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Abstract 
N.Brownlowe, T. M.Carlsen, and M. F. Whittaker [27] introduce the notion of orbit equivalence of directed 

graphs, following Matsumoto’s notion of continuous orbit equivalence for topological Markov shifts. Theyshow 

that two graphs in which every cycle has an exit are orbit equivalent if and only if there is a diagonal-

preserving isomorphism between their 𝐶∗-algebras. They show that it is necessary to assume that every cycle 

has an exit for the forward implication, but that the reverse implication holds for arbitrary graphs. As part of 

their analysis we follow their way to study of the arbitrary graphs 𝐸𝑡so we construct a groupoid𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
 

from the graph algebra 𝐶∗(𝐸𝑡) and its diagonal subalgebra𝒟(𝐸𝑡) which generalises Renault’s Weyl groupoid 

construction applied to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)). We show that 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
recovers the graph groupoid𝒢𝐸𝑡

 without the 

assumption that every cycle in 𝐸𝑡 has an exit, which is required to apply Renault’s results to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)). 
We finish with applications of their results to out-splittings of graphs and to amplified graphs. 
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I. Introduction 
The relationship between orbit equivalence and isomorphism of 𝐶∗-algebras has been studied 

extensively in the last 20 years. The first result of this type was the celebrated theorem of [5, Theorem 2.4], in 

which they showed that orbit equivalence for minimal dynamical systems on the Cantor set is equivalent to 

isomorphism of their corresponding crossed product 𝐶∗-algebras. The importance of Giordano, Putnam and 

Skau's result cannot be overstated. In general there is no direct method of checking whether two Cantor minimal 

systems are orbit equivalent. However, because the crossed product 𝐶∗-algebras are classifiable, Giordano, 

Putnam and Skau's result means that orbit equivalence can be determined using 𝐾-theory. The work in [5] has 

been generalised in many directions, including Tomiyama's results on topologically free dynamical systems on 

compact Hausdorff spaces [24], and their extension of [5, Theorem 2.4] to minimal ℤ𝑑-actions on the Cantor set 

[6]. 
More recently, in [15]the authors have shown that two irreducible onesided topological Markov shifts 

(𝑋𝐴𝑡
, 𝜎𝐴𝑡

) and (𝑋𝐵𝑡
, 𝜎𝐵𝑡

) are continuously orbit equivalent if and only if the corresponding Cuntz-Krieger 

algebras 𝒪𝐴𝑡
 and 𝒪𝐵𝑡

 are isomorphic and det⁡(𝐼 − 𝐴𝑡) = det⁡(𝐼 − 𝐵𝑡). The proof of Matsumoto and Matui's 

theorem relies on two key results. The first of these is [12, Theorem 1.1], in which Matsumoto proves that the 

following statements are equivalent: 

(1) (𝑋𝐴𝑡
, 𝜎𝐴𝑡

) and (𝑋𝐵𝑡
, 𝜎𝐵𝑡

) are continuously orbit equivalent, 

(2) there exists a ∗-isomorphism 𝜙𝑡: 𝒪𝐴𝑡
→ 𝒪𝐵𝑡

 which maps the maximal abelian subalgebra 𝒟𝐴𝑡
 onto 𝒟𝐵𝑡

, and 

(3) the topological full group of (𝑋𝐴𝑡
, 𝜎𝐴𝑡

) and the topological full group of (𝑋𝐵𝑡
, 𝜎𝐵𝑡

) are spatially isomorphic. 

(In [14, Theorem 1.1], Matsumoto showed that this is equivalent to the topological full groups being abstractly 

isomorphic.) 

The second key result is [22, Proposition 4.13], which, as noticed by ([16,⁡Theorem 5.1]⁡), implies that there 

exists a ∗-isomorphism 𝜙𝑡: 𝒪𝐴𝑡
→ 𝒪𝐵𝑡

 that maps the maximal abelian subalgebra, or diagonal, 𝒟𝐴𝑡
 onto 𝒟𝐵𝑡

 if 

and only if the corresponding groupoids 𝒢𝐴𝑡
 and 𝒢𝐵𝑡

 are isomorphic. 

In [27] the authors initiate the study of orbit equivalence of directed graphs, and they prove the analogous result 

to [22, Proposition 4.13] for graph algebras. In particular, as part of their main result we prove that if 𝐸𝑡 and 𝐹𝑡 

http://www.questjournals.org/
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are two graphs in which every cycle has an exit, then the following are equivalent: 

(1) There is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps the diagonal subalgebra 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡). 
(2) The graph groupoids𝒢𝐸𝑡

 and 𝒢𝐸𝑡
 are isomorphic as topological groupoids. 

(3) The pseudogroups of 𝐸𝑡 and 𝐹𝑡 are isomorphic. 

(4) The graphs 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

It is natural to ask whether every cycle having an exit is necessary for the results. In our main result we 

in fact prove that allimplicationhold for arbitrary directed graphs. It is only the mentioned implication that 

requires that every cycle has an exit (and we provide examples that show that this implication does not hold in 

general without the assumption that every cycle has an exit). Their analysis of these implications for arbitrary 

graphs provides their most technical innovation, which is the introduction of a groupoid𝒢(𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) 

associated to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) that we call the extended Weyl groupoid. The construction generalises Renault's 

Weyl groupoid construction from [22, Definition 4.11] applied to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)). We show that 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) 

and 𝒢𝐸𝑡
 are isomorphic as topological groupoids for an arbitrary graph 𝐸𝑡 , which can be deduced from Renault's 

results in [22] only when every cycle in 𝐸𝑡 has an exit. 

Two applications of the main theorem are considered. The first application shows that if two general 

graphs 𝐸𝑡 and 𝐹𝑡 are conjugate then there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 

𝒟(𝐹𝑡). As a corollary, we strengthen a result of [3, Theorem 3.2] on out-splitting of graphs. The second 

application adds three additional equivalences to Eilers, Ruiz, and Sørensen's complete invariant for amplified 

graphs [4, Theorem 1.1] (see [27]). 

We provide background on graphs, their groupoids and their 𝐶∗-algebras. We define orbit equivalence 

of graphs and associate with each graph a pseudogroup which is the analogue of the topological full group 

Matsumoto has associated with each irreducible one-sided topological Markov shift, and we show that two 

graphs are orbit equivalent if and only if their pseudogroups are isomorphic. We also construct the extended 

Weyl groupoid𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
 from (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)), and we show that 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))

 and 𝒢𝐸𝑡
 are isomorphic as 

topological groupoids. We use this result to show that if there is a diagonal-preserving isomorphism from 

𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡), then 𝒢𝐸𝑡
 and 𝒢𝐹𝑡 are isomorphic as topological groupoids. We finish the proof of the main 

theorem and provide examples. Finally, we give the two applications of the main theorem (see [27]). 

Remark 1.1. We have learned that Xin Li has also considered orbit equivalence for directed graphs, and has 

independently proved that two graphs in which every cycle has an exit are orbit equivalent if and only if there is 

a diagonal-preserving isomorphism between their 𝐶∗-algebras. 

 

II. Background on the Groupoidsand 𝑪∗-Algebras of Directed Graphs 
We begin with graphs and their 𝐶∗-algebras. We recall the definitions of the boundary path space of a directed 

graph, graph 𝐶∗-algebras and graph groupoids. 

2.1. Graphs and their 𝑪∗-algebras.For a more detailed treatment on graphs and their 𝐶∗-algebras (see [19]). 

However, we note that the directions of arrows defining a graph are reversed in this paper. We used this 

convention so that the results can easily be compared with the work of Matsumoto and Matui's work on shift 

spaces (see [27]). 

A directed graph (also called a quiver) 𝐸𝑡 = (𝐸𝑡
0, 𝐸𝑡

1, 𝑟𝑡 , 𝑠𝑡) consists of countable sets 𝐸𝑡
0 and 𝐸𝑡

1, and range and 

source maps 𝑟𝑡 , 𝑠𝑡: 𝐸t
1 → 𝐸𝑡

0. The elements of 𝐸𝑡
0 are called vertices, and the elements of 𝐸𝑡

1 are called edges. 

A path 𝜇 of length 𝑛 in 𝐸𝑡 is a sequence of edges 𝜇 = 𝜇1 …𝜇𝑛 such that 𝑟𝑡(𝜇𝑖) = 𝑠𝑡(𝜇𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 1. 
The set of paths of length 𝑛 is denoted 𝐸𝑡

𝑛 . We denote by |𝜇| the length of 𝜇. The range and source maps extend 

naturally to paths: 𝑠𝑡(𝜇): = 𝑠𝑡(𝜇1) and 𝑟𝑡(𝜇): = 𝑟𝑡(𝜇𝑛). We regard the elements of 𝐸𝑡
0 as path of length 0, and 

for 𝑣𝑡 ∈ 𝐸𝑡
0 we set 𝑠𝑡(𝑣𝑡): = 𝑟𝑡(𝑣𝑡): = 𝑣𝑡 . For 𝑣𝑡 ∈ 𝐸𝑡

0 and 𝑛 ∈ ℕ we denote by 𝑣𝑡𝐸𝑡
𝑛 the set of paths of length 𝑛 

with source 𝑣𝑡 , and by 𝐸𝑡
𝑛𝑣𝑡  the paths of length 𝑛 with range 𝑣𝑡 . We define 𝐸t

∗: = ⋃𝑛∈ℕ  𝐸𝑡
𝑛 to be the collection 

of all paths with finite length. For 𝑣𝑡 , 𝑤𝑡 ∈ 𝐸𝑡
0 let 𝑣𝑡𝐸𝑡

∗𝑤𝑡: = {𝜇 ∈ 𝐸t
∗:𝑠𝑡(𝜇) = 𝑣𝑡 and 𝑟𝑡(𝜇) = 𝑤𝑡}. We define 

(𝐸𝑡
0)

reg 
: = {𝑣𝑡 ∈ 𝐸t

0: 𝑣𝑡𝐸𝑡
1 is finite and nonempty } and (𝐸𝑡

0)sing: = 𝐸t
0 ∖ (𝐸𝑡

0)reg. If 𝜇 = 𝜇1𝜇2 ⋯𝜇𝑚, 𝜈 =

𝜈1𝜈2 ⋯𝜈𝑛 ∈ 𝐸𝑡
∗ and 𝑟𝑡(𝜇) = 𝑠𝑡(𝜈), then we let 𝜇𝜈 denote the path 𝜇1𝜇2 ⋯𝜇𝑚𝜈1𝜈2 ⋯𝜈𝑛 . 

A loop (also called a cycle) in 𝐸𝑡 is a path 𝜇 ∈ 𝐸𝑡
∗ such that |𝜇| ≥ 1 and 𝑠𝑡(𝜇) = 𝑟𝑡(𝜇). 

If 𝜇 is a loop and 𝑘 is a positive integer, then 𝜇𝑘 denotes the loop 𝜇𝜇 ⋯𝜇 where 𝜇 is repeated 𝑘-times. We say 

that the loop 𝜇 is simple if 𝜇 is not equal to 𝜈𝑘 for any loop 𝜈 and any integer 𝑘 ≥ 2. Notice than any loop 𝜇 is 

equal to 𝜈𝑘 for some simple loop 𝜈 and some positive integer 𝑘. An edge 𝑒 is an exit to the loop 𝜇 if there exists 

𝑖 such that 𝑠𝑡(𝑒) = 𝑠𝑡(𝜇𝑖) and 𝑒 ≠ 𝜇𝑖 .A graph is said to satisfy condition (𝐿) if every loop has an exit. 

ACuntz-Krieger 𝐸𝑡-family {𝑃, 𝑆} consists of a set of mutually orthogonal projections {𝑃𝑣𝑡
: 𝑣𝑡 ∈ 𝐸𝑡

0} and partial 

isometries {𝑆𝑒: 𝑒 ∈ 𝐸𝑡
1} satisfying 

(CK1) 𝑆𝑒
∗𝑆𝑒 = 𝑃𝑟𝑡(𝑒) for all 𝑒 ∈ 𝐸𝑡

1; 

(CK2) 𝑆𝑒𝑆𝑒
∗ ≤ 𝑃𝑠𝑡(𝑒) for all 𝑒 ∈ 𝐸𝑡

1; 
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(CK3) 𝑃𝑣𝑡
= ∑𝑒∈𝑣𝑡𝐸𝑡

1  𝑆𝑒𝑆𝑒
∗ for all 𝑣𝑡 ∈ (𝐸𝑡

0)
reg 

. 

The graph 𝐶∗-algebra 𝐶∗(𝐸𝑡) is the universal 𝐶∗-algebra generated by a Cuntz-Krieger 𝐸𝑡-family. We denote by 

{𝑝, 𝑠𝑡} the Cuntz-Krieger 𝐸𝑡-family generating 𝐶∗(𝐸𝑡). There is a strongly continuous action 𝛾: 𝐶∗(𝐸𝑡) → 𝕋, 

called the gauge action, satisfying 𝛾𝑧𝑡
(𝑝𝑣𝑡

) = 𝑝𝑣𝑡
 and 𝛾𝑧𝑡

(𝑠𝑒) = 𝑧𝑡𝑠𝑒 , for all 𝑧𝑡 ∈ 𝕋, 𝑣𝑡 ∈ 𝐸𝑡
0, 𝑒 ∈ 𝐸𝑡

1. If {𝑄, 𝑇} is 

a Cuntz-Krieger 

𝐸𝑡-family in a 𝐶∗-algebra 𝐵, then we denote by 𝜋𝑄,𝑇 the homomorphism 𝐶∗(𝐸𝑡) → 𝐵 such that 𝜋𝑄,𝑇(𝑝𝑣𝑡
) = 𝑄𝑣𝑡

 

for all 𝑣𝑡 ∈ 𝐸𝑡
0, and 𝜋𝑄,𝑇(𝑠𝑒) = 𝑇𝑒 for all 𝑒 ∈ 𝐸𝑡

1. an Huef and Raeburn's gauge invariant uniqueness theorem [7] 

says that 𝜋𝑄,𝑇 is injective if and only if there is an action 𝛽 of 𝕋 on the 𝐶∗-algebra generated by {𝑄, 𝑇} satisfying 

𝛽𝑧𝑡
(𝑄𝑣𝑡

) = 𝑄𝑣𝑡
 and 𝛽𝑧𝑡

(𝑇𝑒) = 𝑧𝑡𝑇𝑒 , for all 𝑧𝑡 ∈ 𝕋, 𝑣𝑡 ∈ 𝐸𝑡
0, 𝑒 ∈ 𝐸𝑡

1, and 𝑄𝑣𝑡
≠ 0 for all 𝑣𝑡 ∈ 𝐸𝑡

0. 

If 𝜇 = 𝜇1 ⋯𝜇𝑛 ∈ 𝐸𝑡
𝑛 and 𝑛 ≥ 2, then we let 𝑠𝜇: = 𝑠𝜇1

⋯𝑠𝜇𝑛
. Likewise, we let 𝑠𝑣𝑡

: = 𝑝𝑣𝑡
 if 𝑣𝑡 ∈ 𝐸𝑡

0. Then 

𝐶∗(𝐸𝑡) = span⁡{𝑠𝜇𝑠𝜈
∗: 𝜇, 𝜈 ∈ 𝐸𝑡

∗, 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈)}. The 𝐶∗-subalgebra 𝒟(𝐸𝑡): = span⁡{𝑠𝜇𝑠𝜇
∗: 𝜇 ∈ 𝐸𝑡

∗} of 𝐶∗(𝐸𝑡) is a 

maximal abelian subalgebra if and only if every loop in 𝐸𝑡 has an exit (see [17, Example 3.3]). 
2.2. The boundary path space of a graph. An infinite path in 𝐸𝑡 is an infinite sequence (𝑥𝑡)1(𝑥𝑡)2 … of edges 

in 𝐸𝑡 such that 𝑟𝑡(𝑒𝑖) = 𝑠𝑡(𝑒𝑖+1) for all 𝑖. We let 𝐸𝑡
∞ be the set of all infinite paths in 𝐸𝑡 . The source map 

extends to 𝐸𝑡
∞ in the obvious way. We let |𝑥𝑡| = ∞ for 𝑥𝑡 ∈ 𝐸𝑡

∞. The boundary path space of 𝐸𝑡 is the space 

∂𝐸𝑡: = 𝐸t
∞ ∪ {𝜇 ∈ 𝐸t

∗: 𝑟𝑡(𝜇) ∈ (𝐸𝑡
0)sing}. 

If 𝜇 = 𝜇1𝜇2 ⋯𝜇𝑚 ∈ 𝐸𝑡
∗, 𝑥𝑡 = (𝑥𝑡)1(𝑥𝑡)2 ⋯ ∈ 𝐸𝑡

∞ and 𝑟𝑡(𝜇) = 𝑠𝑡(𝑥𝑡), then we let 𝜇𝑥𝑡 denote the infinite path 

𝜇1𝜇2 ⋯𝜇𝑚(𝑥𝑡)1(𝑥𝑡)2 ⋯ ∈ 𝐸𝑡
∞. 

For 𝜇 ∈ 𝐸𝑡
∗, the cylinder set of 𝜇 is the set 

𝑍(𝜇): = {𝜇𝑥𝑡 ∈ ∂𝐸𝑡: 𝑥𝑡 ∈ 𝑟𝑡(𝜇) ∂𝐸𝑡}, 
where 𝑟𝑡(𝜇) ∂𝐸𝑡: = {𝑥𝑡 ∈ ∂𝐸𝑡: 𝑟𝑡(𝜇) = 𝑠𝑡(𝑥𝑡)}. Given 𝜇 ∈ 𝐸𝑡

∗ and a finite subset 𝐹𝑡 ⊆ 𝑟𝑡(𝜇)𝐸𝑡
1 we define 

𝑍(𝜇 ∖ 𝐹𝑡): = 𝑍(𝜇) ∖ (⋃  

𝑒∈𝐹𝑡

 𝑍(𝜇𝑒)). 

The boundary path space ∂𝐸𝑡 is a locally compact Hausdorff space with the topology given by the basis 
{𝑍(𝜇 ∖ 𝐹𝑡): 𝜇 ∈ 𝐸𝑡

∗, 𝐹𝑡 is a finite subset of 𝑟𝑡(𝜇)𝐸𝑡
1}, and each such 𝑍(𝜇 ∖ 𝐹𝑡) is compact and open (see [25, 

Theorem 2.1 and Theorem 2.2]). Moreover, [25, Theorem 3.7] shows that there is a unique homeomorphism 

(ℎ𝑡)𝐸𝑡
 from ∂𝐸𝑡 to the spectrum of 𝒟(𝐸𝑡) given by 

(ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑠𝜇𝑠𝜇

∗) = {
1  if 𝑥𝑡 ∈ 𝑍(𝜇),

0  if 𝑥𝑡 ∉ 𝑍(𝜇).
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.1) 

Our next lemma gives a description of the topology on the boundary path space, which we will need in the proof 

of Proposition 3.3 (see [27]). 

Lemma 2.1. Every nonempty open subset of ∂𝐸𝑡  is the disjoint union of sets that are both compact and open. 

Proof. Let 𝑈 be a nonempty open subset of ∂𝐸𝑡 . For each 𝑥𝑡 ∈ 𝑈 let 

𝐵𝑥𝑡
: = {(𝜇, 𝐹𝑡): 𝜇 ∈ 𝐸𝑡

∗, 𝐹𝑡 is a finite subset of 𝑟𝑡(𝜇)𝐸𝑡
1, 𝑥𝑡 ∈ 𝑍(𝜇 ∖ 𝐹𝑡) ⊆ 𝑈}. 

If (𝜇, 𝐹𝑡) ∈ 𝐵𝑥𝑡
, then 𝑥𝑡 ∈ 𝑍(𝜇) and 𝑥𝑡 ∉ 𝑍(𝜇𝑒) for each 𝑒 ∈ 𝐹𝑡 . Let 𝜇𝑥𝑡

 be the shortest 𝜇 ∈ 𝐸𝑡
∗ such that 

(𝜇, 𝐹𝑡) ∈ 𝐵𝑥𝑡
 for some finite subset 𝐹𝑡 of 𝑟𝑡(𝜇)𝐸𝑡

1, and let (𝐹𝑡)𝑥𝑡
: =∩ {𝐹𝑡: (𝜇𝑥𝑡

, 𝐹𝑡) ∈ 𝐵𝑥𝑡
}. Then (𝜇𝑥𝑡

, (𝐹𝑡)𝑥𝑡
) ∈

𝐵𝑥𝑡
 and 𝑍(𝜇 ∖ 𝐹𝑡) ⊆ 𝑍(𝜇𝑥𝑡

∖ (𝐹𝑡)𝑥𝑡
) for all (𝜇, 𝐹𝑡) ∈ 𝐵𝑥𝑡

. It follows that if 𝑥𝑡 , 𝑦𝑡 ∈ 𝑈, then either 𝑍(𝜇𝑥𝑡
∖

(𝐹𝑡)𝑥𝑡
) = 𝑍(𝜇𝑦𝑡

∖ (𝐹𝑡)𝑦𝑡
) or 𝑍(𝜇𝑥𝑡

∖ (𝐹𝑡)𝑥𝑡
) ∩ 𝑍(𝜇𝑦𝑡

∖ (𝐹𝑡)𝑦𝑡
) = ∅. 

Since 𝑈 =∪𝑥𝑡∈𝑈 𝑍(𝜇𝑥𝑡
∖ (𝐹𝑡)𝑥𝑡

) and each 𝑍(𝜇𝑥𝑡
∖ (𝐹𝑡)𝑥𝑡

) is open and compact, this shows that 𝑈 is the disjoint 

union of sets that are both compact and open. 

