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Abstract 
We follow the approach of [16], methodology with a bit change of symbols realizing the mentioned ordered of 

graph 𝐶∗-algebras equipped with generalised gauge actions, and characterise in terms of ordered groupoids and 

groupoid cocycles when two ordered graph 𝐶∗-algebras are isomorphic by a diagonal-preserving isomorphism 

that intertwines the generalised gauge actions. Similarly, we apply this characterisation to show that two Cuntz–

Krieger algebras are isomorphic by a diagonal-preserving isomorphism that intertwines the gauge actions if and 

only if the corresponding one-sided subshifts are eventually conjugate, and that the stabilisation of two Cuntz–

Krieger algebras are isomorphic by a diagonal-preserving isomorphism that intertwines the gauge actions if and 

only if the corresponding two-sided subshifts are conjugate. 
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I. Introduction 
It is well-known that the properties of the Cuntz-Krieger algebra 𝒪𝐴𝑡

 of a finite square {0,1}-matrix 𝐴𝑡 

are closely connected to the properties of the one- and two-sided subshifts 𝑋𝐴𝑡
 and 𝑋‾𝐴𝑡

 of 𝐴𝑡 . Cuntz and Krieger 

proved for example in [6, Proposition 2.17] that if 𝐴𝑡 and 𝐵𝑡  are finite square {0,1}-matrices both satisfying 

condition (𝐼), and 𝑋𝐴𝑡
 and 𝑋𝐵𝑡

 are conjugate, then there exists a diagonal-preserving ∗-isomorphism between 𝒪𝐴𝑡
 

and 𝒪𝐵𝑡
 which intertwines the gauge actions of 𝒪𝐴𝑡

 and 𝒪𝐵𝑡
 (the result actually says a bit more than that); and 

Cuntz proved in [5, Theorem 2.3] that if 𝐴𝑡 and 𝐵𝑡  are finite square {0,1}-matrices such that 𝐴𝑡 and 𝐵𝑡  and their 

transposes satisfy condition (𝐼), and 𝑋‾𝐴𝑡
 and 𝑋‾𝐵𝑡

 are conjugate, then there exists a diagonal-preserving ∗-

isomorphism between the stabilised Cuntz-Krieger algebras 𝒪𝐴𝑡
⊗ 𝒦 and 𝒪𝐵𝑡

⊗ 𝒦 which intertwines the gauge, 

actions of 𝒪𝐴𝑡
⊗ 𝒦 and 𝒪𝐵𝑡

⊗ 𝒦 (this result was first proved under the additional assumption that 𝐴𝑡 and 𝐵𝑡  are 

irreducible and aperiodic by [6, Theorem 3.8]). Cuntz also proved in [5, Theorem 2.4] that if 𝐴𝑡 and 𝐵𝑡  are finite 

square {0,1}-matrices such that 𝐴𝑡 and 𝐵𝑡  and their transposes satisfy condition (𝐼), and 𝑋‾𝐴𝑡
 and 𝑋‾𝐵𝑡

 are flow 

equivalent, then there exists a diagonal-preserving ∗-isomorphism between the stabilised Cuntz-Krieger algebras 

𝒪𝐴𝑡
⊗ 𝒦 and 𝒪𝐵𝑡

⊗ 𝒦 (this result was first proved under the additional assumption that 𝐴𝑡 and 𝐵𝑡  are irreducible 

and aperiodic by [6, Theorem 4.1]). 
The connection between the properties of 𝒪𝐴𝑡

 and the properties of 𝑋𝐴𝑡
 and 𝑋‾𝐴𝑡

 was further highlighted 

in [11] when the authors presented, among several other interesting results, a converse to [6, Theorem 4.1] by 

proving that if 𝐴𝑡 and 𝐵𝑡  are finite square {0,1}-matrices that are irreducible and not permutation matrices, and 

there is a diagonal-preserving ∗-isomorphism between the stabilised Cuntz-Krieger algebras 𝒪𝐴𝑡
⊗ 𝒦 and 𝒪𝐵𝑡

⊗

𝒦, then 𝑋‾𝐴𝑡
 and 𝑋‾𝐵𝑡

 are flow equivalent [11, Corollary 3.8]. To prove this result, Matsumoto and Matui used that 

the 𝐶∗-algebra 𝒪𝐴𝑡
 can be constructed as the (reduced) 𝐶∗-algebra of an étale groupoid and proved that if 𝐴𝑡 and 

