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Abstract 
Let G be a finite, simple, and undirected graph. For any integer      , the generalized eccentricity     

power of product adjacency matrix of G is     matrix with its     )   entry as     )
     )

 , if    adjacent to 

   and zero otherwise, where    ) is the eccentricity of the vertex v of a graph G. In this paper, we introduce 

the generalized eccentricity     power of product adjacency energy of some standard graphs, which is denoted 

by           )). 
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I. Introduction 

 Let G be a finite and undirected simple graph on m vertices named by           . Then the 

adjacency matrix A(G) of the graph G is a square matrix of order m, whose     )  entry is equal to 1 if the 

vertices    and    are adjacent and equal to zero otherwise. The characteristic polynomial of the adjacency 

matrix, ie.,             )), where I is the unit matrix of order m, is said to be the characteristic polynomial of 

the graph G and will be denoted by      ). The eigenvalue of a graph G is defined as the eigenvalues of its 

adjacency matrix A(G), and so they are just the roots of the equation       )    since A(G) is a real 

symmetric matrix, so its eigenvalues are all real. Denoting them by            and as a whole, they are called 

the spectrum of G. In 1970, I.Gutman  introduced the concept of the energy of G. [6] 

II. Preliminaries 

Lemma 2.1 [2] 

Let        and Q be matrices with M invertible. Then we have |
  
  

|  | ||       | 

Lemma 2.2 [2] 

Let        and Q be matrices. Let   (
  
  

) if M and P commutes. Then | |  |     |. 
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Lemma 2.3 [3] 

If     ) is the adjacency matrix of   , then      )      ) (  )      )  . 

 Definition 2.4 [3] 

Let     be a complete graph with vertices             . We delete the edge joining the vertices   and 

         . The resulting graph       ) has the order    and has        ) edges. Further it is regular 

of degree      .   

Definition 2.5 [3] 

Consider the complete graph     with    vertices. We split the vertices into two equal parts and delete the 

edges between that spilted parts. We obtain a disconnected graph such a graph is of order     and has       ) 

edges. Further it is regular of degree     . We denote it by       ).   

Definition 2.6 [3] 

Consider the complete graph     with    vertices. We split the vertices into two equal parts such that the 

vertices 1 to   in one part and     to    in the other part. Now delete the edges between the vertices in the 

same parts also edges joining   and    ,      . The resulting graph is of order    and has       ) 

edges. Further it is regular of degree     . We denote it by       ).  

Definition 2.7 [3] 

Consider a pair of complete graphs    with vertex set {             } and {             }. We obtain a 

graph joining    to   , for           . Such a graph is of order    and    edges. Further it is regular of 

degree p. We denote it by  (  
 ).   

Definition 2.8 [9] 

       is a graph obtained by attaching root of a star      at one end of    and other end of    is joined with each 

pendant vertex of     .                                                

Definition 2.9 [10] 

A Globe graph     ) is a graph obtained from two isolated vertex are joined by n paths of length 2.   

Definition 2.10 [11] 

Let       ) be a connected simple graph with | |    vertices and | |    edges and let     ) denote the 

eccentricity of the vertex   , for          . For vertices          ), the distance        ) is defined as 

the length of the shortest path between    and    in G. The eccentricity of a vertex is the maximum distance 

from it to any other vertex.     )           )        ). 

III Main Result 

 3. Generalized eccentricity     
 power of product adjacency energy of some standard graphs 

Definition 3.1 

Let G be a graph with   vertices and   edges. For any integer       , the generalized eccentricity     

power of product adjacency matrix of   is denoted by        )               is determined as 

                          {
     ) 

 (  )                        

                       
.        

         The generalized eccentricity     power of product adjacency energy of   is denoted by          ))  
∑ |  |

 
   , where            are eigenvalues of         ).  
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Theorem 3.2 

Let     be a complete graph. Then           ))       ), where    . 

Proof:  

Let    be a complete graph with m vertices for    . 

Since    is connected graph with     )         , we get 

                          )   {
                             

                                
  

and the generalized eccentricity     power product adjacency eigenvalues of    are          of multiplicity 

    ) and     ) of multiplicity   respectively. Hence            ))       ).   

Theorem 3.3 

Let      be a complete bipartite graph. Then        (    ))        ), where    . 

Proof: 

Let      be a complete bipartite graph of order    and    edges.  

Then                )  {
                            

                                
 . 

The generalized eccentricity     power product adjacency matrix of       is,        (    )  [
     

     
]  

where    (
   
   
   

) 

Therefore,          (    )  )   |              )|                                                                                   

                                                        =  |
        

        
| 

                                                        =          )          ) 

                                                        =          )          )      

 Hence                 ))  = ( 
         
      

)  and  

        (    ))        ).  

Theorem 3.4 

Let      be a star graph. Then        (    ))       )√  , where    . 

Proof: 

Let      be a star graph of order       and   edges.  

Then               )  {
                           

                                
.  
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The generalized eccentricity     power product adjacency matrix of       is,   

     (    )  

[
 
 
 
 

           
       
       
     

       ]
 
 
 
 

.  

Therefore,         (    )  )   |              )| 

                                                      =  
|

|
 

             

        

        
     

        

|

|
 

                                                     =             )  ) 

 Hence          (    )) = ( 
 √    √  
     

) and  

         (    ))      √ ) .  

4. Generalized eccentricity     power product adjacency energy of some regular graphs obtained by 

complete graph 

Theorem 4.1 

Let         ) be the edge deleting graph 1 of    . Then        (      )))           ), where 

   . 

