path y: [0,1) = II such that
x = lim,_,; @’ (y(t)), and hence, H,, < 84,0’ (D).

Step VI. Dimension 2. We choose a sequence of points on T, say {, = exp(27%i) and &, = 271%¢, Set

Ay = 2712 — g, Next, we associate to every ¢ a copy of W ordered as on Step IV, W® = {w,[f}}

nzo
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Application on Nevanlinna Domains with Large and long Boundaries

Furthermore, we order the union of W) k = 1, in a natural way: wén.wil}, ﬁuéz),w?_ .wm. wés),-‘-

Now, using this ordering we construct the corresponding functions

. (14l .
@;,L;C(z) =(z— 1) + Z Z (_1)581'1(.*135 ) 10(1+€)(M'1 )lm(1+5) FJD““} (ze_’-a.s(lﬁ] _ 1)
wEHEJEw&:j) I
(1+e)

As on Step TV onc verifies that qoj’ arc conformal maps for suitable w closc to {3, and for

sufficiently small b_i+¢). The limit univalent function satisfies the propertles established on Step V and

dimy; (9,0 Gj,) = 2
5. Proof of Theorem 4 (see [36])
We use the construction of an H-tree deseribed in the proof of Theorem 3 and some other notations from
that proof. We suppose that dimy (H,,) 1s a fixed number in the interval [1,2].
Applying a linear change of variables we can assume that 0 € {1 € [D. A simple topological argument
shows that there exists a C2-smooth injective map y,, from the half-strip
={x+iyeCx=0yl =1}

mto I such that ¥y = 0,y,(S) < 2 and y,(5) N, # @ for every w € W, Changing, if necessary, the
parametrization, we can assume that ¥ = yy | Ry satisfies the condition |y'(t)| = 1.
Then H,, < y(R,).
Choose a continuous function 8: R, — (0,1) such that

D(y(1),1008()) € y,(S), t € [0, ).

Sct
8(x) = max (3+ (arg)1)

Let T > max(100,8(1)). Setb, = 0,1, = [2TlogT] +1,p=1-T71
Next, forn = 1 we set
b, =by,+p™
, _ [rn if6(by + Tp™)Tp™ < 1,
nH 1, + 1 otherwisc .
Then b,, ~ o0 and T§(b,) (b, — b)) <1,n=1.
Set Q = TY12, & = 7712w, = y(by), @° = wpyy — Wy, = 0. Then
(aywy = 0, |lw,| <1,
(b)l-—e< |af+1|/|af°| <l+e,
(c) [argal, @, o| <&,
() |al| = 2"T2,n=0.
Define
Qi = conv{wy, Wyp1, Wy + 2ial®, wy .y + 2ial?),
where conv{A} stands for the convex hull of A, and
TE = conv[wnﬂ, Wy T 2:&n yWpat T 2mn+1}
Then @ N Q% = 0, and QF N T;f = @ for [n — m| > 1. Furthermore, for sufficiently large T,
Jaturica

n
Proposition 5 (see [36]). There exists a meromorphic function f;, with poles on the imaginary axis which
is univalent in the upper half plane C,and such that f; (C,) € Q, f; (R) N yo(x +i[-1,1]) # @,x = x,.
Proof. Set y,, = Q" yv_, = —Q“,n =1,

no- 3.3 G o= now

Lemma 5.1 (see [36]). Ifn = 1 In < X = Yns1, then fj (x) € Qp U T U Qns1-
Proof. We have
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Application on Nevanlinna Domains with Large and long Boundaries

k=n+2
—ay Vi fn Z Z _Iak yk Jn
fut2) = Z Z (x-l—tyk ) X+ iy +a

o k=n—-1 j,
ial

[ Y e

k=n+3 jo L
Furthermore,

—tak Vi
lh=wa- 1+Z Z X+ iy = Wn-1+ /1
k=1

where

n—=2 on _ i
1 1-8)7* 1-¢)"? 2 ;
I/, £|I_|Z Z |ate |yk<z |al® ( _) Z (( Q) ) SEZ o).
k=1 Jo =0 Ja
On the other hand,
a
”3|<|x|z Z|k|_QZZ|Jo|

k=n+3 j,
It remains to estimate I,. We have x = ay, for some a € [1, Q]. Then

Jo Jo s
Z a® iy, Z - Z an’i z ;
]2:_ it ALY 1-}"!‘1 1+ ﬁ.:lnl_ — .yn"‘i‘ a:]"
— X+ 1¥p-1 & ; Xx+iyn £

To fo 1]

fo &
; r1+1 n+2
- I+l)'n+1 - - x+1}'n+z -

Jo Jo

i i Qi Q2

=) aP(- Flo—— 41— +1- +1]+R
Z “( Qa +i a+i o:+Qi a + Q2 "
Ju

:J'E+Rm

where |R,| < 100&|a)’|. So,
fi, () =w +a‘“(— L P .. )+S
JMA T I T Qa+i a+i a+Qi a+Qi)

where

S, |=~:Z lal*| (4~ 2+1nﬂs)~:52 |la)°|Q2.
Jo

We conclude that f; (x) € Q@ U Tn‘ UQni1
Lemma 5.2 (see [36]). If n. = 1, ¥, < x < Y42, then Re(@ 0 ], (x)) > 0.
Proof. We have

f,(x) = Hy,(x) = ZZ (;i Ei:)z Z Z (;il;: Z Z (x!i;:

n+4

ak }'k(x —}’ﬁ:] ;chfk _
D +Z S o nan e,
1]