For 𝑛 ∈ ℕ, let ∂𝐸𝑡
≥𝑛: = {𝑥𝑡 ∈ ∂𝐸𝑡: |𝑥𝑡| ≥ 𝑛}. Then ∂𝐸𝑡

≥𝑛 =∪𝜇∈𝐸𝑡
𝑛 𝑍(𝜇) is an open subset of ∂𝐸𝑡 . We define the 

shift map on 𝐸𝑡 to be the map 𝜎𝐸𝑡
: ∂𝐸𝑡

≥1 → ∂𝐸𝑡  given by 𝜎𝐸𝑡
((𝑥𝑡)1(𝑥𝑡)2(𝑥𝑡)3 ⋯) = (𝑥𝑡)2(𝑥𝑡)3 ⋯ for 

(𝑥𝑡)1(𝑥𝑡)2(𝑥𝑡)3 ⋯ ∈ ∂𝐸𝑡
≥2 and 𝜎𝐸𝑡

(𝑒) = 𝑟𝑡(𝑒) for 𝑒 ∈ ∂𝐸𝑡 ∩ 𝐸𝑡
1. 

For 𝑛 ≥ 1, we let 𝜎𝐸𝑡
𝑛  be the 𝑛-fold composition of 𝜎𝐸𝑡

 with itself. We let 𝜎𝐸𝑡
0  denote the identity map on ∂𝐸𝑡 . 

Then 𝜎𝐸𝑡
𝑛  is a local homeomorphism for all 𝑛 ∈ ℕ. When we write 𝜎𝐸𝑡

𝑛 (𝑥𝑡), we implicitly assume that 𝑥𝑡 ∈ ∂𝐸𝑡
≥𝑛. 

We say that 𝑥𝑡 ∈ ∂𝐸𝑡 is eventually periodic if there are 𝑚, 𝑛 ∈ ℕ,𝑚 ≠ 𝑛 such that 𝜎𝐸𝑡
𝑚(𝑥𝑡) = 𝜎𝐸𝑡

𝑛 (𝑥𝑡). Notice 

that 𝑥𝑡 ∈ ∂𝐸𝑡 is eventually periodic if and only if 𝑥𝑡 = 𝜇𝜈𝜈𝜈 ⋯ for some path 𝜇 ∈ 𝐸𝑡
∗ and some loop 𝜈 ∈ 𝐸𝑡

∗ with 

𝑠𝑡(𝜈) = 𝑟𝑡(𝜇). By replacing 𝜈 by a subloop if necessary, we can assume that 𝜈 is a simple loop. 

2.3. Graph groupoids. In [11],the authors defined groupoid𝐶∗-algebras associated to a locally-finite directed 

graph with no sources. Their construction has been generalized to compactly aligned topological 𝑘-graphs in 

[26]. We will now explain this construction in the case that 𝐸𝑡 is an arbitrary graph. The resulting groupoid is 

isomorphic to the one constructed in [18]. Let 
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𝒢𝐸𝑡
: = {(𝑥𝑡 , 𝑚 − 𝑛, 𝑦𝑡): 𝑥𝑡 , 𝑦𝑡 ∈ ∂𝐸𝑡 , 𝑚, 𝑛 ∈ ℕ, and 𝜎𝑚(𝑥𝑡) = 𝜎𝑛(𝑦𝑡)}, 

with product (𝑥𝑡 , 𝑘, 𝑦𝑡)(𝑤𝑡 , 𝑙, 𝑧𝑡):= (𝑥𝑡 , 𝑘 + 𝑙, 𝑧𝑡) if 𝑦𝑡 = 𝑤𝑡 and undefined otherwise, and inverse given by 

(𝑥𝑡 , 𝑘, 𝑦𝑡)
−1: = (𝑦𝑡 , −𝑘, 𝑥𝑡). With these operations 𝒢𝐸𝑡

 is a groupoid ( cf. [11, Lemma 2.4]). The unit space 𝒢𝐸𝑡
0  

of 𝒢𝐸𝑡
 is {(𝑥𝑡 , 0, 𝑥𝑡): 𝑥𝑡 ∈ ∂𝐸𝑡} which we will freely identify with ∂𝐸𝑡  via the map (𝑥𝑡 , 0, 𝑥𝑡) ↦ 𝑥𝑡 throughout 

the paper. We then have that the range and source maps 𝑟𝑡 , 𝑠𝑡: 𝒢𝐸𝑡
→ ∂𝐸𝑡  are given by 𝑟𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = 𝑥𝑡 and 

𝑠𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = 𝑦𝑡 . 
We now define a topology on 𝒢𝐸𝑡

. Suppose 𝑚, 𝑛 ∈ ℕ and 𝑈 is an open subset of ∂𝐸𝑡
≥𝑚 such that the restriction 

of 𝜎𝐸𝑡
𝑚 to 𝑈 is injective, 𝑉 is an open subset of ∂𝐸𝑡

≥𝑛 such that the restriction of 𝜎𝐸𝑡
𝑛  to 𝑉 is injective, and that 

𝜎𝐸𝑡
𝑚(𝑈) = 𝜎𝐸𝑡

𝑛 (𝑉), then we define 

𝑍(𝑈,𝑚, 𝑛, 𝑉): = {(𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ 𝒢𝐸𝑡
: 𝑥𝑡 ∈ 𝑈, 𝑘 = 𝑚 − 𝑛, 𝑦𝑡 ∈ 𝑉, 𝜎𝐸𝑡

𝑚(𝑥𝑡) = 𝜎𝐸𝑡
𝑛 (𝑦𝑡)}.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.2) 

Then 𝒢𝐸𝑡
 is a locally compact, Hausdorff, étale topological groupoid with the topology generated by the basis 

consisting of sets 𝑍(𝑈,𝑚, 𝑛, 𝑉) described in (2.2), see [11, Proposition 2.6] for an analogous situation. For 

𝜇, 𝜈 ∈ 𝐸𝑡
∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈), let 𝑍(𝜇, 𝜈): = 𝑍(𝑍(𝜇), |𝜇|, |𝜈|, 𝑍(𝜈)). It follows that each 𝑍(𝜇, 𝜈) is compact and 

open, and that the topology ∂𝐸𝑡 inherits when we consider it as a subset of 𝒢𝐸𝑡
 by identifying it with 

{(𝑥𝑡 , 0, 𝑥𝑡): 𝑥𝑡 ∈ ∂𝐸𝑡} agrees with the topology described in the previous section. 

Notice that for all 𝜇, 𝜈 ∈ 𝐸𝑡
∗, 𝑈 a compact open subset of 𝑍(𝜇), and 𝑉 a compact open subset of 𝑍(𝜈), the 

collection {𝑍(𝑈, |𝜇|, |𝜈|, 𝑉): 𝜎𝐸𝑡

|𝜇|
(𝑈) = 𝜎𝐸𝑡

|𝜈|
(𝑉)} is a basis for the topology of 𝒢𝐸𝑡

. According to [26, Proposition 

6.2], 𝒢𝐸𝑡
 is topologically amenable in the sense of [1, Definition 2.2.8]. It follows from [1, Proposition 3.3.5] 

and [1, Proposition 6.1.8] that the reduced and universal 𝐶∗-algebras of 𝒢𝐸𝑡
 are equal, and we denote this 𝐶∗-

algebra by 𝐶∗(𝒢𝐸𝑡
). We have (see [27]). 

Proposition 2.2 (Cf. [11, Proposition 4.1]). Suppose 𝐸𝑡 is a graph. Then there is a unique isomorphism 

𝜋𝑡: 𝐶
∗(𝐸𝑡) → 𝐶∗(𝒢𝐸𝑡

) such that 𝜋𝑡(𝑝𝑣𝑡
) = 1𝑍(𝑣𝑡,𝑣𝑡) for all 𝑣𝑡 ∈ 𝐸𝑡

0 and 𝜋𝑡(𝑠𝑒) = 1𝑍(𝑒,𝑟𝑡(𝑒)) for all 𝑒 ∈ 𝐸𝑡
1, and 

such that 𝜋𝑡(𝒟(𝐸𝑡)) = 𝐶0(𝒢𝐸𝑡
0 ). 

Proof. Using calculations along the lines of those used in the proof of [11, Proposition 4.1], it is straight 

forward to check that 

{𝑄, 𝑇}: = {𝑄𝑣𝑡
: = 1𝑍(𝑣𝑡,𝑣𝑡) and 𝑇𝑒: = 1𝑍(𝑒,𝑟𝑡(𝑒)): 𝑣𝑡 ∈ 𝐸𝑡

0, 𝑒 ∈ 𝐸𝑡
1} 

is a Cuntz-Krieger 𝐸𝑡-family. The universal property of {𝑝, 𝑠} implies that there is a ∗-homomorphism 𝜋𝑡: =

(𝜋𝑡)𝑄,𝑇: 𝐶
∗(𝐸𝑡) → 𝐶∗(𝒢𝐸𝑡

) satisfying 𝜋𝑡(𝑝𝑣𝑡
) = 𝑄𝑣𝑡

 and 𝜋𝑡(𝑠𝑒) = 𝑇𝑒 . 

An argument similar to the one used in the proof of [11, Proposition 4.1] shows that 𝐶∗(𝒢𝐸𝑡
) is generated by 

{𝑄, 𝑇}, so 𝜋𝑡 is surjective. The cocycle (𝑥𝑡 , 𝑘, 𝑦𝑡) ↦ 𝑘 induces an action 𝛽 of 𝕋 on 𝐶∗(𝒢𝐸) satisfying 𝛽𝑧𝑡
(𝑄𝑣𝑡

) =

𝑄𝑣𝑡
 and 𝛽𝑧𝑡

(𝑇𝑒) = 𝑧𝑡𝑇𝑒 , for all 𝑧𝑡 ∈ 𝕋, 𝑣𝑡 ∈ 𝐸𝑡
0, 𝑒 ∈ 𝐸𝑡

1 (see [21, Proposition 𝐼𝐼. 5.1]), and since 𝑄𝑣𝑡
=

1𝑍(𝑣𝑡,𝑣𝑡) ≠ 0 for all 𝑣𝑡 ∈ 𝐸𝑡
0, the gauge invariant uniqueness theorem of 𝐶∗(𝒢𝐸𝑡

)⁡([2, Theorem 2.1]⁡) implies that 

𝜋𝑡 is injective. 

Since 𝒟(𝐸𝑡) is generated by {𝑠𝜇𝑠𝜇
∗: 𝜇 ∈ 𝐸𝑡

∗} and 𝜋𝑡(𝑠𝜇𝑠𝜇
∗) = 1𝑍(𝜇,𝜇), we have that 𝜋𝑡 maps 𝒟(𝐸𝑡) into 𝐶0(𝒢𝐸𝑡

0 ). 

An application of the Stone-Weierstrass theorem implies that 𝐶0(𝒢𝐸𝑡
0 ) is generated by {1𝑍(𝜇,𝜇): 𝜇 ∈ 𝐸𝑡

∗}. Hence 

𝜋𝑡(𝒟(𝐸𝑡)) = 𝐶0(𝒢𝐸𝑡
0 ). 

Suppose 𝒢 is a groupoid, the isotropy group of 𝑥𝑡 ∈ 𝒢0 is the group Iso⁡(𝑥𝑡):= {𝛾 ∈ 𝒢: 𝑠𝑡(𝛾) = 𝑟𝑡(𝛾) = 𝑥𝑡}. In 

[22], an étale groupoid is said to be topologically principal if the set of points of 𝒢0 with trivial isotropy group is 

dense. We will now characterize when 𝒢𝐸𝑡
 is topologically principal (see [27]). 

Proposition 2.3. Let 𝐸𝑡 be a graph. Then the graph groupoid 𝒢𝐸𝑡
 is topologically principal if and only if every 

loop in 𝐸𝑡 has an exit. 

Proof. Let 𝑥𝑡 ∈ ∂𝐸𝑡 . We claim that (𝑥𝑡 , 0, 𝑥𝑡) has nontrivial isotropy group if and only if 𝑥𝑡 is eventually 

periodic. Indeed, suppose (𝑥𝑡 , 𝑚 − 𝑛, 𝑥𝑡) ∈ Iso⁡(𝑥𝑡) with 𝑚 ≠ 𝑛, then 𝜎𝑚(𝑥𝑡) = 𝜎𝑛(𝑥𝑡) and 𝑥𝑡 is eventually 

periodic. On the other hand, suppose 𝑥𝑡 = 𝜇𝜆∞, then (𝑥𝑡 , (|𝜇| + |𝜆|) − |𝜇|, 𝑥𝑡) ∈ Iso⁡(𝑥𝑡), proving the claim. 

Now observe that if 𝑣𝑡 is a vertex such that there are two different simple loops 𝛼 and 𝛽 with 𝑠𝑡(𝛼) = 𝑠𝑡(𝛽) =
𝑣𝑡 , then any cylinder set 𝑍(𝛿) for which 𝑟𝑡(𝛿)𝐸𝑡

∗𝑣𝑡 ≠ ∅ contains a 𝑦𝑡 such that (𝑦𝑡 , 0, 𝑦𝑡) has trivial isotropy. To 

see this, pick 𝜆 ∈ 𝑟𝑡(𝛿)𝐸𝑡
∗𝑣𝑡 , then 𝑦𝑡 = 𝛿𝜆𝛼𝛽𝛼2𝛽𝛼3𝛽 ⋯ has trivial isotropy since it is not eventually periodic. 

Assume that every loop in 𝐸𝑡 has an exit and suppose for contradiction that 𝑈 is an nonempty open subset of 

∂𝐸𝑡  such that (𝑥𝑡 , 0, 𝑥𝑡) has nontrivial isotropy group for every 𝑥𝑡 ∈ 𝑈. Note that 𝑈 ⊆ 𝐸𝑡
∞ since 𝑦𝑡 ∈ ∂𝐸𝑡  with 

|𝑦𝑡| < ∞ implies that the isotropy group of (𝑦𝑡 , 0, 𝑦𝑡) is trivial. Let 𝑥𝑡 ∈ 𝑈. Since 𝑥𝑡 has nontrivial isotropy 

group, there exist 𝜁1 ∈ 𝐸𝑡
∗ and a loop 𝜂 such that 𝜁1𝜂

∞ ∈ 𝑍(𝜁1𝜂
𝑘) ⊆ 𝑈 for some 𝑘 ∈ ℕ. Since 𝜂 has an exit and 

(𝑥𝑡 , 0, 𝑥𝑡) has nontrivial isotropy group for every 𝑥𝑡 ∈ 𝑈, it follows that there is a 𝜁2 ∈ 𝑟𝑡(𝜁1)𝐸𝑡
∗ such that 

𝑍(𝜁1𝜁2) ⊆ 𝑈 and such that 𝑟𝑡(𝜁2)𝐸𝑡
∗𝑟𝑡(𝜁1) = ∅, for otherwise there would be two distinct simple loops based at 

𝑟𝑡(𝜁1). By repeating this argument we get a sequences of paths 𝜁1, 𝜁2, 𝜁3 , … such that 𝑠𝑡(𝜁𝑛+1) =
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𝑟𝑡(𝜁𝑛), 𝑟𝑡(𝜁𝑛+1)𝐸𝑡
∗𝑟𝑡(𝜁𝑛) = ∅ and 𝑍(𝜁1𝜁2 …𝜁𝑛) ⊆ 𝑈 for all 𝑛. The element 𝑦𝑡 = 𝜁1𝜁2𝜁3 … then belongs to 𝑈, but 

since it only visits each vertex a finite number of times, (𝑦𝑡 , 0, 𝑦𝑡) must have trivial isotropy, which contradicts 

the assumption that (𝑥𝑡 , 0, 𝑥𝑡) has nontrivial isotropy group for every 𝑥𝑡 ∈ 𝑈. Thus, 𝒢𝐸𝑡
 is topologically 

principal if every loop in 𝐸𝑡 has an exit. 

Conversely, if 𝜇 is a loop without exit and 𝑥𝑡 = 𝜇𝜇𝜇 … then (𝑥𝑡 , 0, 𝑥𝑡) is an isolated point in 𝒢𝐸𝑡
0  with nontrivial 

isotropy group. Thus, 𝒢𝐸𝑡
 is not topologically principal if there is a loop in 𝐸𝑡 without an exit. 

Since the reduced and universal 𝐶∗-algebras of 𝒢𝐸𝑡
 are equal, it follows from [21, Proposition 𝐼𝐼. 4.2(𝑖)] that we 

can regard 𝐶∗(𝒢𝐸𝑡
) as a subset of 𝐶0(𝒢𝐸𝑡

). For 𝑓𝑡 ∈ 𝐶∗(𝒢𝐸𝑡
) and 𝑗 ∈ ℤ, we let Φ𝑗(𝑓𝑡) denote the restriction of 𝑓𝑡 

to {(𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ 𝒢𝐸𝑡
: 𝑘 = 𝑗}, and for 𝑚 ∈ ℕ we let Σ𝑚(𝑓𝑡): = ∑

𝑗=−𝑚

𝑚
 ∑𝑡 (1 −

|𝑗|

𝑚+1
)Φ𝑗(𝑓𝑡). 

Proposition 2.4 (see [27]). Let 𝐸𝑡 be a graph and let 𝑓𝑡 ∈ 𝐶∗(𝒢𝐸𝑡
). Then each Φ𝑘(𝑓𝑡) and each Σ𝑚(𝑓𝑡) belong to 

𝐶∗(𝒢𝐸𝑡
), and (Σ𝑚(𝑓𝑡))𝑚∈ℕ converges to 𝑓𝑡 in 𝐶∗(𝒢𝐸𝑡

). 

Proof. Let 𝑗 ∈ ℤ. The map (𝑥𝑡 , 𝑘, 𝑦𝑡) ↦ 𝑘 is a continuous cocycle from 𝒢𝐸𝑡
 to ℤ. For each 𝑧𝑡 ∈ 𝕋 there is a 

unique automorphism 𝛾𝑧𝑡
 on 𝐶∗(𝒢𝐸𝑡

) such that 𝛾𝑧𝑡
(𝑔𝑡)(𝑥𝑡 , 𝑘, 𝑦𝑡) = 𝑧𝑡

𝑘𝑔𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) for 𝑔𝑡 ∈ 𝐶∗(𝒢𝐸𝑡
) and 

(𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ 𝒢𝐸𝑡
, and that the 𝑚𝑎𝑝⁡𝑧𝑡 ↦ 𝛾𝑧𝑡

 is a strongly continuous action of 𝕋on 𝐶∗(𝒢𝐸𝑡
) (see [21, Proposition 

𝐼𝐼. 5.1]). It follows that the integral ∫
T
 ∑𝑡 𝛾𝑧𝑡

(𝑓𝑡)𝑧𝑡
−𝑗

𝑑𝑧𝑡 , where 𝑑𝑧𝑡 denotes the normalized Haar measure on 

𝕋, is welldefined and belongs to 𝐶∗(𝒢𝐸𝑡
) (see for example [20, Section 𝐶. 2]). Let (𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ 𝒢𝐸𝑡

. 

If 𝑘 ≠ 𝑗, then 

∫ 
𝕋

∑

𝑡

𝛾𝑧𝑡
(𝑓𝑡)𝑧𝑡

−𝑗
𝑑𝑧𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = ∫ 

𝕋

∑

𝑡

𝑧𝑡
𝑘−𝑗

𝑑𝑧𝑡𝑓𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = 0, 

and if 𝑘 = 𝑗, then 

∫ 
𝕋

∑

𝑡

𝛾𝑧𝑡
(𝑓𝑡)𝑧𝑡

−𝑗
𝑑𝑧𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = ∫ 

𝕋

∑

𝑡

𝑧𝑡
𝑘−𝑗

𝑑𝑧𝑡𝑓𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡) = 𝑓𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡). 

Thus, Φ𝑗(𝑓𝑡) = ∫
T
 ∑𝑡 𝛾𝑧𝑡

(𝑓𝑡)𝑧𝑡
−𝑗

𝑑𝑧𝑡 from which it follows that Φ𝑗(𝑓𝑡) ∈ 𝐶∗(𝒢𝐸𝑡
). 

Since each Σ𝑚(𝑓𝑡) is a linear combination of functions of the form Φ𝑗(𝑓𝑡), each Σ𝑚(𝑓𝑡) belongs to 𝐶∗(𝒢𝐸𝑡
). 

For 𝑚 ∈ ℕ, let 𝜎𝑚: 𝕋 → ℝ be the Fejér's kernel defined by 

𝜎𝑚(𝑧𝑡) = ∑  

𝑚

𝑗=−𝑚

∑

𝑡

(1 −
|𝑗|

𝑚 + 1
) 𝑧𝑡

−𝑗
. 

Then 𝜎𝑚(𝑧𝑡) ≥ 0 for all 𝑧𝑡 ∈ 𝕋, ∫
𝑇
 𝜎𝑚(𝑧𝑡)𝑑𝑧𝑡 = 1, and 

Σ𝑚(𝑓𝑡) = ∑  

𝑚

𝑗=−𝑚

 ∑

𝑡

(1 −
|𝑗|

𝑚 + 1
)Φ𝑗(𝑓𝑡)

= ∑  

𝑚

𝑗=−𝑚

  (1 −
|𝑗|

𝑚 + 1
)∫ 

𝕋

 ∑

𝑡

𝛾𝑧𝑡
(𝑓𝑡)𝑧𝑡

−𝑗
𝑑𝑧𝑡 = ∫ 

𝕋

 ∑

𝑡

𝛾𝑧𝑡
(𝑓𝑡)𝜎𝑚(𝑧𝑡)𝑑𝑧𝑡 .

 

Thus 

∥∥Σ𝑚(𝑓𝑡)∥∥ ≤ ∫ 
𝕋

∑

𝑡

∥∥𝛾𝑧𝑡
(𝑓𝑡)∥∥𝜎𝑚(𝑧𝑡)𝑑𝑧𝑡 = ∑

𝑡

∥ 𝑓𝑡 ∥. 

