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Abstract: Mathematical study of the one-dimensional advection-dispersion equation with radioactive decay 

factor is derived using a generalized integral transform method to investigate the movement of absorbing 

solutes in hydraulic homogenous porous formations. The solution is derived under conditions of steady-state 

flow and arbitrary initial and inlet boundary conditions. The results obtained by this solution agree well with 

the results obtained by numerically inverting Laplace transform-generated solutions previously published in the 

literature. For mathematical simplicity it is hypothesized that the sorption processes are based on linear 

equilibrium isotherms and that the local chemical equilibrium assumption is valid. The result from several 

simulations, compared with predictions based on the classical advection-dispersion equation with constant 

coefficients, indicate that at early times, retardation affects the transport behavior of absorbing solutes. The 

center of mass appears to move more slowly, and solute spreading is enhanced in the radioactive decay case. 

The mathematical solution presented in this paper provides more flexibility with regard to the inlet conditions. 
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I. Introduction 
The impact of contaminant flow and the solutions of advection dispersion equations have been studied 

by many researchers in the past years and still in progress. Gelhar et. al. (1979), Sudheendra (2010, 2011).  Aral 

et.al (1996) and others, have provided methodologies for improving the description and prediction of non-

reacting solute transport in complex structured formations, compared with the prediction based on the classical 

advection-dispersion equation with constant coefficients. On the other hand, the transport of absorbing solutes in 

geochemically as well as hydraulically heterogeneous porous media has received little attention. 

For the importance case of transport of sorbing solutes in geochemically homogeneous porous media, 

the effects of sorption are commonly accounted for by a dimensionless retardation factor, which may be defined 

as the ration of the average interstitial fluid velocity to the propagation velocity of the solute. Excluding the 

possibilities of mass transport limitations and solute transformation or decay, any observed fluctuations on the 

retardation factor are attributed solely to the variability of the distribution coefficient, which is an 

experimentally obtained measure of sorption or solute retention by the solid formation. Sorption processes can 

be complex and depend on many variables, including temperature, pressure, solution pH, and ionic strength, 

sorbent surface charge, sorbent sorptive capacity, and the presence of species that complete for sorption sites. 

Spatial or temporal fluctuations in any of these variables accordingly affect the distribution coefficient and, 

consequently, the movement of sorbing solutes in subsurface porous media. (Karckhoff (1984) and Sudheendra 

(2014)). Although such a correlation is not fully reliable for every solute-sorbent system (Curtis and Roberts, 

1985), it can explain to some extent the variable decay factor observed in field experiments (Roberts et.al 1986). 

http://www.questjournals.org/
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Garabedian (1987) &Sudheendra (2012) employed spectral methods to analyze reactive solute macro-

dispersion under the assumption that the log-hydraulic conductivity is linearly related to both the porosity and 

the distribution coefficient. His result indicate that solute spreading is enhanced when there is negative 

correlation between the log-hydraulic conductivity and the distribution coefficient. The present work is focused 

on the transport of pollutants but otherwise non-reacting solutes under local equilibrium conditions in a one-

dimensional unsaturated porous medium. Mathematical solutions are employed to solve the one-dimensional 

advection-dispersion equation with uniform, steady fluid flow conditions and radioactive decay factor, for a 

semi-infinite medium and flux-type inlet boundary condition. 

The main objective of the study is to provide mathematical model for better understanding of transport 

of pollutant through unsaturated porous media. A mathematical model is an important tool and can play a 

crucial role in understanding the mechanism of groundwater pollution problems. It is a simplified description of 

physical reality expressed in mathematical terms. Mathematical models that attempt to simulate atmospheric 

processes involved in groundwater pollution are based, in general, on the equation of mass conservation for 

individual pollutant species. Such models relate in one equation the effects of all the physical aspects and 

dynamic processes that influence the mass balance on groundwater which include transport, diffusion, removal 

of pollutants and loss or transformation through chemical reactions. 

 

II. Mathematical Model 
 

The Advection-Dispersion equation along with initial condition and boundary conditions can be written as 
𝜕𝐶

𝜕𝑡
+𝑤1

𝜕𝐶

𝜕𝑧
= 𝐷1

𝜕2𝐶

𝜕𝑧2
− 𝜆1𝐶       (1) 

Initially, saturated flow of fluid of concentration, C = 0, takes place in the porous media. 