The assertion of the lemma is a direct c0nsequence of lhe following estimates:

n—3

2|a
o T
1%, < |x|ZZ Z e | <Z Q3|x|

|an|

5100032 ak|®
- | le 03|x|
[1]

Z Re(a@,”z;)

fo
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Application on Nevanlinna Domains with Large and long Boundaries

In a similar way we obtain

Lemma 5.3 (see [36]). (a) Ifn = 1,y_,1 < x < y_p, then fj (x) € Q4 U T U Q.

(b)Ifn = 1L,y_,_, €x < y_,, then ¥, Re(@,of] (x)) < 0.

(c)If0 < x <y, then X, Re (a@f} (x)) > 0, ;,(x) € Q5 U Ty U QF.

(d)Ify_, <x<0,then}; Re (a—lfu,u;-; (x)) <0,f,(x) EQHUTH UQL.

(e)Ifn=1,z € C,, and |z| = y,, then fj (2) € Qrug;.

Lemmas 5.1-5.3 together imply Proposition 5.

Proof of Theorem 4 [36]. The estimates in the proof of Lemma 5.2 show that the function f; constructed

in Proposition 5 satisfies the estimates
|€]

Z 1fi. () = £, (x + €] > SR T TpE V€€ el (5.1)

Jo
forn € Z\ {—2,—1,0}. Furthermore,

Z /i, ) = i, + )| =Q el yo <x<x+e<y,
o i
For large Q we can find a function F; in PW,g such that
IBe@l<e™  [E)w] <

and F":,j"(—iQ“) = 1asn = 1. Indeed, denote

S(z) = 1_[ (1+%).

nzl

R(z) = el™/Dzgin G) . H (1 _#;2")

nzl

1
W. X e R, (52)

Then
(log(2 + |z]))*
2log ()
(log x)?
yxl = o0

2logQ '

2
log]S"(—iQ™)] ~ %h:ng, n=1,
log|R(—=iQ™)| ~nQ", n=1,
(log(2 + |x]))*
log @ '

where A(w;,) ~ B(u;,) means that limuju_,mA(ujD)/B(ujD) = 1. It remains to set
ooy — By i 5@
R = kG Zl S —IQIR(-1QD) T+ 20"

log |5(2)| ~ , dist(z, {—iQ™}) =1,

log|5' ()| ~

max (log|R(x)],log|R'(x)|) < 0(1) — x ER,

Estimate (5.2) holds for sufficiently large Q.
Lemma 5.4 (see [36]). Let n = 1. If ¥, <x < ¥pyq, then fj, (X)(1 — E°(x)) € Q7 U Ty U Qyy IF
Vono1 =X < y_,. then f; (x)(1 —FJ°(x)) € Q UT,} U Q}ty, Finally, if y_; < x < y,, then fi, O (1 —
Flre))EQruUTy uQr UQT, UTH UQE.
Proof. We just use the estimate |f}o (x]FD‘f“(xJI < yn? and the argument from the proof of Lemma 5.1 to
get the result.
Lemma 5.5 (see [36]). The function Fio = f; (1 — F]®) is univalent in C,..
Proof. It suffices to verify that F'e is injective on R. If Flo(x) = F/o(x + €), x < x + €, then, by Lemma
54,9, < x < x + € < Y4, for some n. Since F/o(x) = F/o(x + €), we have
fio GO = fi, & + €) = B () (£5,00 = fi, (x + ) + f,(x + ) (B () = B (x + ©)) = Ky + K.
Ifn € Z\ {—2,—1,0}, then
K1l = 15, () — £, (x + €)1/2,

K| < [Fl () — B (x + & < lel - |(FR)Y (@),

for some ¢ € [V, ¥n+2]. Therefore,

le]
K2l < G 12
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and we obtain a contradiction to (5.1).
An analogous argument works for y_, < x < x4+ ¢ < y,.

Finally, Flo € ?W[‘E,':?,] and dimy (aF"—U (£+)) = dimy (H.) could be any number in the interval [1,2].

6. Proof of Theorem 2 (see [36])

As mentioned after the statement of the theorem, we deal here just with the lower estimate. It suffices to
show that for some absolute constant € > 0 and for every integer N > 1 there exists a rational function
fj, of degree N univalent in C,and such that

f Z |fi () |dx > (1 + E)VWZ I £y Moo,z
113 7o Jo

To find such a function we use the construction in Proposition 5 with finite number of points wy,. For
f = 0sct

n 1
Wy, = (1—ﬂ)exp(2m-ﬁnh’ z). 1<n<N-1

Direct calculations show that for sufficiently small § = f, the sequence wy, satisfics all the propertics
necessary to proceed with the argument in Proposition 5. Finally,

LZ Fa@ldxz D" Wass—wal = (1+VE
in

len=N-1
and Il f, lep= (1 + €) for some 0 < € < oo that completes the proof.
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