𝐵𝑡  are finite square {0,1}-matrices that are irreducible and not permutation matrices then there is a diagonal-

preserving ∗-isomorphism between 𝒪𝐴𝑡
 and 𝒪𝐵𝑡

 if and only if the corresponding étale groupoids are isomorphic, 

and if and only if the one-sided subshifts 𝑋𝐴𝑡
 and 𝑋𝐵𝑡

 are continuously orbit equivalent [11, Theorem 2.3]. 
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Matsumoto has since then used this aproach to study gauge-invariant isomorphisms of Cuntz-Krieger 

algebras [9,10], and has, among other results, proved a converse to [6, Proposition 2.17] in the irreducible case 

when he proved in [9, Theorem 1.2] that if 𝐴𝑡 and 𝐵𝑡  are finite square {0,1}-matrices that are irreducible and not 

permutation matrices, then there is a diagonal-preserving ∗-isomorphism between 𝒪𝐴𝑡
 and 𝒪𝐵𝑡

 that intertwines the 

gauge actions of 𝒪𝐴𝑡
 and 𝒪𝐵𝑡

 if and only if 𝑋𝐴𝑡
 and 𝑋𝐵𝑡

 are eventually conjugate. 

In [8] the authors extended the definition of Cuntz-Krieger algebras when they used groupoids to 

construct 𝐶∗-algebras from directed ordered graphs that are not assumed to be finite. These ordered graph 𝐶∗-

algebras have since attracted a lot of interest, and by using that ordered graph 𝐶∗-algebras can be constructed from 

groupoids, [11, Theorem 2.3] has recently been transfered to the setting of the ordered graph 𝐶∗-algebras [1,2]. 
Toke Meier Carlesn and James Rout in their paper [16] use groupoids to study diagonal-preserving 

isomorphisms of order graph 𝐶∗-algebras that intertwine generalised gauge actions. They characterises when there 

is a diagonal-preserving ∗-isomorphism between two ordered graph 𝐶∗-algebras that intertwines two generalised 

gauge actions. The characterisation is given in terms of cocycle-preserving isomorphisms of the corresponding 

ordered graph groupoids. 

They also present a "stabilised version" of this result. 

By specialising to ordinary gauge actions they show in Theorem 4.1 that there is a diagonal-preserving gauge-

invariant ∗-isomorphism between two ordered graph 𝐶∗-algebras if and only if the two ordered graphs are 

eventually conjugate, and in Theorem 5.1 that if we consider two finite ordered graphs with no sinks or sources, 

then there is a diagonal-preserving gauge-invariant ∗-isomorphism between the stabilisation of the two ordered 

graph 𝐶∗-algebras if and only if the two-sided edge shifts of the two ordered graphs are conjugate. As corollaries, 

they prove in Corollary 4.2 a converse to [6, Proposition 2.17] by generalising [9, Theorem 1.2] to the non-

irreducible case, and they prove in Corollary 5.2 a converse to [5, Theorem 2.3]. 
As with [11, Theorem 2.3], the results in this paper can be transfered to the setting of Leavitt path algebras, and 

they have done this in [3]. 
 

II. Definitions and Notation 
We recall the definitions of directed ordered graphs and their boundary path spaces, ordered graph groupoids, and 

ordered graph 𝐶∗-algebras. This is standard and can be found (see for example [1] and [2]). Usually let ℕ denote 

the set of nonnegative integers {0,1,2, … }. 
 

2.1. Directed Ordered Graphs and their Boundary Path Spaces 

A directed ordered graph 𝐸𝑡 is a quadruple 𝐸𝑡 = (𝐸𝑡
0, 𝐸𝑡

1, 𝑟𝑡 , 𝑠𝑡) consisting of countable sets 𝐸𝑡
0 and 𝐸𝑡

1, and range 

and source maps 𝑟𝑡 , 𝑠𝑡: 𝐸t
1 → 𝐸𝑡

0. An element of 𝑣𝑡 ∈ 𝐸𝑡
0 is called a vertex and an element of 𝑒𝑡 ∈ 𝐸𝑡

1 is called an 

edge. 

