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. INTRODUCTION

In fixed point theory, the Banach contraction principle is the remark-

able resalt that was introduced by S.Banach [3] in 1922, (Over the
vears, this theory was generalized by various researchers on different

metric spaces. And they used the contraction principle for references

to their theorems. Karpinar e, al[l4d| established guasi-partial-
metric space in 2012 and obtained a new non-unigue fixed point
theorem. He proved the existence of fixed points for self~mapping in

guasi-parti

metric space. By a generalization of the Banach con-

traction principle on a complete metric space, Ciric |[4] (1974) proved
a non-unigque fixed point theorem on some maps. In 1976 (1| and

1975 (2], J.Achari, obtained some results on Cird "o's non-unigue fixed

points. In genervating spaces, Seong-Hoon Cho|5] (2019) established
Fixed point theorems for Cirvic tvpe Z-contractions in guasi-family.
. P. Chi et.al. |G] (2012) satisfving generalized a contraction prin-
ciple in partial metric spaces. 5. Gupta and B. Ram |[7]| {(1998]
obtained the fixed point theorems with a nomanigue fixed point.
V. Guapta (2020) obtained guasi-part

| metrics aggregation on -
projective expansion with an application. E. Karapnar, 1. M. Erhan

5| (2011) established fixed point results for operators on partial
metric spaces. E. Warvapnar [9,10] (2011 2012) generalized Caristi
Iirk’s tvpe fixed point in partial metric spaces and proved a new
Cliric tvpes non-unigue fixed point theorem. H. P A, Kuanzi et.al [11
(2006) introduaced Partial guasi-metric spaces. 2. Lin et. al [12
(20006]) introduaced Ciri "¢ tvpe mappings with non-unigue fixed and
periodic points. 5. G, Matthews |[13] (1992) obtained Partial metric
topology. Pachpatte, B, G [14] {1979) obtained Ciric-tyvpe maps with

a nonunigue fixed point.
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By generalizing the Banach contraction principle, Ciric demonstrates
an outcome on a non-unigue fixed point known as

Ciri“c type contraction [3] (1974).ie.

Let (X,d) be a metric space and T : (X,d) — (X,d) is a self map,
satisfies the following condition

min{d(T¢,Ty).d(&,T€),d(n, Tn)}—

min{d(&, Tn),d(n, TE)} < ed(E.n)
whereall £, € X; ¢ € (0,1) then there is a fixed point in T' whenever
X is a T - orbitally complete.
The scope of the present article is to find some fixed points that are
non-unigue inside the frame of quasi-partial metric space.

Now, we take a look at a few leminas and definitions pertinent to our
primary findings. Here g; is quasi partial metric space, N is natural
quantity and 9%t is represent all real and positive quantities.

Definition 1.1:(E. Karapmar, 2012) [11]: A function ¢ : P %
P — M satisfing the condition

(@ 0<q&n) =alnn) =qll.n) = =7

(#) @& &) < alé.n)

(i14) @i (€. &) < qu(n. §)

(iv) @€, m) + qu,u) < @& u) +qlu,n) for all {,n,u e P

Then (P, q;) known as quasi-partial metric space (QPMS) and P is
a non void set.

Let (P, q) is a QPMS, then a function d,, : P x P — MW" is a metric
on P defined by dy, (£, 1) = @(&n) + a(n,£)) — al& ) —aln.n)

Here we note that every quasi partial metric space g; on P creates a
Ty topology 75,0n P, whose base is a open g- ball family {4, (£, €) :

£€ Pee P} and
By (Ee)={meP:q&n) <ql(&,€)+e}foralle>0and £ € P.

Now we defind some principles like continuity, completeness,Cauchy
sequemee and Convergence in that manner :
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Definition 1.2: Seong-Hoon Chol5]

a) In a QPMS (P.q), {&} is a sequence converges to the limit £

< @€ &) = limisooq(§, &)

b) Ina QPMS (P, q), {&;} is known as a Cauchy sequence if lim; ;—-0qi(&i, ;)
is exists and finite.