Thus, the appropriate boundary conditions for the given model 

𝐶(𝑧,  0) = 0   𝑧 ≥ 0

𝐶(0,  𝑡) = 𝐶0𝑒
−𝛾𝑡 𝑡 ≥ 0

𝐶(∞,  𝑡) = 0   𝑡 ≥ 0

}.    (2) 

To reduce equation (2) to a more familiar form, we take 

𝐶(𝑧,  𝑡) = 𝛤(𝑧,  𝑡) 𝐸𝑥𝑝  [
𝑤1𝑧

2𝐷1
−

𝑤1
2𝑡

4𝐷1
− 𝜆1𝑡]  (3) 

Substituting equation (3) into equation (1) gives 
𝜕𝛤

𝜕𝑡
= 𝐷1

𝜕2𝛤

𝜕𝑧2
       (4) 

The initial and boundary conditions (2) transform to 

𝛤(0, 𝑡) = 𝐶0 𝐸𝑥𝑝  [
𝑤1
2𝑡

4𝐷1
+ (𝜆1 − 𝛾)𝑡] 𝑡 ≥ 0

𝛤(𝑧, 0) = 0 𝑧 ≥ 0
𝛤(∞,  𝑡) = 0 𝑡 ≥ 0}

 
 

 
 

 

Equation (4) can be verified for a time dependent influx of the fluid at 𝑧 = 0. The solution of equation (4) may 

be obtained readily by use of Duhamel’s theorem (Carslaw and Jaeger, 1947). 

 

If 𝐶 = 𝐹(𝑥, 𝑦, 𝑧, 𝑡) is the solution of the diffusion equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at concentration unity, then the solution of the problem in 

which the surface is maintained at temperature 𝜑(𝑡)is 

𝐶 = ∫ 𝜑(𝜏) 
𝜕

𝜕𝑡
 𝐹(𝑥,  𝑦,  𝑧,  𝑡 − 𝜏)

𝑡

0

 𝑑𝜏 

The boundary conditions are 

𝛤(0, 𝑡) = 0 𝑡 ≥ 0

𝛤(𝑧, 0) = 1 𝑧 ≥ 0

𝛤(∞, 𝑡) = 0 𝑡 ≥ 0

} 

The Laplace transform of equation (4) is 

𝐿  [
𝜕𝛤

𝜕𝑡
] = 𝐷1

𝜕2𝛤

𝜕𝑧2
 

Hence, this reduces to an ordinary differential equation 
𝜕2𝛤̄

𝜕𝑧2
=

𝑝

𝐷1
𝛤̄      (5) 

The solution of the equation is  𝛤̄ = 𝐴𝑒−𝑞𝑧 + 𝐵𝑒𝑞𝑧where, 𝑞 = ±√
𝑝

𝐷1
. 
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The boundary condition as z → ∞  requires that B = 0 and boundary condition at z = 0 requires that 𝐴 =
1

𝑝
 thus 

the particular solution of the Laplace transformed equation is 

𝛤̄ =
1

𝑝
𝑒−𝑞𝑧 

The inversion of the above function is given in any table of Laplace transforms. The result is 

𝛤 = 1 − 𝑒𝑟𝑓(
𝑧

2√𝐷1𝑡
) =

2

√𝜋
∫ 𝑒−𝜂

2
𝑑𝜂

∞

𝑧

2√𝐷𝑡

 

Using Duhamel’s theorem, the solution of the problem with initial concentration zero and the time dependent 

surface condition at z = 0 is 

𝛤 = ∫ 𝜑(𝜏) 
𝜕

𝜕𝑡

𝑡

0

 [
2

√𝜋
∫ 𝑒−𝜂

2
𝑑𝜂

∞

𝑧

2√𝐷(𝑡−𝜏)

]  𝑑𝜏

 Since 𝑒−𝜂
2
is a continuous function, it is possible to differentiate under the integral, which gives 

2

√𝜋

𝜕

𝜕𝑡
∫ 𝑒−𝜂

2
𝑑𝜂

∞

𝑧

2√𝐷1(𝑡−𝜏)

=
𝑧

2√𝜋𝐷1(𝑡 − 𝜏)
3
2⁄
 𝐸𝑥𝑝 [

−𝑧2

4𝐷1(𝑡 − 𝜏)
] 