A path of length 𝑛 in 𝐸𝑡 is a sequence of edges 𝜇 = 𝜇1 … 𝜇𝑛 such that 𝑟𝑡(𝜇𝑖) = 𝑠𝑡(𝜇𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 1. 
We denote by 𝐸𝑡

𝑛 the collection of all paths of length 𝑛, and we define, 𝐸t
∗: = ⋃𝑛∈ℕ  𝐸𝑡

𝑛 to be the collection of all 

paths of finite length. We write |𝜇| for the length of 𝜇 ∈ 𝐸𝑡
∗. The range and source maps extend to paths: 𝑟𝑡(𝜇): =

𝑟𝑡(𝜇𝑛) and 𝑠𝑡(𝜇): = 𝑠𝑡(𝜇1). 
We regard the vertices 𝑣𝑡 ∈ 𝐸𝑡

0 as paths of length 0, and set 𝑟𝑡(𝑣𝑡): = 𝑠𝑡(𝑣𝑡): = 𝑣𝑡 . For 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝑛 ∈ ℕ, we 

define 𝑣𝑡𝐸t
𝑛: = {𝜇 ∈ 𝐸t

𝑛: 𝑠𝑡(𝜇) = 𝑣𝑡}. The set of regular vertices is given by (𝐸𝑡
0)

reg 

 : = {𝑣𝑡 ∈ 𝐸t
0: 𝑣𝑡𝐸𝑡

1 is finite 

and nonempty } and the set of singular vertices by (𝐸𝑡
0)

sing 

 : = 𝐸t
0 ∖ (𝐸𝑡

0)
reg 

 . If 𝜇 = 𝜇1 … 𝜇𝑚, 𝜈 = 𝜈1 … 𝜈𝑛 ∈ 𝐸𝑡
∗ 

with 𝑟𝑡(𝜇) = 𝑠𝑡(𝜈), then we let 𝜇𝜈: = 𝜇1 … 𝜇𝑚𝜈1 … 𝜈𝑛 ∈ 𝐸𝑡
∗. A cycle (sometimes called a loop in the literature) in 

𝐸𝑡 is a path 𝜇 ∈ 𝐸t
∗ ∖ 𝐸𝑡

0 such that 𝑠𝑡(𝜇) = 𝑟𝑡(𝜇). An edge 𝑒𝑡 is an exit to the cycle 𝜇 if there exists 𝑖 such that 

𝑠𝑡(𝑒𝑡) = 𝑠𝑡(𝜇𝑖) and 𝑒𝑡 ≠ 𝜇𝑖. A ordered graph is said to satisfy condition (𝐿) if every cycle has an exit. 

An infinite path in 𝐸𝑡 is an infinite sequence 𝑥1𝑥2 … of edges in 𝐸𝑡 such that 𝑟𝑡(𝑥𝑖) =  𝑠𝑡(𝑥𝑖+1) for all 𝑖. We let 

𝐸𝑡
∞ be the set of all infinite paths in 𝐸𝑡 . The source map extends to 𝐸𝑡

∞ by setting 𝑠𝑡(𝑥): = 𝑠𝑡(𝑥1). We let |𝑥| = ∞ 

for 𝑥 ∈ 𝐸𝑡
∞. The boundary path space of 𝐸𝑡 is the space ∂𝐸𝑡: = 𝐸t

∞⋃ {𝜇 ∈ 𝐸t
∗: 𝑟𝑡(𝜇) ∈ (𝐸𝑡

0)
sing 

 }. If 𝜇 = 𝜇1 … 𝜇𝑚 ∈

𝐸𝑡
∗ and 𝑥 = 𝑥1𝑥2 ⋯ ∈ 𝐸𝑡

∞ with 𝑟𝑡(𝜇) = 𝑠𝑡(𝑥), then we let 𝜇𝑥 = 𝜇1 … 𝜇𝑚𝑥1𝑥2 ⋯ ∈ 𝐸𝑡
∞. For 𝑣𝑡 ∈ 𝐸𝑡

0, we define 

𝑣𝑡 ∂𝐸𝑡: = {𝑥 ∈ ∂𝐸𝑡: 𝑠𝑡(𝑥) = 𝑣𝑡}. 
For 𝜇 ∈ 𝐸𝑡

∗, the cylinder set of 𝜇 is the set 𝑍(𝜇): = {𝜇𝑥 ∈ ∂𝐸𝑡: 𝑥 ∈ 𝑟𝑡(𝜇) ∂𝐸𝑡} ⊆ ∂𝐸𝑡 . 