¢) In P, if every Cauchy sequence {;} converge with respect to 7,
to a point £ € P analogous qi(&, &) =lim; j_oom(&i, &) then QPMS
(P,q) known as complete.

d) At & € P, a mapping f : P — P is continuious if for every
€ > 0,3 A > 0 such that F(#, ({0, A) C A, (Féo.€).

Lemma1.2.1: (E. Karapinar, 2012)[10|

1) In a QPMS (P, q), {&} be a Cauchy sequence <= {§;} is Cauchy
sequence in partial metric space.

2) A QPMS (P, q) is complete <= partial metric space (P,q,) is
also complete,

Ii”’-a—:-:nc@p(fs&i) =0&q [."E £)= f'-’:m-;—prﬁ'[f- 51) = H"”i,j—)x‘}‘i(‘fir{j)

(1)

Lemma1.2.2:(E. Karapinar, 2012)[10]

In a QPMS (P, q), suppose if §; — zjas i — oo in such a way that
qf(zlle] = U

and lim;—oq(&. 1) = qi(z1, 1) for every n € P.

Lemma 1.2.3:(E. Karapinar, 2012)[10]
Suppose (P, q;) is a QPMS, then

(i) i g;(&.,m) = 0 then £ = 1.

(i) If € # n then g (&, n) = 0.

In a QPMS (P, q;) let B be a self map. For everyn € Pand ¥ C P
LAY) = sup{qi(&,n):&neY

2. O(&,i) = {&, BE, B2, B3¢...... B¢} wherei e N

3. O(E.00) = {£,BE, B, B.......... }.
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Definition 1.3:(E. Karapinar, 2012)|10]:
a) Amap B : (P,q) — (P,q) is called orbitally continuious if

lip m—soo Qi (B €, B &) = limp_ooqi(B™€,21) = qi(21,21)
which shows that.
lithy m—soo@(BB™E, BB'™ &) = limy_ooq(BB™ &, Bz,) = qi(Bzy, Bzy).

b) A QPMS is known as orbitally complete if every Cauchy sequence
{Bi~¢, 2, converge in (P, q) if

Hr”'n.m—&:cq![:Bi”‘fr Bim‘fj = EiT”ﬂ—}:CQJ'(BAH‘ErZJJ = Q'!'{zl.-zl}

Remarks 1.4: For any j € N. the orbital continuity of B implicit
orbital continuity of B7.

2. Aggregation of Quasi Partial Metric and its Projective
expansion :

Definition 2.1 (V.Gupta et.al.,2020): Let (Y,—,._q,-}:”:l be afamily
of quasi-partial metric spaces and Y =[]\, ¥;. Let ¥ : RT — Ry
be a quasi partial metric aggregation function. Then the mapping
D :Y — Y is called a projective W—expansion from (Y, ¢ ) into it-
self, if there exist n constants Ay, ..., A,y > 1 such that g;(D;(y), Di(z)) >

A P(gi(y1:21)s -G (Ymzm ) for all y, z € X, where Qg is the quasi
partial metric induced by aggregation of the collection of quasi par-
tial metric spaces (Y;.q;)7., through aggregation function W.

Remark 2.1.1 (V.Gupta et.al.,2020): Let collection of nonempty
sets represent by {¥;}/>, and ¥ = [[", X,. Let I? be a self-mapping
defined on ¥ with coordinate functions 12; : ¥ —» ¥;,¢ = 1. ... such

that D(y) = (D1(y). D2(y),.... Din(y)) for all y € ¥

Corollary 2.1.2 (V.Gupta et.al.,2020): Let a family of quasi
partial metric spaces be (¥;.q:)i—, with complete metrics g;;i =
1,....m and ¥ = [, X;. Let a homogeneous quasi partial metric
aggregation function be ¥ such that ¥(1,....1) = ¥(1li) = 1;i =
1,....m and an onto projective ¥-expansion is D . Then I has a
unigque fixed point .

Here we introduce some theorems of non-unique fixed points in the
structure of QPMS.

3. Result of nonunigue fixed point theorem in Ciric type
contractive mapping:

Here we introduce some theorems of nonunigue fixed point in the
structure of QPMS.