The solution to the problem is 

𝛤 =
𝑧

2√𝜋𝐷1
∫ 𝜑(𝜏)
𝑡

0
 𝐸𝑥𝑝 [

−𝑧2

4𝐷1(𝑡−𝜏)
] 

𝑑𝜏

(𝑡−𝜏)
3
2⁄
    (6) 

Putting 𝜇 =
𝑧

2√𝐷1(𝑡−𝜏)
 then the equation (6) can be written as 

𝛤 =
2

√𝜋
∫ 𝜑 (𝑡 −

𝑧2

4𝐷1𝜇
2)

∞
𝑧

2√𝐷1𝑡

 𝑒−𝜇
2
𝑑𝜇   

Since 𝜑(𝑡) = 𝐶0 𝐸𝑥𝑝 (
𝑤1
2𝑡

4𝐷1
+ (𝜆1 − 𝛾) 𝑡) the particular solution of the problem be written as 

 

𝛤(𝑧, 𝑡) =
2𝐶0

√𝜋
 𝐸𝑥𝑝 (

𝑤1
2𝑡

4𝐷1
+ (𝜆1 − 𝛾) 𝑡) {∫ 𝐸𝑥𝑝 (−𝜇2 −

𝜀2

𝜇2
) 

∞

0
𝑑𝜇 − ∫ 𝐸𝑥𝑝 (−𝜇2 −

𝜀2

𝜇2
) 

𝛼

0
𝑑𝜇}  (7) 

where, 𝛼 =
𝑧

2√𝐷1𝑡
and 𝜀 = √(

𝑤1
2

4𝐷1
+ 𝜆1 − 𝛾)  (

𝑧

2√𝐷1
). 

 

 

III. Evaluation of the integral solution 
 

The integration of the first term of equation (7) gives 

∫ 𝐸𝑥𝑝 (−𝜇2 −
𝜀2

𝜇2
) 

∞

0
𝑑𝜇 =

√𝜋

2
𝑒−2𝜀.   

 

Noting that 

−𝜇2 −
𝜀2

𝜇2
= −(𝜇 +

𝜀

𝜇
)
2

+ 2𝜀 = −(𝜇 −
𝜀

𝜇
)
2

− 2𝜀. 

The second integral of equation (9) may be written as 

𝐼 = ∫ 𝐸𝑥𝑝  (−𝜇2 −
𝜀2

𝜇2
) 

𝛼

0

𝑑𝜇 =
1

2
{𝑒2𝜀∫ 𝐸𝑥𝑝  [− (𝜇 +

𝜀

𝜇
)
2

] 𝑑𝜇 + 𝑒−2𝜀∫ 𝐸𝑥𝑝  [− (𝜇 −
𝜀

𝜇
)
2

] 𝑑𝜇
𝛼

0

𝛼

0

}

 (8) 

Let 𝑎 = 𝜀 𝜇⁄  and the integral may be expressed as 

𝐼1 = 𝑒2𝜀 ∫ 𝐸𝑥𝑝  [− (𝜇 +
𝜀

𝜇
)
2

] 𝑑𝜇
𝛼

0
 

= −𝑒2𝜀 ∫ (1 −
𝜀

𝑎2
) 𝐸𝑥𝑝  [− (

𝜀

𝑎
+ 𝑎)

2

]  𝑑𝑎 +
∞

𝜀/𝛼
𝑒2𝜀 ∫ 𝐸𝑥𝑝  [− (

𝜀

𝑎
+ 𝑎)

2

]  𝑑𝑎
∞

𝜀/𝛼
 (9) 

Further, let, 𝛽 = (
𝜀

𝑎
+ 𝑎) 

in the  𝛽 =
𝜀

𝑎
+ 𝑎  first term of the above equation, then 

𝐼1 = −𝑒2𝜀 ∫ 𝑒−𝛽
2
𝑑𝛽 + 𝑒2𝜀 ∫ 𝐸𝑥𝑝  [− (

𝜀

𝑎
+ 𝑎)

2

]  𝑑𝑎
∞
𝜀

𝛼

∞

𝛼+
𝜀

𝛼

.   (10) 

Similar evaluation of the second integral of equation (11) gives 

𝐼2 = 𝑒−2𝜀∫ 𝐸𝑥𝑝  [− (
𝜀

𝑎
− 𝑎)