If 𝑔𝑡 ∈ 𝐶𝑐(𝒢𝐸𝑡
), then there is an 𝑚0 ∈ ℕ such that Φ𝑗(𝑔𝑡) = 0 for |𝑗| > 𝑚0. It follows that 

∑

𝑡

∥∥𝑔𝑡 − Σ𝑚(𝑔𝑡)∥∥ = ∑

𝑡 ∥
∥
∥
∥
∥
𝑔𝑡 − ∑  

𝑚

𝑗=−𝑚

 (1 −
|𝑗|

𝑚 + 1
)Φ𝑗(𝑔𝑡)

∥
∥
∥
∥
∥

≤ ∑

𝑡 ∥
∥
∥
∥
∥
𝑔𝑡 − ∑  

𝑚

𝑗=−𝑚

 Φ𝑗(𝑔𝑡)
∥
∥
∥
∥
∥
+ ∑

𝑡 ∥
∥
∥
∥
∥

∑  

𝑚

𝑗=−𝑚

  (
|𝑗|

𝑚 + 1
)Φ𝑗(𝑔𝑡)

∥
∥
∥
∥
∥

≤ ∑

𝑡 ∥
∥
∥
∥
∥

∑  

𝑚

𝑗=−𝑚

 (
|𝑗|

𝑚 + 1
)Φ𝑗(𝑔𝑡)

∥
∥
∥
∥
∥

≤ ∑

𝑡 ∥
∥
∥
∥
∥

∑  

𝑚0

𝑗=−𝑚0

 (
|𝑗|

𝑚 + 1
)Φ𝑗(𝑔𝑡)

∥
∥
∥
∥
∥

 for 𝑚 ≥ 𝑚0

≤ ∑  

𝑚0

𝑗=−𝑚0

∑

𝑡

 
|𝑗|

𝑚 + 1
∥∥Φ𝑗(𝑔𝑡)∥∥ → 0  as 𝑚 → ∞.
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Thus, for any 𝜖 > 0 there exists 𝑔𝑡 ∈ 𝐶𝑐(𝒢𝐸𝑡
) and an 𝑀 ∈ ℕ such that ∥ 𝑓𝑡 − 𝑔𝑡 ∥< 𝜖/3 and ∥∥𝑔𝑡 − Σ𝑚(𝑔𝑡)∥∥ <

𝜖/3 for any 𝑚 ≥ 𝑀, and then 

∥∥𝑓𝑡 − Σ𝑚(𝑓𝑡)∥∥ ≤∥ 𝑓𝑡 − 𝑔𝑡 ∥ +∥∥𝑔𝑡 − Σ𝑚(𝑔𝑡)∥∥ + ∥∥Σ𝑚(𝑔𝑡 − 𝑓𝑡)∥∥ < 𝜖 

for any 𝑚 ≥ 𝑀. This shows that (Σ𝑚(𝑓𝑡))𝑚∈ℕ converges to 𝑓𝑡 in 𝐶∗(𝒢𝐸𝑡
). 

 

III. Orbit Equivalence and Pseudogroups 
Here we introduce the notion of orbit equivalence of two graphs, which is a natural generalisation of 

Matsumoto's continuous orbit equivalence for topological Markov shifts from [12]. We also define the 

pseudogroup of a graph using Renault's pseudogroups associated to groupoids[22], and then show that two 

graphs are orbit equivalent if and only if their pseudogroups are isomorphic (see [27]). 

 

Definition 3.1. Two graphs 𝐸𝑡 and 𝐹𝑡 are orbit equivalent if there exist a homeomorphism ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡and 

continuous functions 𝑘1, 𝑙1: ∂𝐸t
≥1 → ℕ and 𝑘1

′ , 𝑙1
′ : ∂𝐹𝑡 ≥1→ ℕ such that 

𝜎𝐹𝑡

𝑘1(𝑥𝑡) (ℎ𝑡(𝜎𝐸𝑡
(𝑥𝑡))) = 𝜎𝐹𝑡

𝑙1(𝑥𝑡)(ℎ𝑡(𝑥𝑡)) and 𝜎𝐸𝑡

𝑘1
′ (𝑦𝑡) (ℎ𝑡

−1(𝜎𝐹𝑡(𝑦𝑡))) 𝜎𝐸𝑡

𝑙1
′ (𝑦𝑡)(ℎt

−1(𝑦𝑡)),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.1) 

for all 𝑥𝑡 ∈ ∂𝐸𝑡
≥1, 𝑦𝑡 ∈ ∂𝐹𝑡 ≥ 1. 

 

 

 

Example 3.2 (see [27]). Consider the graphs 

(𝑓𝑡)1 

𝐸𝑡𝐹𝑡 
(𝑓𝑡)2 

 

Then ∂𝐸𝑡 = {𝑒1𝑒2𝑒2 … , 𝑒2𝑒2 …} and ∂𝐹𝑡 = {(𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2 … , (𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1 … }. The 𝑚𝑎𝑝⁡ℎ𝑡 ∶
⁡∂𝐸𝑡 → ∂𝐹𝑡 given by 

ℎ𝑡(𝑒1𝑒2𝑒2 … ) = (𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2 …  and ℎ𝑡(𝑒2𝑒2 … ) = (𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1 … 

is a homeomorphism. Consider 𝑘1, 𝑙1: ∂𝐸t
≥1 → ℕ given by 𝑘1(𝑒1𝑒2𝑒2 … ) = 1 and 𝑘1(𝑒2𝑒2 … ) = 0, and 

𝑙1(𝑒1𝑒2𝑒2 …) = 0 = 𝑙1(𝑒2𝑒2 … ). Then 𝑘1 and 𝑙1 are continuous, and we have 𝜎𝐹𝑡

𝑘1(𝑥𝑡) (ℎ𝑡(𝜎𝐸𝑡
(𝑥𝑡))) =

𝜎𝐹𝑡

𝑙1(𝑥𝑡)(ℎ𝑡(𝑥𝑡)) for all 𝑥𝑡 ∈ ∂𝐸𝑡
≥1. Similarly the functions 𝑘1

′ , 𝑙1
′ : ∂𝐹t

≥1 → ℕ given by 

𝑘1
′ ((𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2 …) = 0 and 𝑘1

′ ((𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1 … ) = 1, and 

𝑙1
′ ((𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2 … ) = 1 and 𝑙1

′ ((𝑓𝑡)2(𝑓𝑡)1(𝑓𝑡)2(𝑓𝑡)1 … ) = 0, are continuous and satisfy 

𝜎𝐸𝑡

𝑘1
′ (𝑦𝑡) (ℎ𝑡

−1(𝜎𝐹𝑡(𝑦𝑡))) = 𝜎𝐸𝑡

𝑙1
′ (𝑦𝑡)(ℎt

−1(𝑦𝑡))  for all 𝑦𝑡 ∈ ∂𝐹𝑡
≥1. 

Hence 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

Sections 5 and 6 contain further examples of orbit equivalent graphs. 

In Section 3 of [22], Renault constructs for each étale groupoid 𝒢 a pseudogroup in the following way: Define a 

bisection to be a subset 𝐴𝑡 of 𝒢 such that the restriction of the source map of 𝒢 to 𝐴𝑡 and the restriction of the 

range map of 𝒢 to 𝐴𝑡 both are injective. 

The set of all open bisections of 𝒢 forms an inverse semigroup 𝒮 with product defined by 𝐴𝑡𝐵𝑡 = {𝛾𝛾′: (𝛾, 𝛾′) ∈

(𝐴𝑡 × 𝐵𝑡) ∩ 𝒢(2)} (where 𝒢(2) denote the set of composable pairs of ⁡), and the inverse of 𝐴𝑡 is defined to be the 

image of 𝐴𝑡 under the inverse map of 𝒢. Each 𝐴𝑡 ∈ 𝒮 defines a unique homeomorphism 𝛼𝐴𝑡
: 𝑠𝑡(𝐴𝑡) → 𝑟𝑡(𝐴𝑡) 

such that 𝛼(𝑠𝑡(𝛾)) = 𝑟𝑡(𝛾) for 𝛾 ∈ 𝐴𝑡 . The set {𝛼𝐴𝑡
: 𝐴𝑡 ∈ 𝒮} of partial homeomorphisms on 𝒢0 is the 

pseudogroup of 𝒢. 
When 𝐸𝑡 is a graph, then we call the pseudogroup of the étale groupoid 𝒢𝐸𝑡

 the pseudogroup of 𝐸𝑡 and denote it 

by 𝒫𝐸𝑡
. 

We will now give two alternative characterizations of the partial homeomorphisms of ∂𝐸𝑡  that belong to 𝒫𝐸𝑡
. 

(see [27]). 

 

Proposition 3.3. Let 𝐸𝑡 be a graph, let 𝑈 and 𝑉 be open subsets of ∂𝐸𝑡 , and let 𝛼:⁡𝑉 → 𝑈 be a homeomorphism. 

Then the following are equivalent: 

(1) 𝛼 ∈ 𝒫𝐸𝑡
. 

(2) For all 𝑥𝑡 ∈ 𝑉, there exist 𝑚, 𝑛 ∈ ℕ and an open subset 𝑉′ such that 𝑥𝑡 ∈ 𝑉′ ⊆ 𝑉, and such that 𝜎𝐸𝑡
𝑚(𝑥𝑡

′) =

𝜎𝐸𝑡
𝑛 (𝛼(𝑥𝑡

′)) for all 𝑥′ ∈ 𝑉′. 

(3) There exist continuous functions 𝑚, 𝑛: 𝑉 → ℕ such that 𝜎𝐸𝑡

𝑚(𝑥𝑡)(𝑥𝑡) = 𝜎𝐸𝑡

𝑛(𝑥𝑡)(𝛼(𝑥𝑡)) for all 𝑥𝑡 ∈ 𝑉. 



On General Wide Graph Algebras and Orbit Equivalence 

DOI: 10.35629/0743-10082039                                 www.questjournals.org                                            26 | Page 

Proof.(1) ⁡⇒ (2): Suppose 𝛼 ∈ 𝒫𝐸𝑡
. Let 𝐴𝑡 ∈ 𝒮 be such that 𝛼 = 𝛼𝐴𝑡

. Let 𝑥𝑡 ∈ 𝑉. Then there is a unique 𝛾 ∈ 𝐴𝑡 

such that 𝑠𝑡(𝛾) = 𝑥𝑡 , and then 𝑟𝑡(𝛾) = 𝛼(𝑥𝑡). Since 𝐴𝑡 is an open subset of 𝒢𝐸𝑡
, there are 𝑚, 𝑛 ∈ ℕ, an open 

subset 𝑈′ of ∂𝐸𝑡
≥𝑚 such that the restriction of 𝜎𝐸𝑡

𝑚 to 𝑈′ is injective, and an open subset 𝑉′ of ∂𝐸𝑡
≥𝑛 such that the 

restriction of 𝜎𝐸𝑡
𝑛  to 𝑉′ is injective and 𝜎𝐸𝑡

𝑚(𝑈′) = 𝜎𝐸𝑡
𝑛 (𝑉′), and such that 𝛾 ∈ 𝑍(𝑈′, 𝑚, 𝑛, 𝑉′) ⊆ 𝐴𝑡 . Then 𝑥𝑡 ∈

𝑉′ ⊆ 𝑉 and 𝜎𝐸𝑡
𝑚(𝑥𝑡

′) = 𝜎𝐸𝑡
𝑛 (𝛼(𝑥𝑡

′)) for all 𝑥t
′ ∈ 𝑉′. 

(2) ⟹ (3): Assume that for all 𝑥𝑡 ∈ 𝑉, there exist 𝑚, 𝑛 ∈ ℕ and an open subset 𝑉′ such that 𝑥𝑡 ∈ 𝑉′ ⊆ 𝑉, and 

such that 𝜎𝐸𝑡
𝑚(𝑥𝑡

′) = 𝜎𝐸𝑡
𝑛 (𝛼(𝑥𝑡

′)) for all 𝑥t
′ ∈ 𝑉′. According to Lemma 2.1, 𝑉 is the disjoint union of sets that are 

both compact and open. Since ∂𝐸𝑡  is locally compact, it follows that there exists a family {𝑉𝑖: 𝑖 ∈ 𝐼} of mutually 

disjoint compact and open sets and a family {(𝑚𝑖 , 𝑛𝑖): 𝑖 ∈ 𝐼} of pairs of nonnegative integers such that 𝑉 =

⋃𝑖∈𝐼  𝑉𝑖 and 𝜎𝐸𝑡

𝑚𝑖(𝑥𝑡) = 𝜎𝐸𝑡

𝑛𝑖(𝛼(𝑥𝑡)) for 𝑥𝑡 ∈ 𝑉𝑖 . Define 𝑚, 𝑛: 𝑉 → ℕ by setting 𝑚(𝑥𝑡) = 𝑚𝑖 and 𝑛(𝑥𝑡) = 𝑛𝑖 for 

𝑥𝑡 ∈ 𝑉𝑖 . Then 𝑚 and 𝑛 are continuous and 𝜎𝐸𝑡

𝑚(𝑥𝑡)(𝑥𝑡) = 𝜎𝐸𝑡

𝑛(𝑥𝑡)(𝛼(𝑥𝑡)) for all 𝑥𝑡 ∈ 𝑉. 

(3) ⟹ (1): Assume that 𝑚, 𝑛: 𝑉 → ℕ are continuous functions such that 𝜎𝐸𝑡

𝑚(𝑥𝑡)(𝑥𝑡) = 𝜎𝐸𝑡

𝑛(𝑥𝑡)(𝛼(𝑥𝑡)) for all 

𝑥𝑡 ∈ 𝑉. Then there exist for each 𝑥𝑡 ∈ 𝑉 a compact and open subset 𝑉𝑥𝑡
 such that 𝑥𝑡 ∈ 𝑉𝑥𝑡

⊆ 𝑉,𝑚(𝑥𝑡
′) = 𝑚(𝑥𝑡) 

and 𝑛(𝑥𝑡
′) = 𝑛(𝑥𝑡) for all 𝑥t

′ ∈ 𝑉𝑥𝑡
, the restriction of 𝜎𝐸𝑡

𝑛(𝑥𝑡) to 𝑉𝑥𝑡
 is injective, and the restriction of 𝜎𝐸𝑡

𝑚(𝑥𝑡) of 

𝛼(𝑉𝑥𝑡
) is injective. According to Lemma 2.1, 𝑉 is the disjoint union of sets that are both compact and open. It 

follows that there exists a family {𝑉𝑖: 𝑖 ∈ 𝐼} of mutually disjoint compact and open sets and a family 
{(𝑚𝑖 , 𝑛𝑖): 𝑖 ∈ 𝐼} of pairs of nonnegative integers such that 𝑉 = ⋃𝑖∈𝐼  𝑉𝑖 , 𝑚(𝑥𝑡) = 𝑚𝑖 and 𝑛(𝑥𝑡) = 𝑛𝑖 for all 𝑥𝑡 ∈

𝑉𝑖 , the restriction of 𝜎𝐸𝑡

𝑛𝑖 to 𝑉𝑖 is injective, and the restriction of 𝜎𝐸𝑡

𝑚𝑖  of 𝛼(𝑉𝑖) is injective. Let 𝐴𝑡: =

⋃𝑖∈𝐼  𝑍(𝛼(𝑉𝑖),𝑚𝑖 , 𝑛𝑖𝑉𝑖).Then 𝐴𝑡 ∈ 𝒮 and 𝛼 = 𝛼𝐴𝑡
, so 𝛼 ∈ 𝒫𝐸𝑡

. 

Suppose that 𝐸𝑡 and 𝐹𝑡 are two graphs and that there exists a homeomorphism ℎ𝑡 ∶ ⁡ ∂𝐸𝑡 → ∂𝐹𝑡 . Let 𝑈 and 𝑉 be 

open subsets of ∂𝐸𝑡  and let 𝛼: 𝑉 → 𝑈 be a homeomorphism. 

We denote by ℎ𝑡 ∘ 𝒫𝐸𝑡
∘ ℎt

−1: = {ℎ𝑡 ∘ 𝛼 ∘ ℎt
−1: 𝛼 ∈ 𝒫𝐸𝑡

}. We say that the pseudogroups of 𝐸𝑡 and 𝐹𝑡 are 

isomorphic if there is a homeomorphism ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 such that ℎ𝑡 ∘ 𝒫𝐸𝑡
∘ ℎt

−1 = 𝒫𝐹𝑡 . We can now state the 

main result of this section (see [27]). 

Proposition 3.4. Let 𝐸𝑡 and 𝐹𝑡 be two graphs. Then 𝐸𝑡 and 𝐹𝑡 are orbit equivalent if and only if the 

pseudogroups of 𝐸𝑡 and 𝐹𝑡 are isomorphic. 

To prove this Proposition we will use the following result. 

Lemma 3.5 [27]. Suppose two graphs 𝐸𝑡 and 𝐹𝑡 are orbit equivalent, ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 is a homeomorphism and 

𝑘1, 𝑙1: ∂𝐸t
≥1 → ℕ and 𝑘1

′ , 𝑙1
′ : ∂𝐹t

≥1 → ℕ are continuous functions satisfying (3.1).⁡Let 𝑛 ∈ ℕ. Then there exist 

continuous functions 𝑘𝑛, 𝑙𝑛: ∂𝐸t
≥𝑛 → ℕ and 𝑘𝑛

′ , 𝑙𝑛
′ : ∂𝐹t

≥𝑛 → ℕ such that 

𝜎𝐹𝑡

𝑘𝑛(𝑥𝑡) (ℎ𝑡(𝜎𝐸𝑡
𝑛 (𝑥𝑡))) = 𝜎𝐹𝑡

𝑙𝑛(𝑥𝑡)(ℎ𝑡(𝑥𝑡)) ⁡⁡⁡𝑎𝑛𝑑⁡⁡𝜎𝐸𝑡

𝑘𝑛
′ (𝑦𝑡) (ℎ𝑡

−1(𝜎𝐹𝑡
𝑛(𝑦𝑡))) = 𝜎𝐸𝑡

𝑙𝑛
′ (𝑦𝑡)(ℎt

−1(𝑦𝑡)),⁡⁡⁡⁡⁡⁡⁡⁡(3.2) 

for all 𝑥𝑡 ∈ ∂𝐸𝑡
≥𝑛, 𝑦𝑡 ∈ ∂𝐹𝑡 ≥ 𝑛. 

Proof. There is nothing to prove for 𝑛 = 0 and 𝑛 = 1. We will prove the general case by induction. Let 𝑚 ≥ 1 

and suppose that the lemma holds for 𝑛 = 𝑚. Let 𝑥𝑡 ∈ ∂𝐸𝑡
≥𝑚+1. Then 

𝜎𝐹𝑡

𝑘1(𝜎𝐸𝑡
𝑚 (𝑥𝑡))

(ℎ𝑡(𝜎𝐸𝑡
𝑚+1(𝑥𝑡))) = 𝜎𝐹𝑡

𝑙1(𝜎𝐸𝑡
𝑚 (𝑥𝑡))

(ℎ𝑡(𝜎𝐸𝑡
𝑚(𝑥𝑡))) 

and 

𝜎𝐸𝑡

𝑘𝑚(𝑥𝑡) (ℎ𝑡(𝜎𝐸𝑡
𝑚(𝑥𝑡))) = 𝜎𝑙𝑚(𝑥𝑡)(ℎ𝑡(𝑥𝑡)). 

Let 

𝑘𝑚+1(𝑥𝑡) : = 𝑘1(𝜎𝐸𝑡
𝑚(𝑥𝑡)) + max{𝑙1(𝜎𝐸𝑡

𝑚(𝑥𝑡)), 𝑘𝑚(𝑥𝑡)} − 𝑙1 (𝜎𝐸𝑡
𝑚(𝑥𝑡))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.3)

𝑙𝑚+1(𝑥𝑡) : = 𝑙𝑚(𝑥𝑡) + max {𝑙1 (𝜎𝐸𝑡
𝑚(𝑥𝑡)) , 𝑘𝑚(𝑥𝑡)} − 𝑘𝑚(𝑥𝑡).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.4)

 

Then 

𝜎𝐹𝑡

𝑘𝑚+1(𝑥𝑡) (ℎ𝑡(𝜎𝐸𝑡
𝑚+1(𝑥𝑡))) = 𝜎𝐹𝑡

𝑙𝑚+1(𝑥𝑡)(ℎ𝑡(𝑥𝑡)). 

Since 𝑘1, 𝑙1, 𝑘𝑚, and 𝑙𝑚 are continuous, it follows that 𝑘𝑚+1, 𝑙𝑚+1: ∂𝐸t
≥𝑚+1 → ℕ defined by (3.3) and (3.4) are 

also continuous. 

Similarly, if we define 𝑘𝑚+1
′ , 𝑙𝑚+1

′ : ∂𝐹𝑡 ≥ 𝑚 + 1 → ℕ by letting 

𝑘𝑚+1
′ (𝑦𝑡) : = 𝑘1

′(𝜎𝐹𝑡
𝑚(𝑦𝑡)) + max{𝑙1

′ (𝜎𝐹𝑡
𝑚(𝑦𝑡)), 𝑘𝑚

′ (𝑦𝑡)} − 𝑙1
′ (𝜎𝐹𝑡

𝑚(𝑦𝑡))

𝑙𝑚+1
′ (𝑦𝑡) : = 𝑙𝑚(𝑦𝑡) + 𝑚𝑎𝑥{𝑙1

′ (𝜎𝐹𝑡
𝑚(𝑦𝑡)), 𝑘𝑚

′ (𝑦𝑡)} − 𝑘𝑚
′ (𝑦𝑡)

 

for 𝑦𝑡 ∈ ∂𝐹𝑡 ≥ 𝑚 + 1, then 𝑘𝑚+1
′  and 𝑙𝑚+1

′  are continuous, and 

𝜎𝐸𝑡

𝑘𝑚+1
′ (𝑦𝑡) (ℎ𝑡

−1(𝜎𝐹𝑡
𝑚+1(𝑦𝑡))) = 𝜎𝐸𝑡

𝑙𝑚+1
′ (𝑦𝑡)(ℎt

−1(𝑦𝑡)) 

for all 𝑦𝑡 ∈ ∂𝐸𝑡
≥𝑚+1. Thus, the lemma also holds for 𝑛 = 𝑚 + 1, and the general result holds by induction. 
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Proof of Proposition 3.4. Suppose 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. Then there exists a homeomorphism 

ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 and, for each 𝑛 ∈ ℕ, there exists continuous functions 𝑘𝑛, 𝑙𝑛: ∂𝐸t
≥𝑛

→ ℕ satisfying the first 

equation of (3.2). Let (𝛼: 𝑉 → 𝑈) ∈ 𝒫𝐸𝑡
, and let 𝑚, 𝑛: 𝑉 → ℕ be continuous functions such that 𝜎𝐸𝑡

𝑚(𝑥𝑡)(𝑥𝑡) =

𝜎𝐸𝑡

𝑛(𝑥𝑡)(𝛼(𝑥𝑡)) for all 𝑥𝑡 ∈ 𝑉. 