For 𝜇 ∈ 𝐸𝑡
∗ and a finite subset 𝐹𝑡 ⊆ 𝑟𝑡(𝜇)𝐸𝑡

1, we define 𝑍(𝜇 ∖ 𝐹𝑡): = 𝑍(𝜇) ∖ (⋃𝑒𝑡∈𝐹𝑡
 𝑍(𝜇𝑒𝑡)). 

The boundary path space ∂𝐸𝑡 is a locally compact Hausdorff space with the topology given by the basis 
{𝑍(𝜇 ∖ 𝐹𝑡): 𝜇 ∈ 𝐸𝑡

∗, 𝐹𝑡 is a finite subset of 𝑟𝑡(𝜇) ∂𝐸𝑡}, and each such 𝑍(𝜇 ∖ 𝐹𝑡) is compact and open (see [15, 
Theorem 2.1 and Theorem 2.2]). 
For 𝑛 ∈ ℕ, let ∂𝐸t

≥𝑛: = {𝑥 ∈ ∂𝐸𝑡: |𝑥| ≥ 𝑛} ⊆ ∂𝐸𝑡 . Then ∂𝐸t
≥𝑛 = ⋃𝜇∈𝐸𝑡

𝑛  𝑍(𝜇) is an open subset of ∂𝐸𝑡 . Define the 

edge shift map 𝜎𝐸𝑡
: ∂𝐸t

≥1 → ∂𝐸𝑡 by 𝜎𝐸𝑡
(𝑥1𝑥2𝑥3 … ) =  𝑥2𝑥3 … for 𝑥1𝑥2𝑥3 ⋯ ∈ ∂𝐸𝑡

≥2 and 𝜎𝐸𝑡
(𝑒𝑡) = 𝑟𝑡(𝑒𝑡) for 𝑒𝑡 ∈
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∂𝐸𝑡⋂𝐸𝑡
1. Let 𝜎𝐸𝑡

0  be the identity map on ∂𝐸𝑡 , and for 𝑛 ≥ 1, let 𝜎𝐸𝑡
𝑛  be the 𝑛-fold composition of 𝜎𝐸𝑡

 with itself. 

Then 𝜎𝐸𝑡
𝑛  is a local homeomorphism for all 𝑛 ∈ ℕ. When we write 𝜎𝐸𝑡

𝑛 (𝑥), we implicitly assume that 𝑥 ∈ ∂𝐸𝑡
≥𝑛 . 

(see [16]). 

 

2.2. Ordered Graph Groupoids 

The ordered graph groupoid 𝒢𝐸𝑡
 of a directed ordered graph 𝐸𝑡 is given by 

𝒢𝐸𝑡
: = {(𝑥, 𝑚 − 𝑛, 𝑦) ∈ ∂𝐸𝑡 × ℤ × ∂𝐸𝑡: 𝑚, 𝑛 ∈ ℕ and 𝜎𝐸𝑡

𝑚(𝑥) = 𝜎𝐸𝑡
𝑛 (𝑦)}, 

with partially-defined product (𝑥, 𝑚 − 𝑛, 𝑦)(𝑤, 𝑚′ − 𝑛′, 𝑧): = (𝑥, 𝑚 + 𝑚′ − (𝑛 + 𝑛′), 𝑧) if 𝑦 = 𝑤 and undefined 

otherwise, inverse operation (𝑥, 𝑚 − 𝑛, 𝑦)−1: = (𝑦, 𝑛 − 𝑚, 𝑥), and range and source maps 𝑟𝑡(𝑥, 𝑚 − 𝑛, 𝑦): = 𝑥 

and 𝑠𝑡(𝑥, 𝑚 − 𝑛, 𝑦): = 𝑦. 
The groupoid 𝒢𝐸𝑡

 is a locally compact Hausdorff étale topological groupoid when equipped with the topology 

generated by subsets of the form 

𝑍(𝑈, 𝑚, 𝑛, 𝑉): = {(𝑥, 𝑚 − 𝑛, 𝑦) ∈ 𝒢𝐸𝑡
: 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, 𝜎𝐸𝑡