2

]  𝑑𝑎
∞

𝜀

𝛼

− 𝑒−2𝜀∫ 𝐸𝑥𝑝  [− (
𝜀

𝑎
− 𝑎)

2

]  𝑑𝑎
∞

𝜀/𝛼
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Again substituting −𝛽 =
𝜀

𝑎
− 𝑎 into the first term, the result is 

𝐼2 = 𝑒
−2𝜀 ∫ 𝑒−𝛽

2
𝑑𝛽 − 𝑒−2𝜀 ∫ 𝐸𝑥𝑝  [− (

𝜀

𝑎
− 𝑎)

2

]  𝑑𝑎
∞

𝜀/𝛼

∞
𝜀

𝛼
−𝛼

. 

Noting that 

∫ 𝐸𝑥𝑝  [− (𝑎 +
𝜀

𝑎
)
2

+ 2𝜀]  𝑑𝑎
∞

𝜀/𝛼

 

= ∫ 𝐸𝑥𝑝  [− (
𝜀

𝑎
− 𝑎)

2

− 2𝜀]  𝑑𝑎
∞

𝜀/𝛼

 

Substitution into equation (8) gives 

𝐼 =
1

2
(𝑒−2𝜀 ∫ 𝑒−𝛽

2
𝑑𝛽 − 𝑒2𝜀 ∫ 𝑒−𝛽

2
𝑑𝛽

∞

𝛼+
𝜀

𝛼

∞
𝜀

𝛼
−𝛼

).  (11) 

Thus, equation (7) may be expressed as 

𝛤(𝑧,  𝑡) =
2𝐶0

√𝜋
𝐸𝑥𝑝  (

𝑤1
2𝑡

4𝐷1
+ (𝜆1 − 𝛾) 𝑡) . {

√𝜋

2
𝑒−2𝜀 −

1

2
[𝑒−2𝜀∫ 𝑒−𝛽

2
𝑑𝛽 − 𝑒2𝜀∫ 𝑒−𝛽

2
𝑑𝛽

∞

𝛼+
𝜀

𝛼

∞

𝜀

𝛼
−𝛼

]} 

  (12) 

However, by definition, 

𝑒2𝜀∫ 𝑒−𝛽
2
𝑑𝛽

∞

𝛼+
𝜀

𝛼

=
√𝜋

2
𝑒2𝜀 𝑒𝑟𝑓𝑐  (𝛼 +

𝜀

𝛼
) 

 

also,  𝑒−2𝜀 ∫ 𝑒−𝛽
2
𝑑𝛽 =

∞
𝜀

𝛼
−𝛼

√𝜋

2
𝑒−2𝜀 (1 + 𝑒𝑟𝑓  (𝛼 −

𝜀

𝛼
)). 

Writing equation (12) in terms of error functions, we get 

𝛤(𝑧,  𝑡) =
𝐶0

2
𝐸𝑥𝑝  (

𝑤1
2𝑡

4𝐷1
+ (𝜆1 − 𝛾) 𝑡) . [𝑒

2𝜀𝑒𝑟𝑓𝑐  (𝛼 +
𝜀

𝛼
) + 𝑒−2𝜀𝑒𝑟𝑓𝑐  (𝛼 −

𝜀

𝛼
)]  (13) 

Thus, Substitution into equation (3) the solution is 
𝐶

𝐶0
=
1

2
𝐸𝑥𝑝  [

𝑤1𝑧

2𝐷1
− 𝛾𝑡] . [𝑒−2𝜀𝑒𝑟𝑓𝑐  (𝛼 −

𝜀

𝛼
) + 𝑒2𝜀𝑒𝑟𝑓𝑐  (𝛼 +

𝜀

𝛼
)]

 Re-substituting for  and  gives 

 

𝐶

𝐶0
=

1

2
𝐸𝑥𝑝 [

𝑤1𝑧

2𝐷1
− 𝛾𝑡] [𝐸𝑥𝑝 [

√𝑤1
2+4𝐷1(𝜆1−𝛾)

2𝐷1
𝑧] 𝑒𝑟𝑓𝑐 [

𝑧+√𝑤1
2+4𝐷1(𝜆1−𝛾)

2√𝐷1𝑡
𝑡] +

                                          𝐸𝑥𝑝 [−
√𝑤1

2+4𝐷1(𝜆1−𝛾)