Let 𝑦𝑡 ∈ ℎ𝑡(𝑉). Then 

𝜎𝐹𝑡

𝑙
𝑛(ℎt

−1
(𝑦𝑡))

(𝛼(ℎt
−1(𝑦𝑡)))

(ℎ𝑡(𝛼(ℎt
−1(𝑦𝑡)))) = 𝜎𝐹𝑡

𝑘
𝑛(ℎ𝑡

−1(𝑦𝑡))
(𝛼(ℎt

−1(𝑦𝑡)))

(ℎ𝑡 (𝜎𝐸𝑡

𝑛(ℎt
−1(𝑦𝑡))(𝛼(ℎt

−1(𝑦𝑡)))))

= 𝜎𝐹𝑡

𝑘
𝑛(ℎ𝑡

−1)
(𝑦𝑡))

(𝛼(ℎt
−1(𝑦𝑡))) (ℎ𝑡 (𝜎𝐸𝑡

𝑚(ℎt
−1(𝑦𝑡))(ℎt

−1(𝑦𝑡)))) ,

 

and 

𝜎𝐹𝑡

𝑘
𝑚(ℎ𝑡

−1(𝑦𝑡))
(ℎt

−1(𝑦𝑡))

(ℎ𝑡 (𝜎𝐸𝑡

𝑚(ℎt
−1(𝑦𝑡))(ℎt

−1(𝑦𝑡)))) = 𝜎𝐹𝑡

𝑙
𝑚(ℎ𝑡

−1(𝑦𝑡))
(ℎ𝑡

−1(𝑦𝑡))

(𝑦𝑡). 

So if we let 

𝑚′(𝑦𝑡):= 𝑙𝑚(ℎt
−1(𝑦𝑡))

(ℎt
−1(𝑦𝑡)) + max {𝑘𝑛(ℎt

−1(𝑦𝑡))
(𝛼(ℎt

−1(𝑦𝑡))), 𝑘𝑚(ℎt
−1(𝑦𝑡))

(ℎt
−1(𝑦𝑡))}

− 𝑘𝑚(ℎt
−1(𝑦𝑡))

(ℎt
−1(𝑦𝑡))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.5) 

and 

  𝑛′(𝑦𝑡): = 𝑙𝑛(ℎt
−1(𝑦𝑡))

(𝛼(ℎt
−1(𝑦𝑡))) + 𝑚𝑎𝑥 {𝑘𝑛(ℎt

−1(𝑦𝑡))
(𝛼(ℎt

−1(𝑦𝑡))), 𝑘𝑚(ℎt
−1(𝑦𝑡))

(ℎt
−1(𝑦𝑡))}

−𝑘
𝑛(ℎ𝑡

−1(𝑦𝑡))
(𝛼(ℎ𝑡

−1(𝑦𝑡))) ,⁡⁡(3.6)
 

then 𝜎𝐹𝑡

𝑚′(𝑦𝑡)(𝑦𝑡) = 𝜎𝑛′(𝑦𝑡) (ℎ𝑡(𝛼(ℎt
−1(𝑦𝑡)))). Since ℎ𝑡

−1, 𝑚, 𝑛, and 𝛼 are continuous, it follows that 

𝑚′, 𝑛′: ℎ𝑡(𝑉) → ℕ defined by (3.5) and (3.6) are also continuous. Thus, it follows from Proposition 3.3 that 

ℎ𝑡 ∘ 𝛼 ∘ ℎt
−1 ∈ 𝒫𝐹𝑡 .A similar argument proves that if 𝛼′ ∈ 𝒫𝐹𝑡 , 

then ℎt
−1 ∘ 𝛼′ ∘ ℎ𝑡 ∈ 𝒫𝐸𝑡

. Thus ℎ𝑡 ∘ 𝒫𝐸𝑡
∘ ℎt

−1 = 𝒫𝐹𝑡  and the pseudogroups of 𝐸𝑡 and 𝐹𝑡 are isomorphic. 

Now suppose that ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 is a homeomorphism such that ℎ𝑡 ∘ 𝒫𝐸𝑡
∘ ℎt

−1 = 𝒫𝐹𝑡 . 

Fix 𝑒 ∈ 𝐸𝑡
1 and let 𝛼𝑒: = 𝜎𝐸𝑡

|
𝑍(𝑒)

. Then 𝛼𝑒 is a homeomorphism from 𝑍(𝑒) to 𝛼𝑒(𝑍(𝑒)) and since 𝛼𝑒(𝑥𝑡) =

𝜎𝐸𝑡
(𝑥𝑡) for all 𝑥𝑡 ∈ 𝑍(𝑒), it follows from Proposition 3.3 that 𝛼𝑒 ∈ 𝒫𝐸𝑡

. 

Thus ℎ𝑡 ∘ 𝛼𝑒 ∘ ℎt
−1 ∈ 𝒫𝐹𝑡

 by assumption. It follows from Proposition 3.3 that there are continuous functions 

𝑚𝑒
′ , 𝑛𝑒

′ : ℎ𝑡(𝑍(𝑒)) → ℕ such that 

𝜎𝐹𝑡

𝑛𝑒
′ (𝑦𝑡) (ℎ𝑡(𝛼𝑒(ℎt

−1(𝑦𝑡)))) = 𝜎𝐹𝑡

𝑚𝑒
′ (𝑦𝑡)(𝑦𝑡)  for 𝑦𝑡 ∈ ℎ𝑡(𝑍(𝑒)). 

Define functions 𝑘1, 𝑙1: ∂𝐸t
≥1 → ℕ by 𝑘1(𝑥𝑡) = 𝑛(𝑥𝑡)1

′ (ℎ𝑡(𝑥𝑡)) and 𝑙1(𝑥𝑡) = 𝑚(𝑥𝑡)1
′ (ℎ𝑡(𝑥𝑡)), which are 

continuous because the 𝑍(𝑒) are pairwise-disjoint compact open sets covering ∂𝐸𝑡 ≥ 1. 
Then for each 𝑥𝑡 = (𝑥𝑡)1(𝑥𝑡)2 ⋯ ∈ ∂𝐸𝑡 we have 

𝜎𝐹𝑡

𝑙1(𝑥𝑡)(ℎ𝑡(𝑥𝑡)) = 𝜎𝐹𝑡

𝑚(𝑥𝑡)1
′ (ℎ𝑡(𝑥𝑡))

(ℎ𝑡(𝑥𝑡)) = 𝜎𝐹𝑡

𝑛(𝑥𝑡)1
′ (ℎ𝑡(𝑥𝑡))

(ℎ𝑡 (𝛼(𝑥𝑡)1
(𝑥𝑡))) = 𝜎𝐹𝑡

𝑘1(𝑥𝑡) (ℎ𝑡 (𝜎𝐸𝑡
(𝑥𝑡))). 

Hence 𝑘1 and 𝑙1 satisfy the first equation from (3.1).A similar argument gets the second equation from (3.1). 
Thus 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

 

IV. The Extended Weyl Groupoidof (𝑪∗(𝑬𝒕),𝓓(𝑬𝒕)) 
Proposition 2.2 says that the pair (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) is an invariant of 𝒢𝐸𝑡

, in the sense that if 𝐸𝑡 and 𝐹𝑡 

are two graphs such that 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  are isomorphic as topological groupoids, then there is an isomorphism from 

𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡). In this section we show that 𝒢𝐸𝑡
 is an invariant of 

(𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)), in the sense that if there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 

𝒟(𝐹𝑡), 
then 𝒢𝐸𝑡

 and 𝒢𝐹𝑡  are isomorphic as topological groupoids. 

To prove this result (see [27]) we build a groupoid from (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) that we call the extended 

Weyl groupoid, which generalises Renault's Weyl groupoid construction from [22] applied to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)). 
Recall from [22]⁡that Weyl groupoids are associated to pairs (𝐴𝑡 , 𝐵𝑡) consisting of a 𝐶∗-algebra 𝐴𝑡 and an 

abelian 𝐶∗-subalgebra 𝐵𝑡  which contains an approximate unit of 𝐴𝑡 . The Weyl groupoid construction has the 

property that if 𝒢 is a topologically principal étale Hausdorff locally compact second countable groupoid and 

𝐴𝑡 = 𝐶
red 

∗ (𝒢) and 𝐵𝑡 = 𝐶0(𝒢
0), then the associated Weyl groupoid is isomorphic to 𝒢 as a topological groupoid. 



On General Wide Graph Algebras and Orbit Equivalence 

DOI: 10.35629/0743-10082039                                 www.questjournals.org                                            28 | Page 

We will modify Renault's construction for pairs (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) to obtain a groupoid 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) such that 

𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) and 𝒢𝐸𝑡
 are isomorphic as topological groupoids, even when 𝒢𝐸𝑡

 is not topologically principal. We 

will then show that if 𝐸𝑡 and 𝐹𝑡 are two graphs such that there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which 

maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡), then 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) and 𝒢(𝐶∗(𝐹𝑡),𝒟(𝐹𝑡)), and thus 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  are isomorphic as topological 

groupoids. 

As in [22] (and originally defined in [9]⁡), we define the normaliser of 𝒟(𝐸𝑡) to be the set 

𝑁(𝒟(𝐸𝑡)):= {𝑛 ∈ 𝐶∗(𝐸𝑡): 𝑛𝑑𝑛∗, 𝑛∗𝑑𝑛 ∈ 𝒟(𝐸𝑡) for all 𝑑 ∈ 𝒟(𝐸𝑡)}. 
According to [22, Lemma 4.6], 𝑛𝑛∗, 𝑛∗𝑛 ∈ 𝒟(𝐸𝑡) for 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)). Recalling the definition of (ℎ𝑡)𝐸𝑡

 given in 

(2.1), for 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), we let dom⁡(𝑛): = {𝑥𝑡 ∈ ∂𝐸𝑡: (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛) > 0} and ran⁡(𝑛): = {𝑥𝑡 ∈

∂𝐸𝑡: (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛𝑛∗) > 0}. It follows from [22, Proposition 4.7] that, for 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), there is a unique 

homeomorphism 𝛼𝑛: dom⁡(𝑛) → ran⁡(𝑛) such that, for all 𝑑 ∈ 𝒟(𝐸𝑡), 
(ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑑𝑛) = (ℎ𝑡)𝐸𝑡

(𝛼𝑛(𝑥𝑡))(𝑑)(ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.1) 

From [22, Lemma 4.10] we also know that 𝛼𝑛∗ = 𝛼𝑛
−1 and 𝛼𝑚𝑛 = 𝛼𝑚 ∘ 𝛼𝑛 for each 𝑚, 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)). 

The following lemma gives an insight into how the homeomorphisms 𝛼𝑛 work. We collect further properties of 

these homeomorphisms in Lemma 4.2. 
Lemma 4.1 (see [27]). Let 𝐸𝑡 be a graph. For each 𝜇, 𝜈 ∈ 𝐸𝑡

∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈) we have 𝑠𝜇𝑠𝜈
∗ ∈ ⁡𝑁(𝒟(𝐸𝑡)) 

with 

dom⁡(𝑠𝜇𝑠𝜈
∗) = 𝑍(𝜈), ran⁡(𝑠𝜇𝑠𝜈

∗) = 𝑍(𝜇) and 𝛼𝑠𝜇𝑠𝜈
∗(𝜈𝑧𝑡) = 𝜇𝑧𝑡 for all 𝑧𝑡 ∈ 𝑟𝑡(𝜈) ∂𝐸𝑡 . 

Proof. Let 𝜇, 𝜈 ∈ 𝐸𝑡
∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈). For each 𝜆 ∈ 𝐸𝑡

∗ we have 

(𝑠𝜇𝑠𝜈
∗)

∗
𝑠𝜆𝑠𝜆

∗(𝑠𝜇𝑠𝜈
∗) = {

𝑠𝜈𝑠𝜈
∗  if 𝜇 = 𝜆𝜇′

𝑠𝜈𝜆′𝑠𝜈𝜆′
∗  if 𝜆 = 𝜇𝜆′

0  otherwise .

 

So (𝑠𝜇𝑠𝜈
∗)

∗
𝑠𝜆𝑠𝜆

∗(𝑠𝜇𝑠𝜈
∗) ∈ 𝒟(𝐸𝑡), and it follows that (𝑠𝜇𝑠𝜈

∗)
∗
𝑑(𝑠𝜇𝑠𝜈

∗) ∈ 𝒟(𝐸𝑡) for all 𝑑 ∈ ⁡𝒟(𝐸𝑡).A similar 

argument shows that (𝑠𝜇𝑠𝑛𝑢∗)𝑑(𝑠𝜇𝑠𝜈
∗)

∗
∈ 𝒟(𝐸𝑡) for all 𝑑 ∈ 𝒟(𝐸𝑡), and 

hence 𝑠𝜇𝑠𝜈
∗ ∈ 𝑁(𝐷(𝐸𝑡)). We have 

(ℎ𝑡)𝐸𝑡
(𝑥𝑡)((𝑠𝜇𝑠𝜈

∗)
∗
𝑠𝜇𝑠𝜈

∗) = (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑠𝜈𝑠𝜈

∗) = {
1  if 𝑥𝑡 ∈ 𝑍(𝜈)

0  if 𝑥𝑡 ∉ 𝑍(𝜈),
 

and hence dom⁡(𝑠𝜇𝑠𝜈
∗) = 𝑍(𝜈).A similar calculation gives ran(𝑠𝜇𝑠𝜈

∗) = 𝑍(𝜇). 

Now suppose 𝑧𝑡 ∈ 𝑟𝑡(𝜈) ∂𝐸𝑡 . We use (4.1) and (4.2) to get 

(ℎ𝑡)𝐸𝑡
(𝛼𝑠𝜇𝑠𝜈

∗(𝜈𝑧𝑡)) (𝑠𝜆𝑠𝜆
∗) = (ℎ𝑡)𝐸𝑡

(𝜈𝑧𝑡) ((𝑠𝜇𝑠𝜈
∗)

∗
𝑠𝜆𝑠𝜆

∗(𝑠𝜇𝑠𝜈
∗)) (ℎ𝑡)𝐸𝑡

(𝜈𝑧𝑡)((𝑠𝜇𝑠𝜈
∗)

∗
𝑠𝜇𝑠𝜈

∗)

= {

(ℎ𝑡)𝐸𝑡
(𝜈𝑧𝑡)(𝑠𝜈𝑠𝜈

∗)  if 𝜇 = 𝜆𝜇′

(ℎ𝑡)𝐸𝑡
(𝜈𝑧𝑡)(𝑠𝜈𝜆′𝑠𝜈𝜆′

∗ )  if 𝜆 = 𝜇𝜆′

0  otherwise 

= {
1  if 𝜇𝑧𝑡 ∈ 𝑍(𝜆)

0  otherwise 

= (ℎ𝑡)𝐸𝑡
(𝜇𝑧𝑡)(𝑠𝜆𝑠𝜆

∗).

⁡⁡⁡⁡⁡⁡⁡⁡(4.2) 

It follows that (ℎ𝑡)𝐸𝑡
(𝛼𝑠𝜇𝑠𝜈

+(𝜈𝑧𝑡)) = (ℎ𝑡)𝐸𝑡
(𝜇𝑧𝑡), and hence 𝛼𝑠𝜇𝑠𝜈

∗(𝜈𝑧𝑡) = 𝜇𝑧𝑡 . 

Denote by ∂(𝐸𝑡)iso  the set of isolated points in ∂𝐸𝑡 . Notice that 𝑥𝑡 ∈ ∂𝐸𝑡 belongs to ∂(𝐸𝑡)iso  if and only if the 

characteristic function 1{𝑥𝑡} belongs to 𝐶0(∂𝐸𝑡). For 𝑥𝑡 ∈ ∂(𝐸𝑡)iso , we let 𝑝𝑥𝑡
 denote the unique element of 

𝒟(𝐸𝑡) satisfying that (ℎ𝑡)𝐸𝑡
(𝑦𝑡)(𝑝𝑥𝑡

) is 1 if 𝑦𝑡 = 𝑥𝑡  and zero otherwise. 

Lemma 4.2 (see [27]). Let 𝐸𝑡 be a graph, 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)) and 𝑥𝑡 ∈ ∂(𝐸𝑡)iso ∩ dom⁡(𝑛). Then 

(a) 𝑛𝑝𝑥𝑡
𝑛∗ = (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛)𝑝𝛼𝑛(𝑥𝑡)

, 

(b) 𝑛∗𝑝𝛼𝑛(𝑥𝑡)𝑛 = (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛)𝑝𝑥𝑡
, and 

(c) 𝑛𝑝𝑥𝑡
= 𝑝𝛼𝑛(𝑥𝑡)𝑛. 

Proof. We use Equation (4.1) with 𝑑 = 𝑛𝑛∗ to get 

(ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛)2 = (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛𝑛∗𝑛) = (ℎ𝑡)𝐸𝑡
(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗)(ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛), 

which implies that 

(ℎ𝑡)𝐸𝑡
(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗) = (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛).⁡⁡⁡⁡⁡⁡⁡⁡(4.3) 

Note that this is a positive number because 𝑥𝑡 ∈ dom⁡(𝑛). For (𝑎) we again use (4.1) to get 
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(ℎ𝑡)𝐸𝑡
(𝑦𝑡) (((ℎ𝑡)𝐸𝑡

(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗))
−1

𝑛𝑝𝑥𝑡
𝑛∗) = ((ℎ𝑡)𝐸𝑡

(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗))
−1

(ℎ𝑡)𝐸𝑡
(𝑦𝑡)(𝑛𝑝𝑥𝑡

𝑛∗)

= ((ℎ𝑡)𝐸𝑡
(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗))

−1
(ℎ𝑡)𝐸𝑡

(𝛼𝑛 + (𝑦𝑡))(𝑝𝑥𝑡
)(ℎ𝑡)𝐸𝑡

(𝑦𝑡)(𝑛𝑛∗)

= {
1  if 𝑦𝑡 = 𝛼𝑛(𝑥𝑡)

0  otherwise .

 

By the defining property of 𝑝𝛼𝑛(𝑥𝑡) we now have 𝑝𝛼𝑛(𝑥𝑡) = ((ℎ𝑡)𝐸𝑡
(𝛼𝑛(𝑥𝑡))(𝑛𝑛∗))

−1

𝑛𝑝𝑥𝑡
𝑛∗. 

Using (4.3) gives 𝑛𝑝𝑥𝑡
𝑛∗ = (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛)𝑝𝛼𝑛(𝑥𝑡), which is (𝑎). Identity (𝑏) follows from (𝑎) by replacing 𝑛 

with 𝑛∗ and 𝑥𝑡 with 𝛼𝑛(𝑥𝑡) and then use (4.3). 
To prove (𝑐) we first notice that 

(ℎ𝑡)𝐸𝑡
(𝑦𝑡) (((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛))

−1

𝑛∗𝑛𝑝𝑥𝑡
) = ((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛))

−1
(ℎ𝑡)𝐸𝑡

(𝑦𝑡)(𝑛
∗𝑛)(ℎ𝑡)𝐸𝑡

(𝑦𝑡)(𝑝𝑥𝑡
)

= {
1  if 𝑥𝑡 = 𝑦𝑡

0  if 𝑥𝑡 ≠ 𝑦𝑡 .
 

Hence by the defining property of 𝑝𝑥𝑡
 we have 

𝑛∗𝑛𝑝𝑥𝑡
= (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛)𝑝𝑥𝑡

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.4) 

We now use (4.4) and (𝑎) to get (𝑐): 

𝑛𝑝𝑥𝑡
= 𝑛 (((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛))

−1

𝑛∗𝑛𝑝𝑥𝑡
) = ((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛
∗𝑛))

−1

𝑛𝑝𝑥𝑡
𝑛∗𝑛 = 𝑝𝛼𝑛(𝑥𝑡)𝑛. 

Lemma 4.3 (see [27]). Suppose 𝑥𝑡 ∈ ∂(𝐸𝑡)iso . If 𝑥𝑡 is not eventually periodic, then 𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

=

𝑝𝑥𝑡
𝒟(𝐸𝑡)𝑝𝑥𝑡

= ℂ𝑝𝑥𝑡
. If 𝑥𝑡 = 𝜇𝜂𝜂𝜂 ⋯ for some 𝜇 ∈ 𝐸𝑡

∗ and some simple loop 𝜂 ∈ 𝐸𝑡
∗ with 𝑠𝑡(𝜂) = 𝑟𝑡(𝜇), then 

𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

 is isomorphic to 𝐶(𝕋) by the isomorphism mapping 𝑝𝑥𝑡
𝑠𝜇𝑠𝜂𝑠𝜇

∗𝑝𝑥𝑡
 to the identity function on 𝕋, 

and 𝑝𝑥𝑡
𝒟(𝐸𝑡)𝑝𝑥𝑡

= ℂ𝑝𝑥𝑡
. 

Proof. Let (𝒢𝐸𝑡
)
𝑥𝑡

𝑥𝑡
 denote the isotropy group {𝛾 ∈ 𝒢: 𝑠𝑡(𝛾) = 𝑟𝑡(𝛾) = 𝑥𝑡} of (𝑥𝑡 , 0, 𝑥𝑡). 