𝑚(𝑥) = 𝜎𝐸𝑡
𝑛 (𝑦)}, 

where 𝑚, 𝑛 ∈ ℕ, 𝑈 is an open subset of ∂𝐸𝑡
≥𝑚 such that 𝜎𝐸𝑡

𝑚 is injective on 𝑈, 𝑉 is an open subset of ∂𝐸𝑡
≥𝑛 such 

that 𝜎𝐸𝑡
𝑛  is injective on 𝑉, and 𝜎𝐸𝑡

𝑚(𝑈) = 𝜎𝐸𝑡
𝑛 (𝑉). For 𝜇, 𝜈 ∈ 𝐸𝑡

∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈), let 𝑍(𝜇, 𝜈): =

𝑍(𝑍(𝜇), |𝜇|, |𝜈|, 𝑍(𝜈)). The map 𝑥 ↦ (𝑥, 0, 𝑥) is a homeomorphism from ∂𝐸𝑡  to the unit space 𝒢𝐸𝑡
0  of 𝒢𝐸𝑡

. 

In this paper, a cocycle of a groupoid 𝒢 is a groupoid homomorphism 𝑐: 𝒢 → ℤ, where we consider ℤ to be a 

groupoid with product and inverse given by the usual group operations. The function 𝑐𝐸𝑡
: 𝒢𝐸𝑡

→ ℤ given by 

𝑐𝐸𝑡
((𝑥, 𝑚 − 𝑛, 𝑦)) = 𝑚 − 𝑛 is a continuous cocycle. 

All isomorphisms between groupoids considered in this paper are, in addition to preserving the groupoid structure, 

homeomorphisms (see [16]). 

 

2.3. Ordered Graph 𝑪∗-Algebras 

The ordered graph 𝐶∗-algebra of a directed ordered graph 𝐸𝑡 is the universal 𝐶∗-algebra 𝐶∗(𝐸𝑡) generated by 

mutually orthogonal projections {𝑝𝑣𝑡
: 𝑣𝑡 ∈ 𝐸𝑡

0} and partial isometries {(𝑠𝑡)𝑒𝑡
: 𝑒𝑡 ∈ 𝐸𝑡

1} satisfying 

(CK1) (𝑠𝑡)𝑒𝑡
∗ (𝑠𝑡)𝑒𝑡

= 𝑝𝑟𝑡(𝑒𝑡) for all 𝑒𝑡 ∈ 𝐸𝑡
1; 

(CK2) (𝑠𝑡)𝑒𝑡
(𝑠𝑡)𝑒𝑡

∗ ≤ 𝑝𝑠𝑡(𝑒𝑡) for all 𝑒𝑡 ∈ 𝐸𝑡
1; 

(CK3) 𝑝𝑣𝑡
= ∑𝑒𝑡∈𝑣𝑡𝐸𝑡

1  (𝑠𝑡)𝑒𝑡
(𝑠𝑡)𝑒𝑡

∗  for all 𝑣𝑡 ∈ (𝐸𝑡
0)reg

 . 

There is a strongly continuous action 𝜆𝐸𝑡: 𝕋 → Aut (𝐶∗(𝐸𝑡)), called the gauge action, satisfying 𝜆𝑧
𝐸𝑡(𝑝𝑣𝑡

) = 𝑝𝑣𝑡
 

and 𝜆𝑧
𝐸𝑡((𝑠𝑡)𝑒𝑡

) = 𝑧(𝑠𝑡)𝑒𝑡
 for 𝑧 ∈ 𝕋, 𝑣𝑡 ∈ 𝐸𝑡

0 and 𝑒𝑡 ∈ 𝐸𝑡
1. 

We let (𝑠𝑡)𝑣𝑡
: = 𝑝𝑣𝑡

 for 𝑣𝑡 ∈ 𝐸𝑡
0, and for 𝑛 ≥ 2 and 𝜇 = 𝜇1 … 𝜇𝑛 ∈ 𝐸𝑡

𝑛 , we let (𝑠𝑡)𝜇: = (𝑠𝑡)𝜇1
… (𝑠𝑡)𝜇𝑛

. Then 

span {(𝑠𝑡)𝜇(𝑠𝑡)𝜈
∗ : 𝜇, 𝜈 ∈ 𝐸𝑡

∗, 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈)} is dense in 𝐶∗(𝐸𝑡). We define 𝒟(𝐸𝑡) to be the closure of 

span {(𝑠𝑡)𝜇(𝑠𝑡)𝜇
∗ : 𝜇 ∈ 𝐸𝑡

∗} in 𝐶∗(𝐸𝑡). Then 𝒟(𝐸𝑡), called the diagonal of 𝐶∗(𝐸𝑡), is an abelian subalgebra of 

