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Spectral theory of operators is the essential direction of functional analysis and arose from the needs of 

ordinary differential equations and operator differential equations [1],[11]. Spectral theory of operator bundles 

took the important place in spectral theory of operators. In its turn the consideration of Cauchy’s problem [1] 

with several initial conditionsled to the study of the general theory of equations 
 of type 
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where ),...,1,0( niA
i

 and B  are completely continuous operators  acting in Hilbert space H  The 

bundle ( )L   led to the study of questions   of multiple completeness and multiple decompositions on eigen 

and associated vectors of the polynomial bundle ( )L  in Hilbert space.  The bundle ( )L    is known as 

Keldysh’s  bundle and it was studied in[1].In connection with the М.V.Кеldysh’s considerations   it is known  

that n  multiple completeness  of eigen and associated vectors of  bundle
( )L 

  is true when theoperators

),...,1,0( niA
i

 are completely continuous, B is self-adjoint completely  continuous operator with the 

restrictions on the location of  its spectrum, besides operator B  has he fiinite  order  an {0}KerB  .The 

fundamental result of Keldysh [1] was generalized by many authors in many different directions. Here we 

should note the works of J.E.Allakhverdiev[2],M.Q.Qasymov[3],  A.Q.Kosstyuchenko and Q.V.Radzievskii[4],  

Q.Radzievskii[5] and many others. Theorems about multiple decompositions on eigen and associated vectors 

with brackets of the Keldysh bundle ( )L   are proven  in works of R.M.Dzhabarzadeh[6],  V.N.Vizitey  , 

A.S.Markus[8] when the operators 
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klim .  The sequence k
 is the different modules of characteristic 

numbers of operator B arranged in descending order taking into account their  multiplicity.  

    We should also note the result about  summation  by  root subspaces  of completely continuous operator using 

the generalized Abel method [9].                        
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1 ...)( be a polynomial bundle where iA

are bounded operators acting in Hilbert space H . 

We introduce some definitions [1].]10],[11]. 

1.If for some nonzerovector 0y  we have 0 0( )A c y y  then 0y is called an eigenvector of operator  

( )A  correspondingto eigenvalue c . 
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2. Vector ky is called a k th -associated  vector to the  

eigenvector 0y  if the following equalities  

 

 
 

 
   

y
c

cA

k
y

c

cA
ycAy

y
c

cA
ycAy

ycAy

k

k

kkk













!

1
...

!1

1

...........

!1

1

1

11









(2) 

arefulfilled. 

The system of linear independent eigen and associated vectors is called a chain of eigen and associated 

(e.a)vectors of operator ( )A   corresponding to eigenvalue c . The number of e.a. vectors in the chain of e.a. 

vectors is called a length  

of eigenvector 0y .Totality all independent eigensnd associated vectors corresponding to all eigen vectors with 

eigenvalue c is called the nultiplicity of eigenvalue c . 

3.M.V.Keldysh built the derivative systems with the help of the formulas 
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4. System of  eigen and associated vectors of operator bundle ( )A   in space H  

forms the n – multiple complete system if  any n  elements
110

,...,,
n

fff of the space H can be 

approximated   with the help of linear combinations of elements 1,...,2,1,0,}{
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in accordance with predetermined accuracy  and the same coefficients, not depending on indices of elements 

110
,...,,

n
fff . 

5.Thesystemofsubspaces 
1k k

м
 forms n -multiple  basis if any element x may be presented in the  

form 1

1

j

j

x x




 where jx from jМ . The study of spectral properties  of equation ( )L x x   in Hilbert 

space led to the study of the spectral properties of  the equation 

xxBxA     (4)  
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act in direct sum of n  copies of Hilbert space  H [6],[7],[8].       

Let the following conditions 

a) operators

( 0,1,..., 1)iA i n   and operator B  are completely continuous  

b)  0( )Ker E A   ,  KerB  are fulfilled. 

From the conditions  0( )Ker E A    and completely continuity of operator  A  follow that the 

operator E A has a bounded inverse. Besides completely continuity of operators A and B mean 

1( )E A B is a completely continuous operator, and it has the form
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We introduce the new notations

1 1( ) (( ) )

2

E A B E A B
T

    
  

and    

1 1( ) (( ) )

2

E A B E A B
S

i

    
  

Let tE be the expansion of  unity of operatorT and s
F
~

is the expansion  of unity  of operator S  [10]. 

Since the operators T and S are bounded there is some numbers , , ,a b c d that the following equalities 

take place 
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1. 0aE  , 1bE   

0сF  1dF   

2. min( , )tm m nE En E , 

min( , )l s l kF F F
 

3. 0t t tE E P   

0s s sF F R   

where  tP  is a projective operator that projects onto the eigen subspace of operator T corresponding to its 

eigenvalue t ,and sR is projective operator that projects onto the eigen subspace of operator S  corresponding  

to its eigenvalue s . 

Theorem. Let ( )L  be the operator bundle where ),...,1,0( niA
i

 and B   are completely continuous 

operators  acting in Hilbert space H  ,  0( )Ker E A   ,  KerB   

 If for some real numbers t and s two parameter projective operator 0t sP R  then
2 2( ) / ( )t is t s  is 

the eigenvalue of the bundle ( )L   . 

Proof. The condition 0t sP R  means that the range of operator t sP R contains thou one nonzero vector x  

,besides  t s tP R P and t s sP R R . The last means that 

x enters  the range of both operators tP and sR . From[12] ,[13],[14]we have that t is the eigenvalue of 

operatorT ,and s is the eigenvalue of operator S . 

t is is the eigenvalue of the operator
1( )E A B  that is 

1( ) ( )E A Bx t is x    

Acting on both side on last equation by the operator 
1( ) ( )t is E A  we have that1/ ( )t is is an 

eigenvalue of equation xxBxA    

It is known that eigenvalues of bundle ( )L    and equation (4) coincide.For proof of this Theorem ii is enough 

to prove if t is   is the eigenvalue c of operator 
1( )E A B   then

1( )t is   is an eigenvalue 

of bundle ( )L  .  From the conditions of Theorem follows the eigenvalues of operator
1( )E A B

could not be zero. 

Really let ),...,,(
110 


n

xxxx be the eigenvector of operator 
1( )E A B  

corresponding to eigenvalue   then the equation
1Ax Bx x   may be presented in the form of system of 

equalities: 
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 (5)  

 Sequentially   expressing jx   through 
1

1jBx

 , 1jx   through 
1

2jBx

  from(5) and continued this 

process, in the end we have 

0

1,2,..., 1

kk

kx B x

k n

 

 

(6) 

Substituting the expressions from (6) into the first equation of (5) we obtain that  
1

 is the eigenvalue of 

bundle ( )L   ,the first component of eigenvector ofoperator
1( )E A B is the eigenvector  of ( )L  ,  the 

second, third and other components are the elements of first, second and other elements  of corresponding 

derivative  systems built by the formulas(3).Theorem is proven. 
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