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Abstract: In this study, we use the Elzaki homotopy analysis method (EHAM) to identify approximate solutions 

to fractional Schrodinger PDE. The Caputo fractional operator (CFO) takes into account the method that has 

been described. There are provided illustrative examples for solving the fractional PDEs. The findings produced 

are provided to demonstrate the effective features and sample size of the methods for implementing PDEs with 

CFO that have been described.  
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I. Introduction 

Fractional calculus (FC) emerged as a popular academic topic. The latest uses of fractional derivatives 

in cutting-edge applied science and engineering domains were examined by the mathematicians. The next state 

of a system depends on its present and past states because the fractional-order differential operator is nonlocal. 

The primary advantage of non-integer order derivatives is their ability to describe the memory and heredity 

characteristics of a wide range of occurrences. As a result, fractional-order derivatives and integrals have many 

uses in both science and technology. For instance, modeling fractional-order fluid dynamic traffic model, chaos 

theory, signal processing phenomena, electrodynamics, fractional model of cancer chemotherapy, fractional 

diabetes model, and nonlinear oscillations of earthquakes, among other fields [1-4]. In recent      , many 

researchers      paid attention to       the behavior of physical problems by using various analytical and 

numerical techniques which are not described by the        observations, such as the fractional variational 

iteration method  [5-9], fractional differential transform method [10-12], fractional series expansion method 

[13,14], fractional Sumudu variational iteration method [15,16], fractional Laplace transform method [17], 

fractional homotopy  perturbation method   [18], fractional Sumudu decomposition method [19-21], fractional 

Fourier series method [22], fractional reduced differential transform method [23-25], fractional Adomian 

decomposition method [26-28], fractional decomposition method [29], fractional homotopy perturbation method 

(FLHPM) [30], and another method [31–38].                         work the EHAM is             to 

solve            PDEs and nonlinear system of fractional PDEs. The paper   s been organized as follows.    

Section 2, we       the          of   FC. In Section 3, we give analysis of the method used. In Section 4, we 

consider several                      . Finally, in Section 5, we present our            . 

 

II. Preliminaries 

Definition 1.  A real function                 is                                  if there exists a real 

number           such that                   where          [   ]  and it is said to be in the space 

  
  if                 . 

Definition 2.  The                   fractional integral          of order      of a function           
   is defined as 
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Definition 3.  The Caputo fractional derivative (CFD) with order       of      is defined as follows: 

                
      {

 

      
∫                            

 

 

  

   
                                              

                                                                                            

The properties of the operator   : 

1.                    

2.      
      

        
                 

Definition 4.  The Mittag-         function       with     is         as. 

                     ∑
  

      

 

   

                                                                                                     

Definition 5.  The Elzaki transform (ET) is defined as: 

 [    ]   ∫       
  
   

 

 

                                                                                      

 

Some Properties of ET. 

1.   [ ]                    

2.                    . 

 

Lemma 1.  The ET of the CFD is defined as 

 [  
       ]      [      ]  ∑         

   

   

                               

                                                                                                  
 

III. FRACTIONAL (EHAM) 
 

Let us                                PDE of the form: 

 

  
                                                    

                                                                                                                    

Subject to the                  

                                                  
                                                                                                                  

where   
         is the CFD of the function        defined as: 

  
         

{
 

 
 

      
∫            

        

   
             

 

 

        

   
                                                                         

 

and R is the linear              operator, N represents the general nonlinear differential operator, and         is 

the source term. 

Now taking the ET of both sides of equation (6) we have 

            [  
        ]   [        ]   [        ]

  [       ]                                                                                                                            

 Using the                 properties of the ET and above                 , we have 

           
 [      ]

  
 ∑                

   

   

  [        ]   [        ]

  [       ]                                                                                                                             
or 

             [      ]  ∑              

   

   

   { [        ]   [        ]   [       ]} 
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We define the nonlinear operator 

 [        ]   [        ]  ∑     

   

   

          

    { [         ]   [         ]   [      ]}         
where   [   ]                  a               of            

    so-       zero-order             equation of  (11)     the      

 

      [                ] 
          [        ]                                                                                      

where   [   ]                           ,                a                           ,      is    

                   . 

        is an initial       of        and          is an                 . 