Assume that 𝑥𝑡 is not eventually periodic. Then (𝒢𝐸𝑡
)
𝑥𝑡

𝑥𝑡
= {(𝑥𝑡 , 0, 𝑥𝑡)}. Proposition 2.2 implies that there is an 

isomorphism from 𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

 to 𝐶∗ ((𝒢𝐸𝑡
)
𝑥𝑡

𝑥𝑡
), and consequently 𝑝𝑥𝑡

𝐶∗(𝐸𝑡)𝑝𝑥𝑡
= 𝑝𝑥𝑡

𝒟(𝐸𝑡)𝑝𝑥𝑡
= ℂ𝑝𝑥𝑡

, 

completing the first assertion in the lemma. 

Assume then that 𝑥𝑡 = 𝜇𝜂𝜂𝜂 ⋯ for some 𝜇 ∈ 𝐸𝑡
∗ and some simple loop 𝜂 ∈ 𝐸𝑡

∗ with 𝑠𝑡(𝜂) = 𝑟𝑡(𝜇). We then 

have that (𝒢𝐸𝑡
)
𝑥𝑡

𝑥𝑡
= {(𝑥𝑡 , 𝑘|𝜂|, 𝑥𝑡): 𝑘 ∈ ℤ}. Now Proposition 2.2 implies that there is an isomorphism from 

𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

 to 𝐶(𝕋) which maps 𝑝𝑥𝑡
𝑠𝜇𝑠𝜂𝑠𝜇

∗𝑝𝑥𝑡
 to the identity function on 𝕋, and that 𝑝𝑥𝑡

𝒟(𝐸𝑡)𝑝𝑥𝑡
= ℂ𝑝𝑥𝑡

. 

The extended Weyl groupoid associated to (𝐶∗(𝐸𝑡), 𝒟(𝐸𝑡)) is built using an equivalence relation defined on 

pairs of normalisers and boundary paths. For isolated boundary paths 𝑥𝑡 the equivalence relation is defined 

using a unitary in the corner of 𝐶∗(𝐸𝑡) determined by 𝑝𝑥𝑡
. 

Lemma 4.4 (see [27]). Let 𝐸𝑡 be a graph. For 𝑥𝑡 ∈ ∂(𝐸𝑡)iso , 𝑛1, 𝑛2 ∈ 𝑁(𝒟(𝐸𝑡)), 𝑥𝑡 ∈ dom⁡(𝑛1) ∩ ⁡dom⁡(𝑛2), 

and 𝛼𝑛1
(𝑥𝑡) = 𝛼𝑛2

(𝑥𝑡), we denote 

𝑈(𝑥𝑡,𝑛1,𝑛2): = ((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1𝑛2
∗𝑛2))

−1/2

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
. 

Then 

(1) 𝑈(𝑥𝑡,𝑛1,𝑛2)𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ = 𝑈(𝑥𝑡,𝑛1,𝑛2)

∗ 𝑈(𝑥𝑡,𝑛1,𝑛2) = 𝑝𝑥𝑡
, and 

(2) 𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ = 𝑈(𝑥𝑡,𝑛2,𝑛1). 

Moreover, if 𝑛3 ∈ 𝑁(𝒟(𝐸𝑡)), 𝑥𝑡 ∈ dom⁡(𝑛3), and 𝛼𝑛3
(𝑥𝑡) = 𝛼𝑛1

(𝑥𝑡) = 𝛼𝑛2
(𝑥𝑡), then 

(3) 𝑈(𝑥𝑡,𝑛1,𝑛2)𝑈(𝑥𝑡,𝑛2,𝑛3) = 𝑈(𝑥𝑡,𝑛1,𝑛3). 

Proof. Suppose that 𝑥𝑡 ∈ ∂(𝐸𝑡)iso , 𝑛1, 𝑛2 ∈ 𝑁(𝒟(𝐸𝑡)), 𝑥𝑡 ∈ dom⁡(𝑛1) ∩ dom⁡(𝑛2), and 𝛼𝑛1
(𝑥𝑡) = 𝛼𝑛2

(𝑥𝑡). First 

note that since 𝑥𝑡 ∈ dom⁡(𝑛1) ∩ dom⁡(𝑛2), we have (ℎ𝑡)𝐸𝑡
(𝑛1

∗𝑛1), (ℎ𝑡)𝐸𝑡
(𝑛2

∗𝑛2) > 0, 

and the formula for 𝑈(𝑥𝑡,𝑛1,𝑛2) makes sense. We now claim that 

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡
= (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛1
∗𝑛1𝑛2

∗𝑛2)𝑝𝑥𝑡
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.5) 

To see this, we apply identities (𝑎) and (𝑏) of Lemma 4.2 to get 
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𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡
= 𝑝𝑥𝑡

𝑛1
∗(𝑛2𝑝𝑥𝑡

𝑛2
∗)𝑛1𝑝𝑥𝑡

= 𝑝𝑥𝑡
𝑛1

∗ ((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛2

∗𝑛2)𝑝𝛼𝑛2(𝑥𝑡)) 𝑛1𝑝𝑥𝑡

= (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛2

∗𝑛2)𝑝𝑥𝑡
𝑛1

∗𝑝𝛼𝑛1(𝑥𝑡)𝑛1𝑝𝑥𝑡

= (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1)(ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛2

∗𝑛2)𝑝𝑥𝑡

= (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1𝑛2
∗𝑛2)𝑝𝑥𝑡

.

 

We now use (4.5) to get 

𝑈(𝑥𝑡,𝑛1,𝑛2)𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ = ((ℎ𝑡)𝐸𝑡

(𝑛1
∗𝑛1𝑛2

∗𝑛2))
−1

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡
= 𝑝𝑥𝑡

 

Similarly, and using that 𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

 is commutative, we have 

𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ 𝑈(𝑥𝑡,𝑛1,𝑛2) = ((ℎ𝑡)𝐸𝑡

(𝑛1
∗𝑛1𝑛2

∗𝑛2))
−1

𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡

= ((ℎ𝑡)𝐸𝑡
(𝑛1

∗𝑛1𝑛2
∗𝑛2))

−1

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡

= 𝑝𝑥𝑡
.

 

So (1) holds. 

Identity (2)⁡holds because 𝑛1
∗𝑛1, 𝑛2

∗𝑛2 ∈ 𝒟(𝐸𝑡), and hence 

𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ : = ((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛1
∗𝑛1𝑛2

∗𝑛2))
−1/2

𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡
= ((ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛2
∗𝑛2𝑛1

∗𝑛1))
−1/2

𝑝𝑥𝑡
𝑛2

∗𝑛1𝑝𝑥𝑡

= 𝑈(𝑥𝑡,𝑛2,𝑛1).
 

We use identities (𝑎) and (𝑐) of Lemma 4.2 to get 

𝑈(𝑥𝑡,𝑛1,𝑛2)𝑈(𝑥𝑡,𝑛2,𝑛3) = ((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1𝑛2
∗𝑛2)(ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛2
∗𝑛2𝑛3

∗𝑛3))
−1/2

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
𝑛2

∗𝑛3𝑝𝑥𝑡

= ((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛2

∗𝑛2))
−1

((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1𝑛3
∗𝑛3))

−1/2

𝑝𝑥𝑡
𝑛1

∗ ((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛2

∗𝑛2)𝑝𝛼𝑛2(𝑥𝑡)) 𝑛3𝑝𝑥𝑡

= ((ℎ𝑡)𝐸𝑡
(𝑛1

∗𝑛1𝑛3
∗𝑛3))

−1/2

𝑝𝑥𝑡
𝑛1

∗𝑝𝛼𝑛3(𝑥𝑡)𝑛3𝑝𝑥𝑡

= ((ℎ𝑡)𝐸𝑡
(𝑛1

∗𝑛1𝑛3
∗𝑛3))

−1/2

𝑝𝑥𝑡
𝑛1

∗𝑛3𝑝𝑥𝑡

= 𝑈(𝑥𝑡,𝑛1,𝑛3).

 

So (3) holds. 

Notation 4.5. For 𝑥𝑡 , 𝑛1 and 𝑛2 as in Lemma 4.4 we denote 

𝜆(𝑥𝑡,𝑛1,𝑛2): = (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛1

∗𝑛1𝑛2
∗𝑛2). 

So 𝑈(𝑥𝑡,𝑛1,𝑛2) = 𝜆(𝑥𝑡,𝑛1,𝑛2)
−1/2

𝑝𝑥𝑡
𝑛1

∗𝑛2𝑝𝑥𝑡
. It follows from identity (1) of Lemma 4.4 that 𝑈(𝑥𝑡,𝑛1,𝑛2) is a unitary 

element of 𝑝𝑥𝑡
𝐶∗(𝐸𝑡)𝑝𝑥𝑡

. We denote by [𝑈(𝑥𝑡,𝑛1,𝑛2)]1
 the class of 𝑈(𝑥𝑡,𝑛1,𝑛2) in 𝐾1(𝑝𝑥𝑡

𝐶∗(𝐸𝑡)𝑝𝑥𝑡
). 

Proposition 4.6 (see [27]). Let 𝐸𝑡 be a graph. For each (𝑥𝑡)1, (𝑥𝑡)2 ∈ ∂𝐸𝑡 and 𝑛1, 𝑛2 ∈ 𝑁(𝒟(𝐸𝑡)) such that 

(𝑥𝑡)1 ∈ dom⁡(𝑛1) and (𝑥𝑡)2 ∈ dom⁡(𝑛2) we write (𝑛1, (𝑥𝑡)1) ∼ (𝑛2, (𝑥𝑡)2) if either 

(a) (𝑥𝑡)1 = (𝑥𝑡)2 ∈ ∂(𝐸𝑡)iso , 𝛼𝑛1
((𝑥𝑡)1) = 𝛼𝑛2

((𝑥𝑡)2), and [𝑈((𝑥𝑡)1,𝑛1,𝑛2)]
1
= 0; or 

(b) (𝑥𝑡)1 = (𝑥𝑡)2 ∉ ∂(𝐸𝑡)iso  and there is an open set 𝑉 such that (𝑥𝑡)1 ∈ 𝑉 ⊆ dom⁡(𝑛1) ∩ ⁡dom⁡(𝑛2) and 

𝛼𝑛1
(𝑦𝑡) = 𝛼𝑛2

(𝑦𝑡) for all 𝑦𝑡 ∈ 𝑉. 

Then ∼ is an equivalence relation on {(𝑛, 𝑥𝑡): 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), 𝑥𝑡 ∈ dom⁡(𝑛)}. 
Proof. The only nontrivial parts to prove are that ∼ is symmetric and transitive when the boundary paths are 

isolated points. Suppose (𝑛1, (𝑥𝑡)1) ∼ (𝑛2, (𝑥𝑡)2) with 𝑥𝑡: = (𝑥𝑡)1 = (𝑥𝑡)2 ∈ ⁡∂(𝐸𝑡)iso . We know from Lemma 

4.4(2) that 𝑈(𝑥𝑡,𝑛2,𝑛1) = 𝑈(𝑥𝑡,𝑛1,𝑛2)
∗ . So 

[𝑈(𝑥𝑡,𝑛1,𝑛2)]
1
= 0 ⟹ [𝑈(𝑥𝑡,𝑛2,𝑛1)]

1
= [𝑈(𝑥𝑡,𝑛1,𝑛2)

∗ ]
1
= 0, 

and hence (𝑛2, (𝑥𝑡)2) ∼ (𝑛1, (𝑥𝑡)1). 
For transitivity, suppose (𝑛1, (𝑥𝑡)1) ∼ (𝑛2, (𝑥𝑡)2) and (𝑛2, (𝑥𝑡)2) ∼ (𝑛3, (𝑥𝑡)3) with 𝑥𝑡: = (𝑥𝑡)1 = (𝑥𝑡)2 =
(𝑥𝑡)3 ∈ ∂(𝐸𝑡)iso . We know from Lemma 4.4(2) that 𝑈(𝑥𝑡,𝑛1,𝑛2)𝑈(𝑥𝑡,𝑛2,𝑛3) = 𝑈(𝑥𝑡,𝑛1,𝑛3). So 

[𝑈((𝑥𝑡,𝑛1,𝑛2)]
1
= 0 = [𝑈(𝑥𝑡,𝑛2,𝑛3)]1

⟹ [𝑈(𝑥𝑡,𝑛1,𝑛3)]1
= [𝑈(𝑥𝑡,𝑛1,𝑛2)]1

[𝑈(𝑥𝑡,𝑛2,𝑛3)]1
= 0, 

and hence (𝑛1, (𝑥𝑡)1) ∼ (𝑛3, (𝑥𝑡)3). 
Proposition 4.7 (see [27]). Let 𝐸𝑡 be a graph, and ∼ the equivalence relation on {(𝑛, 𝑥𝑡): 𝑛 ∈ ⁡𝑁(𝒟(𝐸𝑡)), 𝑥𝑡 ∈
dom⁡(𝑛)} from Proposition 4.6. Denote the collection of equivalence classes by 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))

⋅ Define a 

partially-defined product on 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) by 

[(𝑛1, (𝑥𝑡)1)][(𝑛2, (𝑥𝑡)2)]: = [(𝑛1𝑛2, (𝑥𝑡)2)]  if 𝛼𝑛2
((𝑥𝑡)2) = (𝑥𝑡)1, 
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and undefined otherwise. Define an inverse map by [(𝑛, 𝑥𝑡)]
−1: = [(𝑛∗, 𝛼𝑛(𝑥𝑡))]. Then these operations make 

𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
 into a groupoid. 

Proof. We only check that composition and inversion are well-defined. That composition is associative and 

every element is composable with its inverse (in either direction) is left to the reader. To see that composition is 

well-defined, suppose [(𝑛1, (𝑥𝑡)1)] = [(𝑛1
′ , (𝑥𝑡)1

′ )], and [(𝑛2, (𝑥𝑡)2)] = [(𝑛2
′ , (𝑥𝑡)2

′ )] with [(𝑛1, (𝑥𝑡)1)] and 
[(𝑛2, (𝑥𝑡)2)] composable. We need to show that [(𝑛1

′ , (𝑥𝑡)1
′ )] and [(𝑛2

′ , (𝑥𝑡)2
′ )] are also composable with 

[(𝑛1𝑛2, (𝑥𝑡)2)] = [(𝑛1
′ 𝑛2

′ , (𝑥𝑡)2
′ )].⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.6) 

We immediately know that (𝑥𝑡)1 = (𝑥𝑡)1
′ , (𝑥𝑡)2 = (𝑥𝑡)2

′ , (𝑥𝑡)2 = 𝛼𝑛2
−1((𝑥𝑡)1), 𝛼𝑛1

((𝑥𝑡)1) = 𝛼𝑛1
′ ((𝑥𝑡)1

′ ), and 

𝛼𝑛2
((𝑥𝑡)2) = 𝛼𝑛2

′ ((𝑥𝑡)2
′ ). This gives 

𝛼
𝑛2

′
−1((𝑥𝑡)1

′ ) = 𝛼
𝑛2

′
−1((𝑥𝑡)1) = 𝛼

𝑛2
′

−1 (𝛼𝑛2
((𝑥𝑡)2)) = 𝛼

𝑛2
′

−1 (𝛼𝑛2
′ ((𝑥𝑡)2

′ )) = (𝑥𝑡)2
′ . 

So 𝛼𝑛2
′ ((𝑥𝑡)2

′ ) = (𝑥𝑡)1
′ , and hence [(𝑛1

′ , (𝑥𝑡)1
′ )] and [(𝑛2

′ , (𝑥𝑡)2
′ )] are composable. 

To see that (4.6) holds we have two cases: 

Case 1: Suppose (𝑥𝑡)1 ∉ ∂(𝐸𝑡)iso. Then (𝑥𝑡)1
′ = (𝑥𝑡)1 ∉ ∂(𝐸𝑡)iso , (𝑥𝑡)2 = 𝛼𝑛2

−1((𝑥𝑡)1) ∉ ∂(𝐸𝑡)iso , and (𝑥𝑡)2
′ =

𝛼
𝑛2

′
−1((𝑥𝑡)1

′ ) ∉ ∂(𝐸𝑡)iso  We also know there exists an open set 𝑉1 such that (𝑥𝑡)1 ∈ 𝑉1 ⊆ ⁡dom⁡(𝑛1) ∩ dom⁡(𝑛1
′ ) 

with 𝛼𝑛1
|
𝑉1

= 𝛼𝑛1
′ |

𝑉1

, and an open set 𝑉2 such that (𝑥𝑡)2 ∈ 𝑉2 ⊆ ⁡dom⁡(𝑛2) ∩ dom⁡(𝑛2
′ ) with 𝛼𝑛2

|
𝑉2

= 𝛼𝑛2
′ |

𝑉2

. 

Let 𝑉:= 𝑉2 ∩ 𝛼𝑛2
−1(𝑉1), which is an open set containing (𝑥𝑡)2. We claim that 

𝑉 ⊆ dom(𝑛1𝑛2) ∩ dom(𝑛1
′ 𝑛2

′ ). 
To see this, let 𝑥𝑡 ∈ 𝑉. Then using (4.1) we have 

(ℎ𝑡)𝐸𝑡
(𝑥𝑡)((𝑛1𝑛2)

∗𝑛1𝑛2) = (ℎ𝑡)𝐸𝑡
(𝛼𝑛2

(𝑥𝑡)) (𝑛1
∗𝑛1)(ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑛2
∗𝑛2), 

which is positive because 𝛼𝑛2
(𝑥𝑡) ∈ dom⁡(𝑛1) and 𝑥𝑡 ∈ dom⁡(𝑛2). So 𝑉 ⊆ dom⁡(𝑛1𝑛2).A similar argument 

gives 𝑉 ⊆ dom⁡(𝑛1
′ 𝑛2

′ ), and so the claim holds. For each 𝑥𝑡 ∈ 𝑉 we have 𝛼𝑛2
(𝑥𝑡) = 𝛼𝑛2

′ (𝑥𝑡) ∈ 𝑉1, which means 

𝛼𝑛1𝑛2
(𝑥𝑡) = 𝛼𝑛1

(𝛼𝑛2
(𝑥𝑡)) = 𝛼𝑛1

′ (𝛼𝑛2
′ (𝑥𝑡)) = 𝛼𝑛1

′𝑛2
′ (𝑥𝑡). 

So 𝛼𝑛1𝑛2
|
𝑉

= 𝛼𝑛1
′𝑛2

′ |
𝑉
. Hence (𝑛1𝑛2, (𝑥𝑡)2) ∼ (𝑛1

′ 𝑛2
′ , (𝑥𝑡)2

′ ), and (4.6) holds in this case. 

Case 2: Suppose (𝑥𝑡)1 ∈ ∂(𝐸𝑡)iso . Then (𝑥𝑡)1
′ = (𝑥𝑡)1 ∈ ∂(𝐸𝑡)iso , (𝑥𝑡)2 = 𝛼𝑛2

−1((𝑥𝑡)1) ∈ ∂(𝐸𝑡)iso , and (𝑥𝑡)2
′ =

𝛼𝑛2
′

−1((𝑥𝑡)1
′ ) ∈ ∂(𝐸𝑡)iso . We also have 𝛼𝑛1

((𝑥𝑡)1) = 𝛼𝑛1
′ ((𝑥𝑡)1

′ ), 𝛼𝑛2
((𝑥𝑡)2) = 𝛼𝑛2

′ ((𝑥𝑡)2
′ ), and hence 

𝛼𝑛1𝑛2
((𝑥𝑡)2) = 𝛼𝑛1

(𝛼𝑛2
′ ((𝑥𝑡)2

′ )) = 𝛼𝑛1
((𝑥𝑡)1

′ ) = 𝛼𝑛1
′ ((𝑥𝑡)1

′ ) = 𝛼𝑛1
′ (𝛼𝑛2

′ ((𝑥𝑡)2
′ )) = 𝛼𝑛1

′𝑛2
′ ((𝑥𝑡)2

′ ). 

To get (𝑛1𝑛2, (𝑥𝑡)2) ∼ (𝑛1
′ 𝑛2

′ , (𝑥𝑡)2
′ ) in this case it now suffices to show that [𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )]

1
= ⁡0. We use 

that 𝛼𝑛2
((𝑥𝑡)2) = (𝑥𝑡)1 and 𝛼𝑛2

′ ((𝑥𝑡)2
′ ) = (𝑥𝑡)1

′ = (𝑥𝑡)1 and apply Lemma 4.2(c) twice to get 

𝑝(𝑥𝑡)2𝑛2
∗𝑛1

∗𝑛1
′ 𝑛2

′ 𝑝(𝑥𝑡)2 = (𝑛2𝑝(𝑥𝑡)2)
∗
𝑛1

∗𝑛1
′ (𝑛2

′ 𝑝(𝑥𝑡)2) = (𝑝𝛼𝑛2
((𝑥𝑡)2)𝑛2)

∗

𝑛1
∗𝑛1

′ 𝑝𝛼
𝑛2
′
((𝑥𝑡)2)𝑛2

′

= 𝑛2
∗𝑝(𝑥𝑡)1

𝑛1
∗𝑛1

′ 𝑝(𝑥𝑡)1
𝑛2

′ . 

Now we can write 

𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ ) = 𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝑝(𝑥𝑡)2𝑛2

∗𝑛1
∗𝑛1

′ 𝑛2
′ 𝑝(𝑥𝑡)2

= 𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝑛2

∗𝑝(𝑥𝑡)1𝑛1
∗𝑛1

′ 𝑝(𝑥𝑡)1𝑛2
′

= 𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′ 𝑟2
′)

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝑛2

∗ (𝜆
((𝑥𝑡)1,𝑛1,𝑛1

′ )

−1/2
𝑝(𝑥𝑡)1𝑛1

∗𝑛1
′ 𝑝(𝑥𝑡)1) 𝑛2

′

= 𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝑛2

∗𝑈((𝑥𝑡)1,𝑛1,𝑛1
′ )𝑛2

′

 

Since (𝑛1, (𝑥𝑡)1) ∼ (𝑛1
′ , (𝑥𝑡)1

′ ) implies that 𝑈((𝑥𝑡)1,𝑛1,𝑛1
′ ) is homotopic to 𝑝(𝑥𝑡)1

, we see that 𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ ) is 

homotopic to 

𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝑛2

∗𝑝(𝑥𝑡)1𝑛2
′ . 