Theorem 3.1: Let an orbitally continuous self-map be B : (P, q;) —
(F,q:) on P, where (P, q) is a quasi-partial-metric space. B has a
fixed point whenever (P, q;) is B- orbitally complete. And For all
£.n € P and some constant ¢ € (0,1), if B satisfies the condition
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min{q(BE, Bn), q(&, BE), ai(n, Bn)}—min{a(&, Bn), q(n, BE)} < cq(€,n)
(2)
Then For every £ € P, {B'¢} converges to a fixed point of B.

Proof:

Let £ € P be an arbitrary point and the sequence defined for i =
0,1,2,3.... is
i1 = BE; (3)

It is already proven previously that if there exists a non-negative
value i such that &, = & then B has a fixed point &; .

Let for every i = 0,1,2.....;& # £;+1. Substitute { = &; and n = £
in (2). Then we get

min{q(BE&, B&iy1). (&, B&), qu(&iv1, B&1 )} —min{q (&, B&iy1) @(&iv1, B&)} <
eqr(&is Eiva)

which implies min{q (&1, &v2): @& Givr)s @(&ivrs Cive) b —man{q (& Eive) @iy, Eip1)} <
eqr(&iy i)
Therefore

min{q(&i+1.&+2)} — (&1, &i1)} < e, €isr) (4)

Suppoae that ¢ € [0,1) and for every i = 0,1, 2.....; the equation (4)
shows that q;(&i+1,&i+2) < equ(&i, §iv1)
Thus we get,

Q&1 Giv2) < equ(&i. &) < Pql&im1. &) e < g, &

Now, we prove {;}is a Cauchy Sequence.

Let i > j, Then by using equation (5) and the triangle inequality of
(iv) of definition 1.1

0 < qil&i. &) < @i &) +a(&i1,&i-2) +ooees T @(&541.65)—

lar(&izrs Gior)Fa(Gia, &im2)+ oA @ (&1, 1))
< @i &io1) + @(&io1,&i2) + e + @ (€41, &)
<K R+ R (€0, &)
Bv G.P. K/ 1—1k'k - qi(&p. &1). Taking limit as i, j — oo q(&.&;) =0
Hence, {&;}is a Cauchy Sequence in (P, q)

From lemma 1.3, {&;} is also Cauchy in PMS (P, p) as well as in
metric space (P, d).
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Since (P, q) is complete then PMS (P, p) as well as metric space (D,
d) are also complete.

Hence 3 a point z; €P in such a way that & — z; in (P, d) , from
Lemma 1.3

GI{ZL zl} = Hn?-i—.‘-rx_"ﬂ{zlﬁ ‘EJ) = h.'”?':i,.j—)m(ﬂ (‘f?‘&_}} [ﬁ}

which shows that
lim;ooqi(z1, &) = 0 (7)

So q'(z1,21) = 0 from equation (6)

Its conclude that z; is the fixed point of 5. Now substitute £ = &
and n = z; in equation (2)

Then we obtain,

min{q(B&, Bz1), qi(&i, B&). m(z1, Bzy) }—min{q (&, Bz1), @(z1, B&)} <
eqr(&i,z1)

which shows

min{q(B&+1, Bz1), qu(&, &x1). (21, Bzy) }—min{q, (&, Bz1). qi(z1. B&aa )} < equ(&in21)
(8)

Taking limit as i — oo, plzy,Bz;) <0

from equation (6) and Lemma (1.2.2); (21, Bz;) =0

from equation (1.1) we conclude that,

0 < pl(z1, Bzy) = 2qi(z1. Bzy)—qi(z1.21)—@(Bz1, Bz1) = —qi(Bz,, Bz;) <
0

Hence p(z1, Bzi) = 0 so finally we obtain z; =Bz

For supporting our result one example is given.
Example:

Let gi(&,n) = max (£.n) For all {,ne P,

and P € R then (P, q) isa QPMS. Let £ =2 >n = 1.