Proof: 

Let        ) be the edge deleting graph 1 of order   ,            and         ) edges. Then  

                ))  {
                            

                                
.  

The generalized eccentricity     power product adjacency matrix of         )  is,             ))  

[
       )        )

       )        )
].    

Therefore,  (            ))  )  |                ))| 

                                                          = |
           )         )

        )            )
| 

                                                          = |            ))          )) | 

                                                          = |               ))| 

                                                          =    ) |
  

  
          )| 

                                                         =    )  
 

 
        )) 

 

 
    )    

                                                         =                ))        )    

Hence                 ))  = ( 
        )        

     
) and 
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       (      )))           ).  

Theorem 4.2 

Let       ) be the edge deleting graph 3 of    . Then          (      )))       )    ),  where 

   . 

Proof: 

Let        ) be the edge deleting graph 3 of     order              and      ) edges. Then  

                ))  {
                           

                                 
.  

The generalized eccentricity     power product adjacency matrix of         )  is,               ))  

[
        )

       )  
].  

Therefore,   (            ))  )  |                ))| 

                                                            = |
           )

        )    
| 

                                                            = |   | |    
        )) 

 
| 

                                       =   |        ) 
    )    )     )  

 
)| 

                                       = |         )    )    )      )    )  | 

                                       =     ) |(
   (   )    )

   
)        )    )| 

                                      =    ) (
   (   )    )

   
     )    )) 

 
       )    )

   
     ))    

                                    =         )    ) )        ))    

Hence                )) = (     )    )     )    )        

        
)  

and         (      )))       )    ).  

 Theorem 4.3 

 Let     
 ) be the join of a complete graph. Then              

 )))          )      ), where    . 

 Proof: 

Let      
 )  be the join of a complete graph of order     and    edges. 

Then                
 ))  {

                           

                                
.   

The generalized eccentricity     power product adjacency matrix of     
 ) is,           

 ))  

[
       )       )

      )        )
].  
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Therefore,             
 ))  )  |              

 ))| 

                                 = |
           )        )

       )            )
| 

                                 =             ))         ))  

                                 = (      )          ))(      )      )
   

 

                                            )          ))       )      )                                                

                                 =     (       ))          )        )    

Hence               
 ))) =  ( 

    )        )        
        

)  

and              
 )))         )    ). 

 

 5. Generalized eccentricity      power of product adjacency energy of complement of regular graph 

obtained from complete graph 

The complement graphs of       ),        ),        ) and     
 ) are denoted by 

      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and     
 ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. In [4],   ̅       , where  ̅ is the adjacency matrix of  

complement graph. 

Theorem 5.1 

 Let       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of    . Then        (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))         ), 

where    . 

Proof: 

 Let       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 2 of    . Then the generalized eccentricity     power 

product adjacency matrix of        )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is,      (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  [
       )

      )  
], where     (

   
   
   

)   

Therefore,        (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  ) =  |         (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)| 

                                                          = |
         )

      )    
| 

Hence     (     (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))  (      )      )  
      

)   

and        (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))         ). 

Theorem 5.2 

Let       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 3 of    . Then 

        (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))          )    ). 

Proof: 

Let       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ be the complement of edge deleting graph 3 of    . Then the generalized eccentricity     power 

product adjacency matrix of        )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is,         (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  [
       )      

            )
] 
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                                =           
 ))  (by theorem 4.3) 

Since             
 )))          )    ). 

Hence we get         (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))          )    ). 

Theorem 5.3 

 Let     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of join of a complete graph. Then         (    

 ̅̅ ̅̅ ̅̅ ̅̅ ̅)))      )    ), 

where    . 

 Proof: 

Let     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the complement of join of a complete graph. Then  the generalized eccentricity     power 

product adjacency matrix of     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is,           (    

 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  [
        )

       )  
]    

                           =              )) (by theorem 4.2) 

Since        (      )))       )    ). 

Hence we get         (    
 ̅̅ ̅̅ ̅̅ ̅̅ ̅)))       )    ). 

 

6. Generalized eccentricity      power product adjacency energy of some irregular graphs  

Theorem 6.1 

Let     be a friendship graph. Then             ))       ), where    . 

Proof: 

Let     be a friendship graph with      vertices.Then the generalized eccentricity      power product 

adjacency matrix is,  

          )  

[
 
 
 
 
 
          

         
         
      

         

         ]
 
 
 
 
 

. 

 Therefore,              )  )  |              )| 

                                                    =              ))     )        ) . 

Hence              ))  (
   √        )

 

   √        )

 
     

      

) 

and             ))        ). 

Theorem 6.2 

Let      be a globe graph. Then               ))     √      ) .  
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Proof: 

Let      be a globe graph with      vertices. Then the generalized eccentricity      power product adjacency 

matrix is,  

            )  

[
 
 
 
 
 
 

               

               

           
           
       

           
           ]

 
 
 
 
 
 

. 

 Therefore,              )  )  |             )|  

                                                     =           ))  )  

Hence                ))  (  √      )  √      )  

   
) 

and               ))    √      )   . 

Theorem 6.3 

Let         be a graph. Then         (       ))        
 

 
 √         )) .  

Proof: 

Let           be a graph with     vertices. Then the generalized eccentricity      power product adjacency 

matrix is,  

       (       )  

[
 
 
 
 
 
 

              

               

           
           
       

           
           ]

 
 
 
 
 
 

. 

 Therefore,          (         )  )  |        (        )| 

                                                           =   )       )           )). 

                    ))  (
 

 
   √         ))

 

 
   √         ))    

      

) 

and           (       ))     
 

 
 √         ))  . 
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