We use Lemma 4.2(c) to get 

𝑛2
∗𝑝(𝑥𝑡)1𝑛2

′ 𝑛2
∗𝑝𝛼𝑛2

((𝑥𝑡)2)𝑝𝛼
𝑛2
′ ((𝑥𝑡)2

′ )𝑛2
′ = 𝑝(𝑥𝑡)2𝑛2

∗𝑛2
′ 𝑝(𝑥𝑡)2 . 

Hence 𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ ) is homotopic to 

𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝑛2

∗𝑝(𝑥𝑡)1𝑛2
′ = 𝜆

((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ )

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝑝(𝑥𝑡)2𝑛2

∗𝑛2
′ 𝑝(𝑥𝑡)2

= 𝜆
((𝑥𝑡)2,𝑛1𝑛2,𝑛1

′𝑛2
′ )

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

1/2
𝜆

((𝑥𝑡)2,𝑛2,𝑛2
′ )

1/2
𝑈((𝑥𝑡)2,𝑛2,𝑛2

′ ).

 

But (𝑛2, (𝑥𝑡)2) ∼ (𝑛2
′ , (𝑥𝑡)2

′ ) implies that 𝑈((𝑥𝑡)2,𝑛2,𝑛2
′ ) is homotopic to 𝑝(𝑥𝑡)2

, and hence 𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ ) is 

homotopic to 𝑝(𝑥𝑡)2 . This says that [𝑈((𝑥𝑡)2,𝑛1𝑛2,𝑛1
′𝑛2

′ )]
1
= 0, as desired. 
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This complete the proof that composition is well-defined. To see that inversion is well-defined, suppose 

[(𝑛1, (𝑥𝑡)1)] = [(𝑛1
′ , (𝑥𝑡)1

′ )]. We need to show that [(𝑛1
∗ , 𝛼𝑛1

((𝑥𝑡)1))] = [((𝑛1
′ )∗, 𝛼𝑛1

′ ((𝑥𝑡)1
′ )]. We again have 

two cases. 

Case 1: Suppose that (𝑥𝑡)1 = (𝑥𝑡)1
′ ∉ ∂(𝐸𝑡)iso . We know that there is open 𝑉 such that (𝑥𝑡)1 ∈ 𝑉 ⊆ dom⁡(𝑛1) ∩

dom⁡(𝑛1
′ ) and 𝛼𝑛1

|
𝑉

= 𝛼𝑛1
′ |

𝑉
.A straightforward argument shows that the open set 𝑉′: = 𝛼𝑛1

(𝑉) satisfies 

𝛼𝑛1
((𝑥𝑡)1) ∈ 𝑉′ ⊆ dom⁡(𝑛1

∗) ∩ dom⁡((𝑛1
′ )∗) and 𝛼𝑛1

∗ |
𝑉′ = 𝛼

(𝑛1
′ )

∗|
𝑉′

. So [(𝑛1
∗ , 𝛼𝑛1

((𝑥𝑡)1))] =

[((𝑛1
′ )∗, 𝛼𝑛1

′ ((𝑥𝑡)1
′ )] in this case. 

Case 2: Suppose that (𝑥𝑡)1 = (𝑥𝑡)1
′ ∈ ∂(𝐸𝑡)iso . We have to show that [𝑈

(𝛼𝑛1
((𝑥𝑡)1),𝑛1

∗ ,(𝑛1
′ )

∗
)
]
1

= 0. 

We use Lemma 4.2(c) to get 

𝑈
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)

= 𝜆
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)

−1/2
𝑝𝛼𝑛1

((𝑥𝑡)1)𝑛1(𝑛1
′ )∗𝑝𝛼𝑛1

((𝑥𝑡)1)

= 𝜆
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)

−1/2
𝑛1𝑝(𝑥𝑡)1

(𝑛1
′ )∗.

 

Since (𝑛1, (𝑥𝑡)1) ∼ (𝑛1
′ , (𝑥𝑡)1

′ ), we have 𝑈((𝑥𝑡)1,𝑛1,𝑛1
′ ) homotopic to 𝑝(𝑥𝑡)1

. Hence 𝑈
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)
 is 

homotopic to 

𝜆
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)

−1/2
𝑛1𝑈((𝑥𝑡)1,𝑛1,𝑛1

′ )(𝑛1
′ )∗ = 𝜆

(𝛼𝑛1
((𝑥𝑡)1),𝑛1

∗ ,(𝑛1
′ )

∗
)

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

−1/2
𝑛1𝑝(𝑥𝑡)1

𝑛1
∗𝑛1

′ 𝑝(𝑥𝑡)1
(𝑛1

′ )∗. 

Now, using (4.3) we have 

𝜆
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)

−1/2
𝜆

((𝑥𝑡)1,𝑛1,𝑛1
′ )

−1/2
= (ℎ𝑡)𝐸𝑡

((𝑥𝑡)1)(𝑛1
∗𝑛1)

−1(ℎ𝑡)𝐸𝑡
((𝑥𝑡)1)((𝑛1

′ )∗𝑛1
′ )−1. 

So 𝑈
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)
 is homotopic to 

(ℎ𝑡)𝐸𝑡
((𝑥𝑡)1)(𝑛1

∗𝑛1)
−1(ℎ𝑡)𝐸𝑡

((𝑥𝑡)1)((𝑛1
′ )∗𝑛1

′ )−1𝑛1𝑝(𝑥𝑡)1𝑛1
∗𝑛1

′ 𝑝(𝑥𝑡)1
(𝑛1

′ )∗

= ((ℎ𝑡)𝐸𝑡
((𝑥𝑡)1)(𝑛1

∗𝑛1)
−1𝑛1𝑝(𝑥𝑡)1𝑛1

∗)((ℎ𝑡)𝐸𝑡
((𝑥𝑡)1)((𝑛1

′ )∗𝑛1
′ )−1𝑛1

′ 𝑝(𝑥𝑡)1
(𝑛1

′ )∗)

= 𝑝𝛼𝑛1
((𝑥𝑡)1),

 

where the last equality follows from Lemma 4.2(a). Hence [𝑈
(𝛼𝑛1

((𝑥𝑡)1),𝑛1
∗ ,(𝑛1

′ )
∗
)
]
1

= 0. 

We equip 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) with the topology generated by {{[(𝑛, 𝑥𝑡)]: 𝑥𝑡 ∈ dom⁡(𝑛)}: 𝑛 ∈ ⁡𝑁(𝒟(𝐸𝑡))}. It can be 

proven directly that 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) is a topological groupoid with this topology, however, it also follows from our 

next result. 

Proposition 4.8 [27]. Let 𝐸𝑡 be a graph. Then 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) is a topological groupoid, and 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) and 𝒢𝐸𝑡
 

are isomorphic as topological groupoids. 

Remark 4.9.If 𝒢𝐸𝑡
 is topological principally, which we know from Proposition 2.3 is equivalent to 𝐸𝑡 satisfying 

condition (⁡L), then 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) is isomorphic to the Weyl groupoid 𝒢
𝐶0(𝒢𝐸𝑡

0 )
 of (𝐶∗(𝒢𝐸𝑡

), 𝐶0(𝒢𝐸𝑡
0 )) as in [22]. 

In this case the isomorphism of 𝒢𝐸𝑡
 and 𝒢(𝐶+(𝐸𝑡),𝒟(𝐸𝑡))

 proved below follows from [22, Proposition 4.14]. 

To prove Proposition 4.8 we need the following result. The proof can be deduced from the proof of [22, 

Proposition 4.8], but we include a proof for completeness. As in [22], we let supp′⁡(𝑓𝑡): = {𝑦𝑡 ∈ 𝒢𝐸𝑡
: 𝑓𝑡(𝛾) ≠ 0} 

for 𝑓𝑡 ∈ 𝐶∗(𝒢𝐸𝑡
). 

Lemma 4.10 (see [27]). Let 𝐸𝑡 be a graph and 𝜋𝑡: 𝐶
∗(𝐸𝑡) → 𝐶∗(𝒢𝐸𝑡

) the isomorphism from Proposition 2.2. Let 

𝑛 ∈ 𝑁(𝒟(𝐸𝑡), and 𝑓𝑡: = 𝜋𝑡(𝑛). Then supp′⁡(𝑓𝑡) satisfies 

(i) 𝑠(supp′⁡(𝑓𝑡)) = dom(𝑛) ; 
(ii) (𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ supp′⁡(𝑓𝑡) ⟹ 𝛼𝑛(𝑦𝑡) = 𝑥𝑡; and 

(iii) 𝑦𝑡 ∈ dom⁡(𝑛) ⟹ (𝛼𝑛(𝑦𝑡), 𝑘, 𝑦𝑡) ∈ supp′⁡(𝑓𝑡) for some 𝑘 ∈ ℤ. 
Proof. Identity (𝑖) follows because 

(ℎ𝑡)𝐸𝑡
(𝑦𝑡)(𝑛

∗𝑛) = 𝜋𝑡(𝑛
∗𝑛)(𝑦𝑡 , 0, 𝑦𝑡) = 𝑓𝑡

∗𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡) = ∑  
𝛾∈𝒢𝐸𝑡

𝑠(𝛾)=(𝑦𝑡)

|𝑓𝑡(𝛾)|2. 

For (𝑖𝑖) we first consider the function 𝑓𝑡
∗𝑔𝑡𝑓𝑡 where 𝑔𝑡 is any element of 𝜋𝑡(𝒟(𝐸𝑡)) = 𝐶0(𝒢𝐸𝑡

(0)
). Using the 

convolution product we have 

𝑓𝑡
∗𝑔𝑡𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡) = ∑  

𝛾∈𝒢𝐸𝑡
𝑠(𝛾)=(𝑦𝑡)

∑

𝑡

|𝑓𝑡(𝛾)|2𝑔𝑡(𝑟(𝛾)) for all 𝑥𝑡 ∈ ∂𝐸𝑡 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.7) 
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Alternatively, we can also apply (4.1) to, say, 𝑔𝑡 = 𝜋𝑡(𝑑) to get 

𝑓𝑡
∗𝑔𝑡𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡) = 𝜋𝑡(𝑛

∗𝑑𝑛)(𝑦𝑡 , 0, 𝑦𝑡) = (ℎ𝑡)𝐸𝑡
(𝑦𝑡)(𝑛

∗𝑑𝑛) = (ℎ𝑡)𝐸𝑡
(𝛼𝑛(𝑦𝑡))(𝑑)(ℎ𝑡)𝐸𝑡

(𝑦𝑡)(𝑛
∗𝑛)

= 𝑔𝑡(𝛼𝑛(𝑦𝑡), 0, 𝛼𝑛(𝑦𝑡))|𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡)|
2.
⁡⁡⁡(4.8) 

Now suppose for contradiction that (𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ supp′⁡(𝑓𝑡) but 𝛼𝑛(𝑦𝑡) ≠ 𝑥𝑡 . Choose 𝑔𝑡 ∈ 𝐶0(𝒢𝐸𝑡

(0)
) a positive 

function with 𝑔𝑡(𝑥𝑡 , 0, 𝑥𝑡) = 1 and 𝑔𝑡(𝛼𝑛(𝑦𝑡),0, 𝛼𝑛(𝑦𝑡)) = 0. Then (4.7) gives 

𝑓𝑡
∗𝑔𝑡𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡) ≥ |𝑓𝑡(𝑥𝑡 , 𝑘, 𝑦𝑡)|

2𝑔𝑡(𝑥𝑡 , 0, 𝑥𝑡) > 0, 
whereas (4.8) gives 

𝑓𝑡
∗𝑔𝑡𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡) = 𝑔𝑡(𝛼𝑛(𝑦𝑡), 0, 𝛼𝑛(𝑦𝑡))|𝑓𝑡(𝑦𝑡 , 0, 𝑦𝑡)|

2 = 0. 

So (𝑖𝑖) holds. 

Implication (𝑖𝑖𝑖) follows immediately from (𝑖) and (𝑖𝑖). 
Proof of Proposition 4.8. Let (𝑥𝑡 , 𝑘, 𝑦𝑡) ∈ 𝒢𝐸𝑡

. Then there are 𝜇, 𝜈 ∈ 𝐸𝑡
∗ and 𝑧𝑡 ∈ ∂𝐸𝑡 such that 𝑥𝑡 = 𝜇𝑧𝑡 , 𝑦𝑡 =

𝜈𝑧𝑡 , and 𝑘 = |𝜇| − |𝜈|. We know from Lemma 4.1 that 𝑠𝜇𝑠𝜈
∗ ∈ 𝑁(𝒟(𝐸𝑡)), 𝑦𝑡 ∈ dom⁡(𝑠𝜇𝑠𝜈

∗), and that 

𝛼𝑠𝜇𝑠𝜈
∗(𝑦𝑡) = 𝑥𝑡 . Define 𝜙𝑡: 𝒢𝐸𝑡

→ 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
 by 

𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) = [(𝑠𝜇𝑠𝜈
∗, 𝑦𝑡)]. 

It is routine to check that 𝜙𝑡 is well-defined, in the sense that if 𝜇, 𝜈, 𝜇′, 𝜈′ ∈ 𝐸𝑡
∗, 𝑧𝑡 , 𝑧t

′ ∈ ∂𝐸𝑡 , 𝜇𝑧𝑡 = 𝜇′𝑧𝑡
′, 𝜈𝑧𝑡 =

𝜈′𝑧𝑡
′, and |𝜇| − |𝜈| = |𝜇′| − |𝜈′|, then [(𝑠𝜇𝑠𝜈

∗, 𝜈𝑧𝑡)] = [(𝑠𝜇′𝑠𝜈′
∗ , 𝜈′𝑧𝑡

′)]. It is also routine to check that 𝜙𝑡 is a 

groupoid homomorphism. We now have to show that 𝜙𝑡 is a homeomorphism. 

To show that 𝜙𝑡 is injective, assume that 𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) = 𝜙𝑡((𝑥𝑡
′, 𝑘′, 𝑦𝑡

′)). Then 𝑥𝑡 = 𝑥𝑡
′ and 𝑦𝑡 = 𝑦𝑡

′. Suppose 

for contradiction that 𝑘 ≠ 𝑘′. Then 𝑦𝑡  must be eventually periodic, because otherwise we would have 

𝛼
𝑠𝑛𝑠𝜆

†(𝑦𝑡) ≠ 𝛼𝑠
𝑘′𝑠𝜆′

∗ (𝑦𝑡) for |𝜅| − |𝜆| = 𝑘 and |𝜅′| − |𝜆′| = 𝑘′. 

Thus 𝑥𝑡 = 𝜇𝜂𝜂𝜂 ⋯ and 𝑦𝑡 = 𝜈𝜂𝜂𝜂 ⋯ for some 𝜇, 𝜈 ∈ 𝐸𝑡
∗ and a simple loop 𝜂 ∈ 𝐸𝑡

∗ such that 𝑠𝑡(𝜂) = 𝑟𝑡(𝜇) =

𝑟𝑡(𝜈). It follows that 𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) = [(𝑠𝜇(𝜂)𝑚𝑠𝜈(𝜂)𝑛
∗ , 𝑦𝑡)] and 𝜙𝑡((𝑥𝑡 , 𝑘

′, 𝑦𝑡)) = [(𝑠
𝜇(𝜂)𝑚

′𝑠
𝜈(𝜂)𝑛

′
∗ 𝑦𝑡)] where 

𝑚, 𝑛,𝑚′, 𝑛′ are nonnegative integers such that |𝜇(𝜂)𝑚| − |𝜈(𝜂)𝑛| = 𝑘 and |𝜇(𝜂)𝑚′
| − |𝜈(𝜂)𝑛′

| = 𝑘′. Suppose 

that 𝜂 has an exit. Then 𝑦𝑡 ∉ ∂(𝐸𝑡)iso  and there is a 𝜁 ∈ 𝐸𝑡
∗ such that 𝑠𝑡(𝜁) = 𝑠𝑡(𝜂), |𝜁| ≤ |𝜂|, and 𝜁 ≠

𝜂1𝜂2 ⋯𝜂|𝜁| (where 𝜂 = 𝜂1𝜂2 ⋯𝜂|𝜂|). Then for any open set 𝑈 with 𝑦𝑡 ∈ 𝑈 ⊆

dom⁡(𝑠𝜇(𝜂)𝑚𝑠𝜈(𝜂)𝑛
∗ ∩⁡dom⁡(𝑠

𝜇(𝜂)𝑚
′𝑠

𝜈(𝜂)𝑛
′

∗ ), there is a positive integer 𝑙 such that ∅ ≠ 𝑍(𝜈(𝜂)𝑙𝜁) ⊆ 𝑈, and that 

𝛼
𝑠
𝜇(𝜂)m

′𝑠
𝜈(𝜂)𝑛

∗ (𝑧𝑡) ≠ 𝛼𝑠
𝜇(𝜂)𝑚

′𝑠𝜈(𝜂)′
∗ (𝑧𝑡) for any 𝑧𝑡 ∈ 𝑍(𝜇(𝜂)𝑙𝜁). This contradicts the assumption that 

𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) = 𝜙𝑡((𝑥𝑡 , 𝑘
′, 𝑦𝑡)). If 𝜂 does not have an exit, then 𝑦𝑡 ∈ ∂(𝐸𝑡)iso. . Without loss of generality 

assume 𝑘 > 𝑘′, then we can use Lemma 4.2(c) to compute 

[𝑝𝑦𝑡
(𝑠𝜇(𝜂)𝑚𝑠𝜈(𝜂)𝑛

∗ )
∗
𝑠
𝜇(𝜂)𝑚

′𝑠𝜈(𝜂)𝑛
∗ 𝑝𝑦𝑡

]
1
= [𝑝𝑦𝑡

𝑠𝜈𝑠𝜂𝑘−𝑘′𝑠𝜈
∗𝑝𝑦𝑡

]
1
= [(𝑝𝑦𝑡

𝑠𝜈𝑠𝜂𝑠𝜈
∗𝑝𝑦𝑡

)
𝑘−𝑘′

]
1
, 

and the second assertion in Lemma 4.3 implies that [(𝑝𝑦𝑡
𝑠𝑦𝑡

𝑠𝑛𝑠𝜈
∗𝑝𝑦𝑡

)
𝑘−𝑘′

]
1
≠ 0. Thus, 

and hence (𝑠𝜇(𝜂)𝑚𝑠𝜈(𝜂)𝑛
∗ , 𝑦𝑡) ≁ (𝑠

𝜇(𝜂)𝑚
′𝑠

𝜈(𝜂)𝑛
′

∗ , 𝑦𝑡). But this means 𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) ≠ 𝜙𝑡((𝑥𝑡 , 𝑘
′, 𝑦𝑡)), which is a 

contradiction. So we must have 𝑘 = 𝑘′, and hence 𝜙𝑡 is injective. 

To show that 𝜙𝑡 is surjective, let [(𝑛, 𝑥𝑡)] be an arbitrary element of 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡))
⋅ Let 𝑓𝑡: = 𝜋𝑡(𝑛), where 

𝜋𝑡: 𝐶
∗(𝐸𝑡) → 𝐶∗(𝒢𝐸𝑡

) is the isomorphism from Proposition 2.2. We 

know from (𝑖𝑖𝑖) of Lemma 4.10 that (𝛼𝑛(𝑥𝑡), 𝑘, 𝑥𝑡) ∈ supp′⁡(𝑓𝑡) for some 𝑘 ∈ ℤ. Suppose first that 𝑥𝑡 ∉
∂(𝐸𝑡)iso . Choose 𝜇, 𝜈 ∈ 𝐸𝑡

∗, a clopen neighborhood 𝑈 of 𝛼𝑛(𝑥𝑡), and a clopen neighborhood 𝑉 of 𝑥𝑡 such that 

𝑈 ⊆ 𝑍(𝜇), 𝑉 ⊆ 𝑍(𝜈), 𝜎𝐸𝑡

|𝜇|
(𝑈) = 𝜎𝐸𝑡

|𝜈|
(𝑉), 𝑘 = |𝜇| − |𝜈|, and 𝑍(𝑈, |𝜇|, |𝜈|, 𝑉) ⊆ supp′⁡(𝑓𝑡). Then 𝛼𝑠𝜇𝑠𝜈

∗(𝑦𝑡) =

𝛼𝑛(𝑦𝑡) for all 𝑦𝑡 ∈ 𝑉, and hence 𝜙𝑡(𝛼𝑛(𝑥𝑡), |𝜇| − |𝜈|, 𝑥𝑡) = [(𝑠𝜇𝑠𝜈
∗, 𝑥𝑡)] = [(𝑛, 𝑥𝑡)]. 