2𝐷1
𝑧] . 𝑒𝑟𝑓𝑐 [

𝑧−√𝑤1
2+4𝐷1(𝜆1−𝛾)

2√𝐷1𝑡
𝑡]]    

(14)          

Here the boundaries are non-symmetrical and the solution of this particular problem is obtained by the first term 

of equation (14). Due to the asymmetric boundary imposed in the general problem which leads to the second 

term. However, it should be noted also that if a point a great distance away from the source is considered, then it 

is possible to approximate the boundary condition by𝐶(−∞,  𝑡) = 𝐶0, which leads to a symmetrical solution. 

 

IV. Results &Conclusions: 
 

The transform method coupled with the generalized integral transform technique is used to obtain the 

analytical solutions. Solutions are obtained for both first- and third-type inlet boundary conditions. The 

developed analytical solutions for finite domain are compared with solutions for the semi-infinite domain to 

clarify how the exit boundary influences the one-dimensional transport in a porous medium system.The 

properties of the soil in the region considered must be homogeneous in the sub region. The analytical method is 

somewhat more flexible than the standard form of other methods for one-dimensional transport model. Figures 1 

to 4 represents the concentration profiles verses time in the adsorbing media for depth z = 10m and Retardation 

factor R=1. It is seen that for a fixed velocity w, dispersion coefficient D and distribution coefficient Kd, C/C0 

decreases with depth as porosity n decreases due to the distributive coefficient Kd and if time increases the 

concentration decreases for different time and decay chain. 

Accordingly, the analytical solutions derived for the finite domain will thus be particularly useful for 

analyzing the one-dimensional transport in unsaturated porous medium with a large dispersion coefficient 

whereas the analytical solution for semi-infinite domain is recommended to be applied for a medium system 
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with a small dispersion coefficient. Moreover, the developed solution is especially useful for validating 

numerical model simulated solution because realistic problems generally have a finite domain. 

 

From this paper, we conclude that the mathematical solutions have been developed for predicting the 

possible concentration of a given dissolved substance in steady unidirectional seepage flows through semi-

infinite, homogeneous, and isotropic porous media subject to source concentration that vary with the radioactive 

decay using a change of variable and integral transform technique. The expressions take into account the 

contaminants as well as mass transfer from the liquid to the solid phase due to adsorption. For simultaneous 

dispersion and adsorption of a solute, the dispersion system is considered to be adsorbing at a rate proportional 

to its concentration. 

 

 

 

 
    Fig. 2: Break-through-curve for C/C0 v/s time            Fig. 3: Break-through-curve for C/C0 v/s time 

                   for z=10m, R=1.0, =0.5 & = 0          for z=10m, R=1.0, =0.5 & = 0.25 

 

 

 
    Fig. 3: Break-through-curve for C/C0 v/s time          Fig. 4: Break-through-curve for C/C0 v/s time                      

       for z=10m, R=1.0, =0.5 & = 0.5             for z=10m, R=1.0, =0.5,  = 0.75 & 1.0 

 

REFERENCES: 
 
[1]. A. Verruijt (1990): Modelling Groundwater Flow and Pollution. D Reidel Publishing Co., Tokyo. 

[2]. Al-Niami A N S and Rushton K R 1977 Analysis of flow against dispersion in porous media; J. Hydrol. 33 87–97. 
[3]. Aral M M and Liao B 1996 Analytical solutions for two-dimensional transport equation with time-dependent dispersion 

coefficients; J. Hydrol. Engg. 1(1) 20–32. 
[4]. A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical Solutions to One-Dimensional Advection-Diffusion Equation with Variable 

Coefficients in Finite Domain,” Journal of Earth System Science, Vol. 118, No. 5, 2009, pp. 539-549 

[5]. Banks R B and Ali J 1964 Dispersion and adsorption in porous media flow; J. Hydraul. Div. 90 13-31. 
[6]. Barry, D.A., Parlange, J.Y., Sander, G.C., and M. Sivaplan (1993): A class of exact solutions for Richards equation. J. of 

Hydrology. 142: 29-46. 

[7]. Basak, P., and V.V.N. Murthy (1981): Groundwater quality improvement through nonlinear diffusion. J. of Hydrology. 53: 151-
159. 