then BE = l—;(':—gg = 4706 (approx.) and Bn = l—:‘:—g = 0.2

n

Suppose B : P — P such that B£ = for all £ € P,.Then

EJ
1+4£7
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q(&,m) = max(€,.n) = mazx(2,1) =2=¢

qu(€, BE) = maz(€, tizr) = maz(2,0.4706) =2 = €
qi(n, Bn) = max(n, 1—;’:,7) =maz(l,02)=1=17
q(&, Bn) = mazx(¢, 1—;1:7.‘;) =maz(2,02) =2=¢
qi(n, B) = max(n, 1—_5_:—55) = max(1,0.4706) =1 =19

q (B¢, Bn) = ma:r:(i:“';?. ﬁ:—,ﬁ) = max(0.4706,0.2) = 0.4706 = B¢

from (1)
7""-'”{(11(B€‘ B")? QI(gs B&)- ql(nv B’I)} o '"'li'n,{(],(ﬁ, B")' (Il(".- B&)} <
cqi(&.m)
) 5 ; y &3
m-z.n.{l T o —min{é n} = mm{w, n} (9)

In equation (2) , we take ¢ = 3/4; If

8 £ 3
mi S Ny = = 10
mm{]+4€2>1}} TraE S 1 (10)
If
53 3
min{ B 452’"} = nthenn < TS (11)
From equation (10) and (11), we can prove that 7 < ﬁ’;:?f < %—f.

Hence, £ = 0 is the fixed point of B.

Theorem 3.2: Suppose B : (P.q) — (P.q) a orbitally continuous
self map, mapped on B- orbitally complete QPMS with ¢ > 0. Let
there exist a point 75 € P in such
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a way that for few i € N, q (&, B*(£)) < € and B satisfy the codi-
tions for all £, € P and some constant ¢ < 1

0 < q(&n) <e=min{q(&, B()), a(B(&), B(n)), a(B(n),n}t—

min{ai(&, Bn), ai(n, BE)} < cai(&.n). (12)

Then B has a periodic point.

Proof: Here we takeset D = {i € N : q(&,B*(¢)) < e, for £ € P
Let D # 0,

j = min D and £ € P such that g(&, B7(£)) < ¢ Now consider two
cases,

Case(1) When j — 1 then ¢(&, B(&)) < €. In equation (12) put
n= B(g)
min{q (€. B(§)). q(B(£). B(B())). qu(B(B(€)). B(&)}—

min{q (&, B(B(£))). a(B(§). B(§)} < cai(§, B(£))
min{q (&, B(£)), @(B(€), B*(€)), ai(B(B(£)). B(&)}—

min{q (&, B*(€))} < eq(&, B(£))

since ¢ < 1, so {@(&, B(£)), (&, B2(£))} < eq(€, B(£))

give a contradiction.
Thus q(B(£), B*(€)) < car(§, B(§))

Again in theorem 1, we can suppose an arbitrary point £ = & and
take the iterative sequence B{; = £ | and prove that z; = Bz; a
fixed point of B.
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Case(2): Suppose j = 2, for every y € P if

a(B(n).n) = € (13)

Then from equation (12) and the condition g (£, B7(£)) < €

0 < q(én) <e=min{q& BE)), a(B(E). B(n), a(B(n),n}
min{q (&, B(n)), a(n, B(&)} < cqi(&, BI(£))

it shows t.h?lf., "n”l{fﬂ(fz B(é))\ (H(B(éj B(Bj(é)}‘m(ﬂ( RJ(&)]“ Bj(é}}_
min{q (&, B(BY(&)). q(B?(£), B(E))} < equ(€, BY(£))

min{q(B(&), BT (&), a(B+(€), B (€))} -
min{qi (&, B(E), q(B(€), B(€)} < equ(&, B (£))

from equation (13) we obtain q,(B/*1(£), B/ (€)), qi(BI(€), B(£))> €

Therefore min{q(B(€), B *1(£))}—min{q(E, B’ T1(£))} < eq(&, BI(£))
= q(B(£). B"1(€)) < eq(€. B/ (£))

Similarly we can say that qi(B2€6, B1t2(€)) < eq(B(£), BitL(€)) <
q(€, B(€))

by ongoing same process, for each ¢+ € N,we obtain,

@(BHE), B7HE)) < qu(B' 1), BITTIE)) £ v < (€, B'(§))
hus for any repetitive sequence &, = BY(£;) where £ = £