          ,      the                and    , it holds 

 

                                        

                                                                                                                       

respectively.                     from 0 to 1 

the solution                                                  to the                . 
Expanding          in Taylors serie's              to q, we have 

 

                             

 ∑        

 

   

                                                                                                                     

Where 

                      

 
 

  
 
          

   
                                                                                                                                  

If the           linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are 

properly chosen. 

The series (14) converges at    , then we has 

 

                                      

 ∑        

 

   

                                                                                                             

which                                                                . 

          to the definition (16), the                                        the zero-order             

(12) 

Define the         

               ⃗⃗⃗        
 {                         }                                                                                                           

                                           equation (12) m-times with                       dividing by m! 

and finally setting q=0 we get the following      order deformation equation : 

              [                   ] 

            ⃗⃗⃗                                                                                             
Applying the inverse Elzaki transform, we have 

                                   

    [         ( ⃗⃗⃗         )]                                                                                

where   

                ( ⃗⃗⃗    )

 
 

      
 
     [        ]
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 {
           
           

                                                                                                                                                              

In                                         for     ,         - order,     , we      

 

                    

 ∑        

 

   

                                                                                                                                                             

 

IV. Applications of (EHAM) 
 

Example :  consider the following fractional Schrodinger equation in (EHAM). 

              
                                                                                                                                   

with the initial condition  

                                                                                                                                                                

Multiplying Eq.(1) by (-i)  so we have Eq.(1) as follows 

             
                                                                                                                                                 

Applying Elzaki transform on both sides in Eq.(3) and after using the differentiation property of Elzaki transform for 

fractional derivative we get. 

          
    

  
 

      

    
   [   ]                                                                                                                    

On simplifying and using the Eq.(2) we have  

                     [   ]                                                                                                                  
we now define a nonlinear operator as : 

        [      ]   [      ]               [(      )
  

]                                                                 

And thus 

  ( ⃗⃗⃗    )                             [        ]                                                            

The    -order deformation Eq. is  

                   [         ]           ( ⃗⃗⃗    )                                                                                      
Applying the invers Elzaki we have. 

                              [        ( ⃗⃗⃗    )]                                                                                  

Solving above Eq.(9) for m=1,2,… and choosing          

Let us take the initial condition. 

                                                                                                                                                                      

            [  (  
⃗⃗ ⃗⃗  )]                                                                                                       

                   [                                ]                    
      [                               ]                                                     
       [           ]                                                                                                         

                      
          

      
                                                                                                                                     

            [  (  
⃗⃗ ⃗⃗  )]                                                                                              

             (
          

      
)      [                        [      ]]      

   
          

      
     [                 [

           

      
]]                   

 
          

      
     [                         ]                                 

                         
          

      
 

           

      
 

           

       
                                                                      

                                                                                                                                              
And so on  

Then we have  

                                                                                                                  
substitute h=-1 to obtain         
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Then 

                                 
         

      
 

         

       
                                                                   

 

put      to obtain the exact solution 

                                                                                                                                                           
 

 

 

 
   In Figure 1, we plot the graph of the exact and approximate solutions for Eq.(23) when  

                In Figure 2,  3D surface solution for (23) when                
 

 

 
 

Figure 1: Plots of  the exact and approximate solution         for different values of   with fixed value  . 
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Figure 2: The surface graph of the approximate solution         of  (23):            when      , 
           when       ,            when    ,            exact solution. 

 

V. Conclusions 
   

This work has produced the approximate analytical solutions of the linear Fractional Schrodinger by    using CF

D and Elzaki Homotopy Analysis Method PDE.The solutions that 

were found had the shape of infinite power series, which have a closed form.We can conclud from the 

results that this method is an effective mathematical tool for solving fractional PDEs. It can 

also be used to get an approximative solution to other problems.                                           
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