[8]. Bear, J., and A. Verruijt (1990): Modelling Groundwater Flow and Pollution. D Reidel Publishing Co., Tokyo. 

[9]. Branes, C.J (1989): Solute and water movement in unsaturated soils. Water Resour. Res., 25(1): 38-42. 
[10]. Bruce, J.C.; and Street, R.L. (1966). Studies of free surface flow and twodimensional 

dispersion in porous media. Report No. 63, Civil Eng. Dept. Stanford Univivrsity. 

[11]. Celia, M.A., E.T. Bouloutas and R.L. Zarba (1990): A general mass conservative numerical solution of the unsaturated flow 
equation, Water Resour. Res. 26 (7): 1483-1496. 

[12]. Crank J 1975 the Mathematics of Diffusion (London: Oxford Univ. Press). 

[13]. Chen, J.S., Liu, C.W., Liao, C.M., 2003. Two-dimensional Laplace-transformed power series solution for solute transport in a 
radially convergent flow field. Advances in Water Resources 26, 1113–1124. 

[14]. De Smedt, F. and Wierenga, P.J., 1979b. Mass transfer in porous media with immobile water. J. Hydrol., 41: 59967. 



Mathematical Solution of The One-Dimensional Advection-Dispersion Equation With .. 

*Corresponding Author:  Niranjan C M                                                                                                        6 | Page 

[15]. Domenico, P.A. and G.A. Robbins 1984: A Dispersion Scale Effect in Model calibrations & Field Tracer Expts. J. of Hydrology 70: 

123-132. 

[16]. Eungyer Park & Hongbin Zhan (2001) : Analytical solutions of contaminant transport from finite one-, two- and three-dimensional 
sources in a finite-thickness aquifer. J. of Contaminant Hydrology. 53 : 41-61 

[17]. Gelhar L W, Welty C and Rehfeldt K R 1992 A critical review of data on field-scale dispersion in aquifers; Water Resour. Res. 

28(7) 1955–1974. 
[18]. Guerrero, J. S. Pérez., Pontedeiro, E.M., Van Genuchten, M.Th., and Skaggs, T.H., “Analytical solutions of the one, two and three 

dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions”, Chemical Engineering 

Journal, Vol. 221, pp. 487-491, 2013.  
[19]. Harleman, D.R.F., and R.R., Rumer, Jr (1963): Longitudinal and lateral dispersion in an isotropic porous medium. J. Fluid Mech., 

16 : 1-12. 

[20]. Hanks, R.J., Klute A., and E.Bresler (1969): A numerical methods for estimating infiltration, Redistribution drainage, and 
evaporation of water from soil. Water Resour. Res., 5(5) : 1064-1069. 

[21]. Jaiswal, D.K., Kumar, A., Kumar, N., Yadav, R.R., 2009. Analytical solutions for temporally and spatially dependent solute 

dispersion of pulse type input concentration in one-dimensional semi-infinite media. Journal of Hydro environmental Research 2, 
254–263. 

[22]. Kim Kue-Young, Kim T, Kim Y and Woo Nam-Chil 2007 A semi-analytical solution for ground water responses to stream–stage 

variations and tidal fluctuations in a coastal aquifers; Hydrol. Process. 21 665–674. 

[23]. Kumar, A. and Yadav, R. R., “One-dimensional solute transport for uniform and varying pulse type input point source through 

heterogeneous medium”, Environmental Technology, Vol.36, No.4, pp.487-495, 2015.  

[24]. Leij F J, Toride N and van Genutchen M Th 1993 Analytical solutions for non equilibrium solute transport in three-dimensional 
porous media; J. Hydrol. 151 193-228. 

[25]. Liping Pang & Bruce Hunt (2001): Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol., in press. 

[26]. Oberhettinger and Baddi(1973) tables of Laplace transforms Springer- verlag, Newyork 
[27]. Ogata, A. and R.B. Banks (1961): A solution of the differential equation of longitudinal dispersion in porous media, U.S. Geol. 

Surv. Prof. Pap. 411-A, A1-A9. 

[28]. Pang L, Gottz M and Close M 2003 Application of the method of temporal moment to interpret solute transport with sorption and 
degradation; J. Contam. Hydrol. 60 123–134. 