(& &) = a(BY (&), BY1 (&) < ¢V ailo, B (§0))

using (iv) of def. 1.1 and for each t € N,
@& Gire) < @& i) @lGivr i) + oo + @(Give—1,&ie)

q;(cﬁ,‘, Ef+f} 5 ('.'ij [J.-l-(_‘.j-l- ......... +(‘.{f_”j](cfn._ Bj(fnn
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i

Q& &ive) < 155 (&0, B? (&)

Thus lim;—oeq (&, &ive) =0

So, in set P, {&} is a Cauchy sequence. For some z; € P where P
is B-orbitally complete. Such that

limieoqi(B (&), 21) = limiooqu(&i,21) =qi(z1,21) =0 (14)

from remark (1.4) the orbital continuity of S indicate that

qi(BY(z1), B/ (z1)) = lim; ooqi (B (BY (&), B (z1)) = lim;_ocqu(B? (BY(&)), B/ (B (&)))

= limiooq(BU1 (&), BY (21)) = limiooqu(BY T (£0), BUH (&)
= lim; soeeqi(&iy1, BY(21)) = limg e qi(€i1, 1)

=q(z1, B'21) = qu(z1,21)
Thus qi(B’(21), B’ (21)) = qi(z1, B'21) = qu(21,21).

Hence from (i) of def. 1.1, Periodic point of B is z3

Theorem 3.3: Let I’ be a non-empty set and provide two quasi-
partial-metric spaces

q and 8. B be a sell-map. If we assume

a) with respect to q, P is an orbitally complete and orbitally con-
tinuous space,

b) q(é.n) < 6(&,n) forall E,ne P

c) B satisfy the condition min{[§(B(£), B(n))]*. 6(£,n), 8(B(£), B(n)), [6(n, B(n))]*}—
min{[3(B(n), B(E)]?,)8(&, B(n)). d(n, B(£)), [6(n. B(m)]*} <

c[6(&, B(£)).6(n. B(n))] (15)
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For all £,y € P and ¢ << 1. Then B has a fixed point in P.

Proof: Let take a point £ € P and the sequence &; defined for
i=>1,

& = B(&) and &34 = B(&) = B (&),
In equation (15),Replacing &, i with §_4.,&;

min{[5(B(&1). (51))]2 (cff 1,&), {B( ), B(&)) [é E: B(&))]*}—
mm{[ B(&;), )% 8((&— ( i)),8(&, B(&i-1)), [0(&, B(&:))*}
< e[d(&i-1, (Ee— }) (& (&J)]

min{[8(&. &i41)], 0(&i-1, &), 0(&i 1), [6(&i &) )P} —
min{[0(&ip 1, €))% 0(&is Eipr), 0(64, £2), [8(&4, &in)}

<eld(&-1,&),0(&i,&ix1)] (16)
6(8i-1,8:),0(&i,&iv1) < €[6(8i-1, &), 8(&i, §iv1)] gives a contradiction

Thcreforn 5(&,&4_]) < f[!i((fi_hfi) < (:[ﬁ(f,;_ggf,'_ﬂ) < <
" 0(&o, &1)

So, for any £ € N;

6(8i.&ige) < cﬂ&hfﬂ (17)

1—

and

J{Ehgﬂq) < 1(; _é{fﬂzél] “8}
C

Thus with respect to q, & is a Cauchy sequence. Later PP be a B-
orbitally complete then 4 z; € P.

Such that lim;_,~ B (&) = z1.from the orbital continuity of B,
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BZ[ = Ein;-.,-_,wB(B"{cﬁ;_} = Z1.

4. Application:

The goal of complexity analysis in computer science is to determine
which algorithm is best, or in another way, the algorithm that uses
the least amount of space and time even when dealing with large
amounts of inputs and other adequate resources. Asymptotic anal-
ysis typically uses for this, with the running time of algorithm A
given by the mapping Tp : N — (0,o¢). The amount of time or
space needed by an algorithm to tackle the task at hand is indicated
by the symbol T (m), where m € N denotes the volume of input
data that has to be processed. Let G(Tg) stand for the collection of
all functions between N and (0, o).

When evaluating the complexity of algorithm analysis, asymptotic
complexity analysis is used rather than exact analysis. Then research
an algorithm that, even with huge inputs and other acceptable re-
sources, uses "approximately" the least amount of space and the
least amount of running time.