Now suppose that 𝑥𝑡 ∈ ∂(𝐸𝑡)iso  is not eventually periodic. Choose 𝜇, 𝜈 ∈ 𝐸𝑡
∗ and 𝑧𝑡 ∈ ∂𝐸𝑡 such that 𝑥𝑡 =

𝜈𝑧𝑡 , 𝛼𝑛(𝑥𝑡) = 𝜇𝑧𝑡 , and 𝑘 = |𝜇| − |𝜈|. It follows from Lemma 4.3 that [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)]

1
= 0 (because 𝐾1(ℂ) = 0), 

and thus that 𝜙𝑡((𝛼𝑛(𝑥𝑡), 𝑘, 𝑥𝑡)) = [(𝑠𝜇𝑠𝜈
∗, 𝑥𝑡)] = ⁡ [(𝑛, 𝑥𝑡)]. Assume then that 𝑥𝑡 is eventually periodic. Then 

there are 𝜇, 𝜈 ∈ 𝐸𝑡
∗ and a simple loop 𝜂 ∈ 𝐸𝑡

∗ such that 𝑠𝑡(𝜂) = 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈), 𝑥𝑡 = 𝜈𝜂𝜂𝜂 ⋯ , 𝛼𝑛(𝑥𝑡) = 𝜇𝜂𝜂𝜂 ⋯, 

and 𝑘 = |𝜇| − |𝜈|. Choose positive integers 𝑙 and 𝑚 such that [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)]

1
= 𝑙 − 𝑚. Then by Lemma 4.3 we 

have 

[𝑝𝑥𝑡
𝑠𝜇𝑠𝜂1𝑠𝜂𝑚

∗ 𝑠𝜈
∗𝑝𝑥𝑡

]
1
= [(𝑝𝑥𝑡

𝑠𝜇𝑠𝜂𝑠𝜈
∗𝑝𝑥𝑡

)
𝑙
(𝑝𝑥𝑡

𝑠𝜇𝑠𝜂
∗𝑠𝜈

∗𝑝𝑥𝑡
)
𝑚
]
1
= 𝑙 − 𝑚, 

and hence [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)]

1
= [𝑝𝑥𝑡

𝑠𝜈𝑠𝜂𝜂𝑠𝜂𝑚
∗ 𝑠𝜈

∗𝑝𝑥𝑡
]
1
. Since 
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(ℎ𝑡)𝐸𝑡
(𝑠𝜈𝜂𝑚𝑠𝜈𝜂𝑚

∗ )
−1/2

𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)(𝑝𝑥𝑡

𝑠𝜈𝑠𝜂′𝑠𝜂𝑚
∗ 𝑠𝜈

∗𝑝𝑥𝑡
)
∗
= 𝑈(𝑥𝑡,𝑛,𝑠𝜇𝜂

𝑚𝑠𝑠𝜈𝜂
∗ ), 

We have [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝜂
𝑚 𝑠∗

𝜈𝜂
′ )]

1
= [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈

∗)]
1
− [𝑝𝑥𝑡

𝑠𝜈𝑠𝜂𝑙𝑠𝜂𝑚
∗ 𝑠𝜈

∗𝑝𝑥𝑡
]
1
= 0. Hence 

𝜙𝑡((𝛼𝑛(𝑥𝑡), |𝜇(𝜂)𝑚| − |𝜈(𝜂)𝑙|, 𝑥𝑡)) = [(𝑠𝜇(𝜂)𝑚𝑠
𝜈(𝜂)𝑙
∗ , 𝑥𝑡)] = [(𝑛, 𝑥𝑡)], 

which shows that 𝜙𝑡 is surjective. 

To see that 𝜙𝑡 is open, let 𝜇, 𝜈 ∈ 𝐸𝑡
∗ and let 𝑈 and 𝑉 be clopen subsets of ∂𝐸𝑡  such that 𝑈 ⊆ 𝑍(𝜇), 𝑉 ⊆ 𝑍(𝜈), 

and 𝜎𝐸𝑡

|𝜇|
(𝑈) = 𝜎𝐸𝑡

|𝜈|
(𝑉). Then there is a 𝑝𝑉 ∈ 𝒟(𝐸𝑡) such that (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑝𝑉) = 1 if 𝑥𝑡 ∈ 𝑉, and 

(ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑝𝑉) = 0 if 𝑥𝑡 ∈ ∂𝐸𝑡 ∖ 𝑉; and then 𝜙𝑡(𝑍(𝑈, |𝜇|, |𝜈|, 𝑉)) = {[𝑠𝜇𝑠𝜈

∗𝑝𝑉 , 𝑥𝑡]: 𝑥𝑡 ∈ dom⁡(𝑠𝜇𝑠𝜈
∗𝑝𝑉)}. This 

shows that 𝜙𝑡 is open. 

To prove that 𝜙𝑡 is continuous we will show that 𝜙t
−1({[(𝑛, 𝑦𝑡)]: 𝑦𝑡 ∈ dom⁡(𝑛)}) is open for each 𝑛 ∈

𝑁(𝒟(𝐸𝑡)). Fix 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)) and 𝑧𝑡 ∈ dom⁡(𝑛). We claim that there is an open subset 𝑉(𝑛,𝑧𝑡) in 𝒢𝐸𝑡
 such that 

𝜙𝑡
−1([(𝑛, 𝑧𝑡)]) ∈ 𝑉(𝑛,𝑧𝑡) ⊆ 𝜙𝑡

−1({[(𝑛, 𝑦𝑡)]: 𝑦𝑡 ∈ dom(𝑛)}). 

Let 𝜋𝑡: 𝐶
∗(𝐸𝑡) → 𝐶∗(𝒢𝐸𝑡

) be the isomorphism from Proposition 2.2, and 𝑓𝑡: = 𝜋𝑡(𝑛). 

We know from (𝑖𝑖𝑖) of Lemma 4.10 that (𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡) ∈ supp′⁡(𝑓𝑡) for some 𝑘 ∈ ℤ. 
Suppose that there are two different integers 𝑘1 and 𝑘2 such that both (𝛼𝑛(𝑧𝑡), 𝑘1, 𝑧𝑡) and (𝛼𝑛(𝑧𝑡), 𝑘2, 𝑧𝑡) 

belong to 𝑠𝑢𝑝𝑝⁡ ′(𝑓𝑡). Then there are 𝜇1, 𝜈1, 𝜇2, 𝜈2 ∈ 𝐸𝑡
∗ such that (𝛼𝑛(𝑧𝑡), 𝑘1, 𝑧𝑡) ∈

𝑍(𝜇1, 𝜈1), (𝛼𝑛(𝑧𝑡), 𝑘2, 𝑧𝑡) ∈ 𝑍(𝜇2, 𝜈2) and 𝑍(𝜇1, 𝜈1), 𝑍(𝜇2, 𝜈2) ⊆ supp′(𝑓𝑡). 
Without loss of generality we can assume that |𝜇1| = |𝜇2|, and then we have 𝜇1 = 𝜇2. 
We also have 𝜈1 = 𝜈2𝜉 or 𝜈2 = 𝜈1𝜉 for some 𝜉 ∈ 𝐸t

∗ ∖ 𝐸t
0; we assume that 𝜇2 = 𝜇1𝜉 and denote 𝜇:= 𝜇1 = 𝜇2. 

We claim that 𝑧𝑡 is an isolated point, and that 

𝑠𝑡(𝑍(𝜇, 𝜈1)) ∩ 𝑠𝑡(𝑍(𝜇, 𝜈1𝜉)) = {(𝑧𝑡)}. 

To see this, suppose (𝑥𝑡) ∈ 𝑠𝑡(𝑍(𝜇, 𝜈1)) ∩ 𝑠𝑡(𝑍(𝜇, 𝜈1𝜉)). Then 𝑥𝑡 = 𝜈1𝑦𝑡  for some 𝑦𝑡  such that 𝛼𝑛(𝑦𝑡) = 𝜇𝑦𝑡 , 

and 𝑥𝑡 = 𝜈1𝜉𝑦𝑡
′ for some 𝑦𝑡

′ such that 𝛼𝑛(𝑦𝑡) = 𝜇𝑦𝑡
′. It follows that 𝑦t

′ = 𝑦𝑡 = 𝜉𝑦𝑡
′, and hence 𝑦𝑡 = 𝜈1𝜉𝜉𝜉 …. So 

𝑠𝑡(𝑍(𝜇, 𝜈1)) ∩ 𝑠𝑡(𝑍(𝜇, 𝜈1𝜉)) = {(𝜈1𝜉 … )} = {(𝑧𝑡)}, 

and hence 𝑧𝑡 is an isolated point. Now 𝜙t
−1([(𝑛, 𝑧𝑡)]) = (𝜇𝜉 … , |𝜇| − |𝜈1|, 𝜈1𝜉 … ) is isolated because 

{𝜙t
−1([(𝑛, 𝑧𝑡)])} = 𝑍({𝜇𝜉, … }, |𝜇|, |𝜈1|, {𝜈1𝜉 … }) is open. So in this case we take 𝑉(𝑛,𝑧𝑡) = {𝜙t

−1([(𝑛, 𝑧𝑡)])}. 

Now assume that there is a unique 𝑘 such that (𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡) ∈ supp′⁡(𝑓𝑡). Choose 𝜇, 𝜈 ∈ 𝐸𝑡
∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈) 

and an open subset 𝑉 ⊆ 𝑟𝑡(𝜇) ∂𝐸𝑡 such that (𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡) ∈ ⁡𝑍(𝜇𝑉, |𝜇|, |𝜈|, 𝜈𝑉) ⊆ supp′⁡(𝑓𝑡). Lemma 4.10 

implies that 𝛼𝑛(𝑥𝑡) = 𝛼𝑠𝜇𝑠𝜈
∗(𝑥𝑡) for all 𝑥𝑡 ∈ 𝜈𝑉. 

We aim to find an open subset 𝑊 ⊆ 𝜈𝑉 such that 𝑧𝑡 ∈ 𝑊 and 

[𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)]

1
= 0 for all 𝑥𝑡 ∈ 𝑊 ∩ ∂(𝐸𝑡)iso ; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.9) 

for then we have 𝜙𝑡((𝛼𝑛(𝑥𝑡), |𝜇| − |𝜈|, 𝑥𝑡)) = [(𝑠𝜇𝑠𝜈
∗, 𝑥𝑡)] = [(𝑛, 𝑥𝑡)] for all 𝑥𝑡 ∈ 𝑊, and the open subset 

𝑉(𝑛,𝑧𝑡): = 𝑍(𝛼𝑛(𝑊), |𝜇|, |𝜈|,𝑊) satisfies the desired 𝜙𝑡
−1([(𝑛, 𝑧𝑡)]) ∈ 𝑉(𝑛,𝑧𝑡) ⊆ 𝜙𝑡

−1({[(𝑛, 𝑦𝑡)]: 𝑦𝑡 ∈ dom(𝑛)}). 

Let 𝛿:= |𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡)|. Then 

(ℎ𝑡)𝐸𝑡
(𝑧𝑡)(𝑛

∗𝑛) = 𝑓𝑡
∗𝑓𝑡(𝑧𝑡 , 0, 𝑧𝑡) = ∑  

𝛾∈𝒢𝐸𝑡
𝑠(𝛾)=(𝑧𝑡)

∑

𝑡

|𝑓𝑡(𝛾)|2 = 𝛿2. 

Choose an open subset 𝑉0 ⊆ 𝜈𝑉 such that 𝑧𝑡 ∈ 𝑉0 and (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛) > (𝛿/2)2 for all 𝑥𝑡 ∈ 𝑉0. Define 

𝑔𝑡 ∶= 𝑓𝑡
∗1𝑍(𝜇,𝜈) − 𝜆(𝑓𝑡

∗𝑓𝑡)
1

2, 

where 𝜆 = 𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /|𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡)| ∈ 𝕋. We claim that 𝑔𝑡(𝑧𝑡 , 𝑗, 𝑧𝑡) = 0 for all 𝑗 ∈ ℤ. 
When 𝑗 = 0 we have 

𝑔𝑡(𝑧𝑡 , 0, 𝑧𝑡) = ∑  

𝛾1𝛾2=(𝑧𝑡,0,𝑧𝑡)

∑

𝑡

𝑓𝑡
∗(𝛾1)1𝑍(𝜇,𝜈)(𝛾2) − 𝜆 ∑  

𝜂1𝜂2=(𝑧𝑡,0,𝑧𝑡)

∑

𝑡

(𝑓𝑡
∗(𝜂1)𝑓𝑡(𝜂2))

1

2. 

Implication (𝑖𝑖)⁡of Lemma 4.10 ensures that the only terms in the sums which produce nonzero entries are 

𝛾1, 𝜂1 = (𝑧𝑡 , −𝑘, 𝛼𝑛(𝑧𝑡)) and 𝛾2, 𝜂2 = (𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡). Hence 

𝑔𝑡(𝑧𝑡 , 0, 𝑧𝑡) = 𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜆|𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘, 𝑧𝑡)| = 0. 
When 𝑗 ≠ 0, both terms in the expression for 𝑔𝑡 contain 𝑓𝑡(𝛼𝑛(𝑧𝑡), 𝑘 − 𝑗, 𝑧𝑡), which is zero. Hence 

𝑔𝑡(𝑧𝑡 , 𝑗, 𝑧𝑡) = 0. 
Use Proposition 2.4 to choose 𝑚 ∈ ℕ such that ∥∥𝑔𝑡 − Σ𝑚(𝑔𝑡)∥∥ < 𝛿/2. Since 𝑔𝑡(𝑧𝑡 , 𝑗, 𝑧𝑡) = 0 for all 𝑗 ∈ ℤ, there 

is an open set 𝑊 such that 𝑧𝑡 ∈ 𝑊 ⊆ 𝑉0 and 

|(1 −
|𝑗|

𝑚 + 1
)𝑔𝑡(𝑥𝑡 , 𝑗, 𝑥𝑡)| <

𝛿

2(𝑚 + 1)
⁡(4.10) 
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for all −𝑚 ≤ 𝑗 ≤ 𝑚 and 𝑥𝑡 ∈ 𝑊. Then |Σ𝑚(𝑔𝑡)(𝑥𝑡 , 𝑗, 𝑥𝑡)| < 𝛿/2 for all (𝑥𝑡 , 𝑗, 𝑥𝑡) ∈ 𝒢𝐸𝑡
 with 𝑥𝑡 ∈ 𝑊. It follows 

from the definition of the norm on 𝐶∗(𝒢𝐸𝑡
) that for all 𝑥𝑡 ∈ 𝑊 ∩ ∂(𝐸𝑡)iso  we have 

∥
∥
∥
∥
∑

𝑡

𝜋𝑡(𝑝𝑥𝑡
)Σ𝑚(𝑔𝑡)𝜋𝑡(𝑝𝑥𝑡

)
∥
∥
∥
∥

≤ ∑

𝑡

| ∑  

𝛾∈𝒢𝐸𝑡

  (𝜋𝑡(𝑝𝑥𝑡
)Σ𝑚(𝑔𝑡)𝜋𝑡(𝑝𝑥𝑡

)) (𝛾)|

= | ∑  

𝛾∈𝒢𝐸𝑡

  ∑  

𝛾1 2𝛾3=𝛾

 ∑

𝑡

1{(𝑥𝑡,0,𝑥𝑡)}
(𝛾1)Σ𝑚(𝑔𝑡)(𝛾2)1{(𝑥𝑡,0,𝑥𝑡)}

(𝛾3)|

= |∑  

𝑗∈ℤ

∑

𝑡

 Σ𝑚(𝑔𝑡)(𝑥𝑡 , 𝑗, 𝑥𝑡)| <
𝛿

2
.

 

Hence 

∥
∥
∥
∥
∑

𝑡

𝜋𝑡(𝑝𝑥𝑡
)𝑔𝑡𝜋𝑡(𝑝𝑥𝑡

)
∥
∥
∥
∥

≤ ∑

𝑡

∥∥𝑔𝑡 − Σ𝑚(𝑔𝑡)∥∥ + ∑

𝑡

∥∥𝜋𝑡(𝑝𝑥𝑡
)Σ𝑚(𝑔𝑡)𝜋𝑡(𝑝𝑥𝑡

)∥∥ < 𝛿.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4.11) 

We now claim that ∥
∥𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈

∗) − 𝜆𝑝𝑥𝑡∥
∥ < 2 for all 𝑥𝑡 ∈ 𝑊 ∩ ∂(𝐸𝑡)iso . To see this, first note that 

𝜋𝑡(𝑝𝑥𝑡
) = (𝑓𝑡

∗𝑓𝑡)
−

1

2(𝑥𝑡 , 0, 𝑥𝑡)(𝑓𝑡
∗𝑓𝑡)

1

2(𝑥𝑡 , 0, 𝑥𝑡)𝜋𝑡(𝑝𝑥𝑡
) = (𝑓𝑡

∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)
−

1

2(𝑓𝑡
∗𝑓𝑡)

1

2𝜋𝑡(𝑝𝑥𝑡
). 

Thus 

𝜋𝑡 (𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗) − 𝜆𝑝𝑥𝑡

) = 𝜋𝑡((ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛)−1/2𝑝𝑥𝑡
𝑛∗𝑠𝜇𝑠𝜈

∗𝑝𝑥𝑡
− 𝜆𝑝𝑥𝑡

)

= (𝑓𝑡
∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)

−
1

2𝜋𝑡(𝑝𝑥𝑡
)𝑓𝑡

∗1𝑍(𝜇,𝜈)𝜋𝑡(𝑝𝑥𝑡
) − 𝜆𝜋𝑡(𝑝𝑥𝑡

)

= (𝑓𝑡
∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)

−1/2 (𝜋𝑡(𝑝𝑥𝑡
)𝑓𝑡

∗1𝑍(𝜇,𝜈)𝜋𝑡(𝑝𝑥𝑡
) − 𝜆(𝑓𝑡

∗𝑓𝑡)
1/2𝜋𝑡(𝑝𝑥𝑡

))

= (𝑓𝑡
∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)

−
1

2𝜋𝑡(𝑝𝑥𝑡
)𝑔𝑡𝜋𝑡(𝑝𝑥𝑡

).

 

Using (4.11) we now get 

∥
∥𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈

∗) − 𝜆𝑝𝑥𝑡∥
∥ = ∥

∥𝜋𝑡 (𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗) − 𝜆𝑝𝑥𝑡

)∥
∥ = (𝑓𝑡

∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)
−1/2

∥∥𝜋𝑡(𝑝𝑥𝑡
)𝑔𝑡𝜋𝑡(𝑝𝑥𝑡

)∥∥

< (𝑓𝑡
∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)

−
1

2𝛿.
 

Recall that 𝑥𝑡 ∈ 𝑊 ∩ ∂(𝐸𝑡)iso ⊆ 𝑉0, and hence (𝑓𝑡
∗𝑓𝑡)(𝑥𝑡 , 0, 𝑥𝑡)

−1/2 = (ℎ𝑡)𝐸𝑡
(𝑥𝑡)(𝑛

∗𝑛)−1/2 < 2/𝛿 So 

∥
∥𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈

∗) − 𝜆𝑝𝑥𝑡∥
∥ < 2. 

But this means [𝑈(𝑥𝑡,𝑛,𝑠𝜇𝑠𝜈
∗)]

1
= 0, and so 𝑊 satisfies the desired (4.9). As mentioned, this means 𝑉(𝑛,𝑧𝑡): =

𝑍(𝛼𝑛(𝑊), |𝜇|, |𝜈|,𝑊) satisfies 

𝜙𝑡
−1([(𝑛, 𝑧𝑡)]) ∈ 𝑉(𝑛,𝑧𝑡) ⊆ 𝜙𝑡

−1({[(𝑛, 𝑦𝑡)]: 𝑦𝑡 ∈ dom(𝑛)}), 

as required. 

Proposition 4.11 (see [27]). Let 𝐸𝑡 and 𝐹𝑡 be two graphs. If there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) 

which maps 𝒟(𝐸𝑡) to 𝒟(𝐹𝑡), then 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) and 𝒢(𝐶∗(𝐹𝑡),𝒟(𝐹𝑡)) are isomorphic as topological groupoids, and 

consequently 𝒢𝐸𝑡
 and 𝒢𝐹𝑡 are isomorphic as topological groupoids. 

Proof. Suppose 𝜙𝑡 is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) to 𝒟(𝐹𝑡). 
Then there is a homeomorphism 𝜅: ∂𝐸𝑡 → ∂𝐹𝑡 such that (ℎ𝑡)𝐸𝑡

(𝑥𝑡)(𝑓𝑡) = (ℎ𝑡)𝐹𝑡
(𝜅(𝑥𝑡))𝜙𝑡(𝑓𝑡) for all 𝑓𝑡 ∈

𝒟(𝐸𝑡) and all 𝑥𝑡 ∈ ∂𝐸𝑡 . It is routine to check that the 𝑚𝑎𝑝⁡[(𝑛, 𝑥𝑡)] ↦ [(𝜙𝑡(𝑛), 𝜅(𝑥𝑡))] is an isomorphism 

between the topological groupoids 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) and 𝒢(𝐶∗(𝐹𝑡),𝒟(𝐹𝑡)). Then Proposition 4.8 implies that 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  

are isomorphic as topological groupoids. 

 

V. Main Result and Examples 
Theorem 5.1 (see [27]). Let 𝐸𝑡 and 𝐹𝑡 be graphs. Consider the following four statements. 

(1) There is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡). 
(2) The graph groupoids𝒢𝐸𝑡

 and 𝒢𝐹𝑡  are isomorphic as topological groupoids. 

(3) The pseudogroups of 𝐸𝑡 and 𝐹𝑡 are isomorphic. 

(4) 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

Then (1) ⟺ (2), (3) ⟺ (4) and (2) ⟹⁡ (3). If 𝐸𝑡 and 𝐹𝑡 satisfy condition (𝐿), then (3) ⟹ (2) and the four 

statements are equivalent. 

Proof.(1) ⟹ (2) is proved in Proposition 4.11. (2) ⟹ (1) follows from Proposition 2.2. (3) ⟺ (4) is proved 

in Proposition 3.4. (2) ⟹⁡ (3) follows directly from the definition of the pseudogroups 𝒫𝐸𝑡
 and 𝒫𝐹𝑡 . 
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Assume that 𝐸𝑡 and 𝐹𝑡 satisfy condition (𝐿). Then it follows from Proposition 2.3 and [22, Proposition 3.6(i)] 
that 𝒢𝐸𝑡

 is isomorphic to the groupoid of germs of the pseudogroup 𝒫𝐸𝑡
 constructed on page 8 of [22], and that 

𝒢𝐹𝑡  is isomorphic to the groupoid of germs of the pseudogroup 𝒫𝐹𝑡 . It follows that if 𝒫𝐸𝑡
 and 𝒫𝐹𝑡 are isomorphic, 

then 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  are isomorphic. Thus (3) ⟹ (2), and all 4 statements are equivalent when 𝐸𝑡 and 𝐹𝑡 satisfy 

condition (𝐿). We have the following (see [27]). 