[29]. Paniconi, C., Aldama, A.A and Wood, E.F (1991): Numerical evaluation of iterative and noniterative methods for the solution of 

nonlinear Richards equation. Water Resour. Res., 27(6): 1147-1163. 
[30]. Pullan A.J. (1990): The quasilinear approximation for unsaturated porous media flow. Water Resour. Res. 26(6): 1219-1234. 

[31]. Sanskrityayn, A., Bharati , V. K. and Kumar, N., “Analytical solution of advection dispersion equation with spatiotemporal 

dependence of dispersion coefficient and velocity using green’s function method”, Journal of Groundwater Research, Vol. 5, No. 1, 
pp.24-31, 2016.  

[32]. Severino, G., Tartakovsky, D., Srinivasan, G., & Viswanathan, H. (2012). Lagrangian models of reactive transport in heterogeneous 

porous media with uncertain properties. In , Vol. 468. Proceedings of the royal society of london A: Mathematical, physical and 

engineering sciences (pp. 1154e1174). 

[33]. Sirin, H. (2006). Ground water contaminant transport by non-divergence free, unsteady and non-stationary velocity fields. Journal 
of Hydrology, 330(3-4), 564-572. 

[34]. Smedt, F.D. (2007). Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic 

zone. Journal of Hydrology, 339(1-2), 29-38. 
[35]. Sudheendra S.R., 2010 A solution of the differential equation of longitudinal dispersion with variable coefficients in a finite 

domain, Int. J. of Applied Mathematics & Physics, Vol.2, No. 2, 193-204. 

[36]. Sudheendra S.R., 2011. A solution of the differential equation of dependent dispersion along uniform and non-uniform flow with 
variable coefficients in a finite domain, Int. J. of Mathematical Analysis, Vol.3, No. 2, 89-105. 

[37]. Sudheendra S.R. 2012. An analytical solution of one-dimensional advection-diffusion equation in a porous media in presence of 

radioactive decay, Global Journal of Pure and Applied Mathematics, Vol.8, No. 2, 113-124. 
[38]. Sudheendra S.R., Raji J, & Niranjan CM, 2014. Mathematical Solutions of transport of pollutants through unsaturated porous media 

with adsorption in a finite  domain, Int. J. of  Combined Research & Development, Vol. 2, No. 2, 32-40. 

[39]. Sudheendra S.R., Praveen Kumar M. & Ramesh T. Mathematical Analysis of transport of pollutants through unsaturated porous 
media with adsorption and radioactive decay, Int. J. of Combined Research & Development, Vol. 2, No. 4, 01-08.( 2014) 

[40]. van Genuchten M Th and Alves W J 1982 Analytical solutions of the one dimensional convective-dispersive solute transport 

equation; US Dept. Agriculture Tech. Bull. No. 1661 151p. van Kooten J J A 1996 A method to solve the advection dispersion 
equation with a kinetic adsorption isotherm; Adv. Water Res. 19 193–206. 

[41]. Wang, F.C. and V. Lakshminarayana (1968) : Mathematical simulation of water movement through unsaturated non-homogeneous 

soils. Soil Science Soc. Am. Proc. 32: 329-334. 
[42]. Warrick, A.J., Biggar, J.W., and D.R. Nielsen (1971): Simultaneous solute and water transfer for an unsaturated soil. Water Resour. 

Res. 7(2); 1216-1225. 

[43]. Wortmanna, S.; Vilhena, M.T.; Moreirab, D.M.; and Buske, D. (2005). A new analytical approach to simulate the pollutant 
dispersion in the PBL. Atmospheric Environment, 39(12), 2171–2178. 

[44]. Yates S R 1990 An analytical solution for one-dimensional transport in heterogeneous porous media; Water Resour. Res. 26 2331–

2338 
[45]. Yates S R 1992 An analytical solution for one-dimensional transport in porous media with an exponential dispersion function; 

Water Resour. Res. 28 2149–2154. 

[46]. Zyvolski, G., Bruch, J.C., and James M. Sloss (1976) : Solution of equation for two dimensional infiltration problems. Soil Science 
122 (2) : 65-70. 

[47]. Singh, S., Singh, J., Shukla, J.B.,“Modelling and analysis of the effects of density dependent contactrates on the spread of carrier 

dependent infectious diseases with environmental discharges” in Model. Earth Syst. Environ. 5, 21–32(2019). 
 