Let h € G(Tg) represent the running time or space an algorithm
uses to run. Following that, we may establish an asymptotic upper
bound for h as follows:

If my € N,g € RT, and k € G(Tg) are there, then h(m) < kg(m)
for all m € N such that mg < m. Then,k represents "approximate"
knowledge about the procedure and provides an asymptotic upper
bound on h. Tt had expressed as h € U(k). A similar asymptotic
lower bound for the algorithm can also be defined. The notation
h € L(k) indicates that for all mm € N such that mq € m, there exist
mg € N,g € R, and a function k € G(T) such that kg(m) < h(m).
The ideal situation is one in which we can identify a function h that
satisfies the criteria h € T(k). where, T(k) = U(k) N L(k). In this
instance, the function A reflects a "tight" asymptotic bound of the
algorithin, it represents all asymptotic data about the resources that
are best suited to solve the problem.

Let the pair (C*,d") represents the complexity space,
where C* = {h eEG(Tg): >, 2™ m < :c} and d° is the com-
plete quasi partial metric on €' delined by
o o0 — ; 1 1 1 1
dc{h-‘ k) - Zn:l 27" max { hirm) - k{m)? k(m) - -'el:ru))}

The members of C* are called complexity functions and d°(h, k)
represents the complexity distance from h to gk. Then d°(f.g) =0
means 'h is as efficient as k'
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We shall resolve the issue by applyving the Divide and Conquer tech-
nique cited in [16]. In this process, we shall bifurcate the problem
into minor problems (based on wvarious resources) and solve them
individuallv using the identical algorithm to identify an appropri-
ate solution. Upon attaining solutions to the insignificant problems,
we shall integrate them to obtain an overall solution to the original
problem that will signify an algorithm with almost all the appropri-
ate resources,

Proposition 4.1 (V.Gupta et.al.,2020): Let D be an onto self
mapping defined on C* with coordinate functions D; : C* — C},i =
1,...m such that

D(h)(m) = (Dy(h)(m), ..., Dy (R)(m)) for each h € C* and m € N.
satisfying the expansion inequality

d{(Di(h)(m), Di(k)(m)) = AiW(di{(h, k1), ...d5, (hn, kn))

for all hy. k; € Cr.i=1,...m and Ay..... A, > 1. Then D € T'(k).

We create the elements CF, i = 1. ..m;m € N of complexity category
C'* by utilizing diverse resources like time, space, data, etc., and
C* =1, C;. Tt’s evident that (C],dS) is a set of complete quasi-
partial metric spaces. A function W : R — R, is used to aggregate
these elements, and it’s ensured that ¥(1,1,...,1) > 1. DD is an onto
self-mapping defined on € with coordinate functions I); : C* —
C7,i=1,..m in such a way that

D(h)y(m) = (D (h)(m). ..., Dy (h)(m)) for each h € C* and m € N.
satislving the expansion inequality

dS (D (R)(m), D (k)Y (m)) = X W(dy(hy, K)o eoidS, (B B )

for all hik; e Cf,i=1,...m and Ay..... A, > L

Thus, all the conditions are satisfied and therefore, [ has a fixed
point A* i.e. D e L(k)U(k). It follows that D € T (k).

3. Conclusion:

In the progress of functional analysis, all types of metrics have a
significant role. Many research has been done in various fields like
metrie, partial metric, and qguasi-partial metric spaces. The con-
ception of quasi-partial metric space is generalized in these forms
to some extent. Here we introduce the basic concepts of Ciric type
(I) orbitally continuous self-maps in the above-defined space. we
know that there may be some possibility of successful research in
this space.

Motivated by the work of Erdal Karapinar [11] in partial metric
space, we put forward Ciric (1) type contractive mapping in quasi-
partial metric space. And proved the fixed point is periodic point

as well as orbitally continuous with respect of space. Our outcomes
canl be extended to the case of coupled fixed points in qpms. The
results of this paper are theoretical and analytical. Attempt to de
sign innovative fixed-point solutions in this research. And to extend
these results by involving Ciric type (1) contraction mapping using
the frame of quasi-partial metric space,
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