Example 5.2. We show that (3) does not imply (2)⁡in general. Consider the single vertex and single loop 

graphs 

𝐸𝑡𝐹𝑡 

We have ∂𝐸𝑡 = {𝑣𝑡} and ∂𝐹𝑡 = {𝑒𝑒 … }. So 𝐸𝑡 and 𝐹𝑡 are orbit equivalent, but 𝐶∗(𝐸𝑡) ≅ ℂ is not isomorphic to 

𝐶∗(𝐹𝑡) ≅ 𝐶(𝕋). Obviously 𝐹𝑡 does not satisfy condition (L), so 𝐸𝑡 and 𝐹𝑡 provide a simple counterexample to 

the equivalence of statements (1) and (4) of Theorem 5.1 without the presence of condition (𝐿). 
Example 5.3. The graphs 

𝐸𝑡𝐹𝑡 

provide a similar counterexample to the equivalence of statements (1) and⁡(4) of Theorem 5.1 without the 

presence of condition (𝐿). In this case ∂𝐸𝑡 = ℕ = ∂𝐹𝑡 (and, unlike Example 5.2, the shift map is defined on all 

of ∂𝐸𝑡 and ∂𝐹𝑡 ⁡), but 𝐶∗(𝐸𝑡) ≅ 𝒦 ≠ ⁡𝒦 ⊗ 𝐶(𝕋) ≅ 𝐶∗(𝐹𝑡). 
Example 5.4. There exist graphs 𝐸𝑡 and 𝐹𝑡 such that 𝐶∗(𝐸𝑡) and 𝐶∗(𝐹𝑡) are isomorphic, and 𝒟(𝐸𝑡) and 𝒟(𝐹𝑡) 

isomorphic, but 𝐸𝑡 and 𝐹𝑡 are not orbit equivalent. 

Consider for example the graphs (𝐸𝑡)2 and (𝐸𝑡)2
−below. 

(𝐸𝑡)2(𝐸𝑡)2
− 

 

 
 

VI. Applications 
Here we provide two applications of Theorem 5.1.The first result shows that conjugacy of general 

graphs implies that their 𝐶∗-algebras are isomorphic and the isomorphism decends to their maximal abelian 

subalgebras. As a corollary we obtain a strengthening of [3, Theorem 3.2].The second application adds three 

additional equivalences to [4, Theorem 1.1], which provides a complete invariant for amplified graphs (see 

[27]). 

 

 

 

 

 

6.1. Conjugacy and out-splitting. Two graphs 𝐸𝑡 and 𝐹𝑡 are said to be conjugate if there is a homeomorphism 

ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 such that ℎ𝑡(∂𝐸𝑡
≥1) = ∂𝐹𝑡 ≥1 and ℎ𝑡(𝜎𝐸𝑡

(𝑥𝑡)) = 𝜎𝐹𝑡(ℎ𝑡(𝑥𝑡)) for all 𝑥𝑡 ∈ ∂𝐸𝑡
≥1. It is routine to 

verify that if 𝐸𝑡 and 𝐹𝑡 are conjugate, then they are also orbit equivalent. Thus Theorem 5.1 implies that if 𝐸𝑡 

and 𝐹𝑡 both satisfy condition (𝐿) and they are conjugate, then there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) 

which maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡). In Theorem 6.1 we will prove that if 𝐸𝑡 and 𝐹𝑡 are conjugate, then 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  

are isomorphic, and hence there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡), even 

if 𝐸𝑡 and 𝐹𝑡 do not satisfy condition (𝐿). As a corollary, we strengthen [3, Theorem 3.2] for out-splittings of 

graphs. 

Theorem 6.1 (see [27]). Let 𝐸𝑡 and 𝐹𝑡 be graphs. If 𝐸𝑡 and 𝐹𝑡 are conjugate, then 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  are isomorphic as 

topological groupoids, and hence there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 

𝒟(𝐹𝑡). 

Proof. Let ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 be a homeomorphism such that ℎ𝑡(∂𝐸𝑡
≥1) = ∂𝐹𝑡 ≥ 1 and ℎ𝑡(𝜎𝐸𝑡

(𝑥𝑡)) = 𝜎𝐹𝑡
(ℎ𝑡(𝑥𝑡)) 



On General Wide Graph Algebras and Orbit Equivalence 

DOI: 10.35629/0743-10082039                                 www.questjournals.org                                            37 | Page 

for all 𝑥𝑡 ∈ ∂𝐸𝑡 ≥ 1. Define 𝜙𝑡: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡  by 𝜙𝑡((𝑥𝑡 , 𝑘, 𝑦𝑡)) = ⁡ (ℎ𝑡(𝑥𝑡), 𝑘, ℎ𝑡(𝑦𝑡)). Then 𝜙𝑡 is a 

homeomorphism, and 𝒢𝐸𝑡
 and 𝒢𝐹𝑡  are isomorphic as topological groupoids. Then Theorem 5.1 implies that there 

is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝐹𝑡) which maps 𝒟(𝐸𝑡) onto 𝒟(𝐹𝑡). 
As a corollary we are able to strengthen [3, Theorem 3.2]. Before we state the corollary we recall the 

terminology of [3]. 
Let 𝐸𝑡 be a graph and let 𝒫 be a partition of 𝐸𝑡

1 constructed in the following way. For each 𝑣𝑡 ∈ 𝐸𝑡
0 with 𝑣𝑡𝐸t

1 ≠

∅, partition 𝑣𝑡𝐸𝑡
1 into disjoint nonempty subsets ℰ𝑣𝑡

1 , … , ℰ𝑣𝑡

𝑚(𝑣𝑡) where 𝑚(𝑣𝑡) ≥ 1, and let 𝑚(𝑣𝑡) = 0 when 

𝑣𝑡𝐸t
1 = ∅. The partion 𝒫 is proper if for each 𝑣𝑡 ∈ 𝐸𝑡

0 we have that 𝑚(𝑣𝑡) < ∞ and that ℰ𝑣𝑡
𝑖  is infinite for at 

most one 𝑖. The out-split of 𝐸𝑡 with respect to 𝒫 is the graph (𝐸𝑡)𝑠𝑡(𝒫) where 

(𝐸𝑡)𝑠𝑡(𝒫)0: = {𝑣t
𝑖 : 𝑣𝑡 ∈ 𝐸𝑡

0, 1 ≤ 𝑖 ≤ 𝑚(𝑣𝑡)} ∪ {𝑣𝑡: 𝑣𝑡 ∈ 𝐸𝑡
0, 𝑚(𝑣𝑡) = 0},

(𝐸𝑡)𝑠𝑡(𝒫)1: = {𝑒𝑗: 𝑒 ∈ 𝐸𝑡
1, 1 ≤ 𝑗 ≤ 𝑚(𝑟𝑡(𝑒))} ∪ {𝑒: 𝑒 ∈ 𝐸𝑡

1, 𝑚(𝑟𝑡(𝑒)) = 0}
 

and 𝑟𝑡 , 𝑠𝑡: (𝐸𝑡)𝑠𝑡(𝒫)1 → (𝐸𝑡)𝑠𝑡(𝒫)0 are given by 

𝑠𝑡(𝑒
𝑗): = 𝑠𝑡(𝑒)

𝑖 and 𝑟𝑡(𝑒
𝑗): = 𝑟𝑡(𝑒)

𝑗 for 𝑒 ∈ ℰ𝑠𝑡(𝑒)
𝑖  with 𝑚(𝑟𝑡(𝑒)) ≥ 1, and 

𝑠𝑡(𝑒): = 𝑠𝑡(𝑒)
𝑖 and 𝑟𝑡(𝑒): = 𝑟𝑡(𝑒) for 𝑒 ∈ ℰ𝑠𝑡(𝑒)

𝑖  with 𝑚(𝑟𝑡(𝑒)) = 0.
 

Corollary 6.2 (see [27]). Let 𝒫 be a proper partition of 𝐸𝑡
1 as above. Then 𝐸𝑡 and (𝐸𝑡)𝑠𝑡

(𝒫) are conjugate and 

there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗((𝐸𝑡)𝑠𝑡(𝒫)) which maps 𝒟(𝐸𝑡), onto 𝒟((𝐸𝑡)𝑠𝑡(𝒫)). 

Proof. Notice that since 𝒫 is proper, we have that 𝑣t
𝑖 ∈ (𝐸𝑡)𝑠𝑡(𝒫)

reg 

0  if 𝑣𝑡 ∈ (𝐸𝑡
0)

reg 
, and that if 𝑣𝑡𝐸𝑡

1 is infinite, 

then 𝑣𝑡
𝑖(𝐸𝑡)𝑠𝑡(𝒫)1 is infinite for exactly one 𝑖. 

For 𝑥𝑡 = (𝑥𝑡)0(𝑥𝑡)1 ⋯ ∈ ∂𝐸𝑡 , let ℎ𝑡(𝑥𝑡) = 𝑦𝑡 = (𝑦𝑡)0(𝑦𝑡)1 ⋯ ∈ ∂(𝐸𝑡)𝑠𝑡(𝒫) be defined by ℎ𝑡(𝑥𝑡) having the 

same length as 𝑥𝑡 and 

(𝑦𝑡)𝑛: = {

(𝑥𝑡)𝑛  if 𝑚(𝑟𝑡((𝑥𝑡)𝑛)) = 0,

(𝑥𝑡)𝑛
𝑗

 if (𝑥𝑡)𝑛+1 ∈ ℰ𝑟𝑡(𝑒)
𝑗

,

(𝑥𝑡)𝑛
𝑗

 if 𝑟𝑡((𝑥𝑡)𝑛)
𝑗(𝐸𝑡)𝑠𝑡(𝒫)1 is infinite and the length of 𝑥𝑡 is 𝑛.

 

Then the map 𝑥𝑡 ↦ ℎ𝑡(𝑥𝑡) is a homeomorphism from ∂𝐸𝑡 to ∂(𝐸𝑡)𝑠𝑡(𝒫), ℎ𝑡(∂𝐸𝑡
≥1) = ∂(𝐸𝑡)𝑠𝑡(𝒫)≥1 and 

ℎ𝑡(𝜎𝐸𝑡
(𝑥𝑡)) = 𝜎(𝐸𝑡)𝑠𝑡(𝒫)(ℎ𝑡(𝑥𝑡)) for all 𝑥𝑡 ∈ ∂𝐸𝑡

≥1. Thus, 𝐸𝑡 and (𝐸𝑡)𝑠𝑡(𝒫) are conjugate and it follows from 

Theorem 6.1 that there is an isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗((𝐸𝑡)𝑠𝑡(𝒫)) which maps⁡𝒟(𝐸𝑡) onto 

𝒟((𝐸𝑡)𝑠𝑡(𝒫)). 

Remark 6.3. To see that orbit equivalence is weaker than conjugacy consider the graphs 𝐸𝑡 and 𝐹𝑡 from 

Example 3.2. We have already seen that 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

They are not, however, conjugate because 𝜎𝐸𝑡
(𝑒2𝑒2 … ) = 𝑒2𝑒2 … and 𝜎𝐹𝑡(𝑦𝑡) ≠ 𝑦𝑡  for all 𝑦𝑡 ∈ ∂𝐹𝑡 , and fixed 

points are a conjugacy invariant. 

 

6.2. Amplified graphs and orbit equivalence. In [4], a graph is called amplified if whenever there is an edge 

between two vertices in the graph, there are infinitely many. Theorem 1.1 in [4] characterises when the 𝐶∗-

algebras of amplified graphs are isomorphic. Using our main result, we improve this result by adding three 

additional equivalences, see Theorem 6.4. Before we precisely state the result of [4] and our improvement, we 

will first recall the notation of [4]. 
If 𝐸𝑡 is a graph, then the amplification of 𝐸𝑡 is the graph 𝐸‾𝑡 defined by 𝐸‾t

0: = 𝐸𝑡
0, 𝐸‾t

1: = {𝑒(𝑣𝑡 , 𝑤𝑡)
𝑛: 𝑒 ∈

𝐸𝑡
1, 𝑠𝑡(𝑒) = 𝑣𝑡 , 𝑟𝑡(𝑒) = 𝑤𝑡 , 𝑛 ∈ ℕ}, 𝑠𝑡(𝑒(𝑣𝑡 , 𝑤𝑡)

𝑛): = 𝑣𝑡 , and 𝑟𝑡(𝑒(𝑣𝑡 , 𝑤𝑡)
𝑛): = 𝑤𝑡 . 

It is routine to see that a graph 𝐸𝑡 is amplified if and only if 𝐸𝑡 = 𝐸‾𝑡 . 
If 𝐸𝑡 is a graph, then the transitive closure of 𝐸𝑡 is the graph 𝑡𝐸𝑡 defined by 𝐸t

0: = 𝐸𝑡
0, t𝐸t

1: = 𝐸t
1 ∪

{𝑒(𝑣𝑡 , 𝑤𝑡): 𝜇 ∈ 𝐸t
∗ ∖ (𝐸t

0 ∪ 𝐸𝑡
1), 𝑠𝑡(𝜇) = 𝑣𝑡 , 𝑟𝑡(𝜇) = 𝑤𝑡}, with source and range maps that extend those of 𝐸𝑡 

and satisfy 𝑠𝑡(𝑒(𝑣𝑡 , 𝑤𝑡)
𝑛): = 𝑣𝑡 , and 𝑟𝑡(𝑒(𝑣𝑡 , 𝑤𝑡)

𝑛): = 𝑤𝑡 . 
Theorem 1.1 of [4] says that if 𝐸𝑡 and 𝐹𝑡 are graphs with 𝐸𝑡

0 and 𝐹𝑡
0 finite, then the following 6 statements are 

equivalent. 

(1) The graphs t𝐸̅̅̅𝑡 and t𝐹̅̅̅𝑡 are isomorphic, in the sense that there are bijections 𝜙t
0: t𝐸⃗⃗⃗⃗ t

0 → t𝐹̅̅̅𝑡
0 and 𝜙t

1: t𝐸̅̅ t̅
1 →

tF̅1 such that 𝑠𝑡(𝜙t
1(𝑒)) = 𝜙t

0(𝑠𝑡(𝑒)) and 𝑟𝑡(𝜙t
1(𝑒)) = 𝜙t

0(𝑟𝑡(𝑒)) for all 𝑒 ∈ t𝐸̅̅ 𝑡̅
1. 

(2) The 𝐶∗-algebras 𝐶∗(tE̅) and 𝐶∗(t𝐹̅̅̅t) are isomorphic. 

(3) The 𝐶∗-algebras 𝐶∗(𝐸‾t) and 𝐶∗(𝐹‾t) are isomorphic. 

(4) The 𝐶∗-algebras 𝐶∗(𝐸‾t) and 𝐶∗(𝐹‾t) are stably isomorphic. 

(5) The tempered primitive ideal spaces Prim𝜏 ⁡(𝐶∗(𝐸‾t)) and Prim𝜏 ⁡(𝐶∗(𝐹‾t)) are isomorphic (see [4,⁡Definition 

4.8]). 
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(6) The ordered filtered 𝐾-theories 𝐹𝑡𝐾(𝐶∗(𝐸‾t)) and 𝐹𝑡𝐾(𝐶∗(𝐹‾t)) of 𝐶∗(𝐸‾t) and 𝐶∗(𝐹‾t) are isomorphic (see [4, 
Definition 4.4]). 
The following result improves on [4, Theorem 1.1]. 
Theorem 6.4. Let 𝐸𝑡 and 𝐹𝑡 be graphs with 𝐸𝑡

0 and 𝐹𝑡
0 finite. Then each of the following 3 statements is 

equivalent to each of the statements (1) − (6) above. 

(7) The graphs 𝐸‾𝑡 and 𝐹‾𝑡 are orbit equivalent. 

(8) The graph groupoids𝒢𝐸‾𝑡 and 𝒢𝐹‾𝑡  are isomorphic as topological groupoids. 

(9) There exists an isomorphism from 𝐶∗(𝐸‾t) to 𝐶∗(𝐹‾t) which maps 𝒟(𝐸‾t) onto 𝒟(𝐹‾t). 
Hence the statements (1) − (9) are all equivalent. 

To prove Theorem 6.4 we need two results. We start with a modification of [4, Theorem 3.8]. 
Lemma 6.5 (see [27]). Let 𝐸𝑡 be a graph and 𝜇 = 𝜇1𝜇2 … , 𝜇𝑚 ∈ 𝐸𝑡

∗. Let 𝐹𝑡 be the graph with 𝐹t
0: = 𝐸𝑡

0, 𝐹t
1: =

𝐸t
1 ∪ {𝜇𝑛: 𝑛 ∈ ℕ}, and range and source maps that extend those of 𝐸𝑡 and satisfy 𝑠𝑡(𝜇

𝑛): = 𝑠𝑡(𝜇) and 𝑟𝑡(𝜇
𝑛): =

𝑟𝑡(𝜇). If the set {𝑒 ∈ 𝐸t
1: 𝑠𝑡(𝑒) = 𝑠𝑡(𝜇), 𝑟𝑡(𝑒) =𝑟𝑡(𝜇)} is infinite, then 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

Proof. Let 𝐴𝑡: = {𝑒 ∈ 𝐸t
1: 𝑠𝑡(𝑒) = 𝑠𝑡(𝜇), 𝑟𝑡(𝑒) = 𝑟𝑡(𝜇)} and assume 𝐴𝑡 is infinite. Then there are injective 

functions 𝜂1: ℕ → 𝐴𝑡 and 𝜂2: 𝐴𝑡 → 𝐴𝑡 such that 𝜂1(ℕ) ∩ 𝜂2(𝐴𝑡) = ∅ and 𝜂1(ℕ) ∪ 𝜂2(𝐴𝑡) = 𝐴𝑡 . For each 𝑥𝑡 ∈
∂𝐹𝑡 , let ℎ𝑡(𝑥𝑡) be the element of ∂𝐸𝑡 obtained by, for each 𝑛 ∈ ℕ, replacing every occurence of 𝜇𝑛 by the path 

𝜂1(𝑛)𝜇2𝜇3 …𝜇𝑚 and, for each 𝑒 ∈ 𝐴𝑡 , replacing every occurence of the path 𝑎𝜇2𝜇3 …𝜇𝑚 by the path 

𝜂2(𝑎)𝜇2𝜇3 …𝜇𝑚. 
Then 𝑥𝑡 ↦ ℎ𝑡(𝑥𝑡) is a homeomorphism from ∂𝐹𝑡 to ∂𝐸𝑡 . 
Define 𝑘1, 𝑙1: ∂𝐹𝑡 ≥ 1 → ℕ by 

𝑘1(𝑥𝑡): = 0 for all 𝑥𝑡 ∈ ∂𝐹𝑡
≥1, 𝑙1(𝑥𝑡): = {

𝑚  if 𝑥𝑡 ∈∪𝑛∈ℕ 𝑍(𝜇𝑛),

1  if 𝑥𝑡 ∉∪𝑛∈ℕ 𝑍(𝜇𝑛).
 

Then 𝑘1 and 𝑙1 are both continuous, and 𝜎𝐸𝑡

𝑘1(𝑥𝑡) (ℎ𝑡 (𝜎𝐹𝑡
(𝑥𝑡))) = 𝜎𝐸𝑡

𝑙1(𝑥𝑡)(ℎ𝑡(𝑥𝑡)) for all 𝑥𝑡 ∈ ∂𝐹𝑡
≥1. 

Similarly, define 𝑘1
′ , 𝑙1

′ : ∂𝐸t
≥1 → ℕ by 

𝑘1
′ (𝑦𝑡): = {

𝑚 − 1  if 𝑦𝑡 ∈∪𝑒∈𝜂1(ℕ) 𝑍(𝑒𝜇2𝜇3 …𝜇𝑚),

0  if 𝑦𝑡 ∈∪𝑒∈𝜂2(𝐴𝑡) 𝑍(𝑒𝜇2𝜇3 …𝜇𝑚),

0  if 𝑦𝑡 ∉∪𝑒∈𝐴𝑡
𝑍(𝑒𝜇2𝜇3 …𝜇𝑚).

𝑙1
′ (𝑦𝑡): = 1 for all 𝑥𝑡 ∈ ∂𝐹𝑡

≥1.

 

Then 𝑘1
′  and 𝑙1

′  are both continuous, and 𝜎𝐹𝑡

𝑘1
′ (𝑦𝑡) (ℎ𝑡

−1(𝜎𝐸𝑡
(𝑦𝑡))) = 𝜎𝐹𝑡

𝑙1
′ (𝑦𝑡)(ℎt

−1(𝑦𝑡)) for all 𝑦𝑡 ∈ ∂𝐸𝑡
≥1. This 

shows that 𝐸𝑡 and 𝐹𝑡 are orbit equivalent. 

Proposition 6.6 [27]. Let 𝐸𝑡 be a graph with 𝐸𝑡
0 finite. Then 𝐸‾𝑡 and t𝐸̅̅̅𝑡 are orbit equivalent. 

Proof. Notice that t𝐸̅̅̅𝑡 can be obtained from 𝐸‾𝑡 by adding infinitely many edges from 𝑣𝑡 to 𝑤𝑡  whenever there is 

a path from 𝑣𝑡 to 𝑤𝑡 . Thus, that 𝐸‾𝑡 and 𝑡𝐸̅̅ 𝑡̅ are orbit equivalent follows from finitely many applications of 

Lemma 6.5. 
Proof of Theorem 6.4. Since both 𝐸‾𝑡 and 𝐹‾𝑡 satisfy condition (𝐿), it follows from our main theorem that (7) −
(9) are equivalent, and it is obvious that (9) implies (3). Proposition 6.6 shows that (1)⁡implies (7). 
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