𝐶∗(𝐸𝑡), and is isomorphic to the 𝐶∗-algebra 𝐶0(∂𝐸𝑡). 
Moreover, 𝒟(𝐸𝑡) is a maximal abelian subalgebra of 𝐶∗(𝐸𝑡) if and only if 𝐸𝑡 satisfies condition (𝐿) (see [12, 
Example 3.3]). 
Theorem 3.7 of [15] shows that there is a unique homeomorphism (ℎ𝑡)𝐸𝑡

 from ∂𝐸𝑡  to the spectrum of 𝒟(𝐸𝑡) 

given by 

(ℎ𝑡)𝐸𝑡
(𝑥)((𝑠𝑡)𝜇(𝑠𝑡)𝜇

∗ ) = {
1  if 𝑥 ∈ 𝑍(𝜇),

0  if 𝑥 ∉ 𝑍(𝜇).
 

There is a ∗-isomorphism from the 𝐶∗-algebra of 𝒢𝐸𝑡
 to 𝐶∗(𝐸𝑡) that maps 𝐶0(𝒢𝐸𝑡

0 ) onto 𝒟(𝐸𝑡) (see [2, 

Proposition 2.2 ] and [8, Proposition 4.1]). (see also [16]). 

 

III. Gauge-Invariant Isomorphisms of Ordered Graph 𝑪∗-Algebras and Cocycle-Preserving 

Isomorphisms of Ordered Graph Groupoids 
In this section, we show the two main results of [16] Theorem 3.1 and Theorem 3.3. 
Let 𝐸𝑡 be a directed ordered graph, and let 𝑘: 𝐸t

1 → ℝ be a function. Then 𝑘 extends to a function 𝑘: 𝐸t
∗ → ℝ given 

by 𝑘(𝑣𝑡) = 0 for 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝑘((𝑒𝑡)1 … (𝑒𝑡)𝑛) = 𝑘((𝑒𝑡)1) + ⋯ +  𝑘((𝑒𝑡)𝑛) for (𝑒𝑡)1 … (𝑒𝑡)𝑛 ∈ 𝐸𝑡

𝑛 , 𝑛 ≥ 1. We 

then get a continuous cocycle 𝑐𝑘: 𝒢𝐸𝑡
→ ℝ given by 𝑐𝑘((𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥)) = 𝑘(𝜇) − 𝑘(𝜈) and a generalised 

gauge action 𝛾𝐸𝑡,𝑘: ℝ →  Aut (𝐶∗(𝐸𝑡)) given by 𝛾𝑡0

𝐸𝑡,𝑘
(𝑝𝑣𝑡

) = 𝑝𝑣𝑡
 for 𝑣𝑡 ∈ 𝐸𝑡

0 and 𝛾𝑡0

𝐸𝑡,𝑘
((𝑠𝑡)𝑒𝑡

) = 𝑒𝑖𝑘(𝑒𝑡)𝑡0(𝑠𝑡)𝑒𝑡
 

for 𝑒𝑡 ∈ 𝐸𝑡
1. 

If 𝑘(𝑒𝑡) = 1 for all 𝑒𝑡 ∈ 𝐸𝑡
1, then 𝛾𝑡0

𝐸𝑡,𝑘
= 𝜆

𝑒𝑖𝑡0

𝐸𝑡  for all 𝑡0 ∈ ℝ, where 𝜆𝐸𝑡  is the usual gauge action on 𝐶∗(𝐸𝑡). 

Theorem 3.1 [16]. Let 𝐸𝑡 and 𝐹𝑡 be directed graphs and 𝑘: 𝐸t
1 → ℝ and 𝑙: 𝐹t

1 → ℝ functions. The following are 

equivalent. 
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(1) There is an isomorphism Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 satisfying 𝑐𝑙(Φ(𝜂)) = 𝑐𝑘(𝜂) for 𝜂 ∈ 𝒢𝐸𝑡
. 

(2) There is a ∗-isomorphism Ψ: 𝐶∗(𝐸𝑡) → 𝐶∗(𝐹𝑡) satisfying Ψ(𝒟(𝐸𝑡)) = 𝒟(𝐹𝑡) and 𝛾𝑡
𝐹𝑡,𝑙

∘ Ψ = Ψ ∘ 𝛾𝑡
𝐸𝑡,𝑘

 for 𝑡 ∈
ℝ. 
To prove the implication (2) ⟹ (1) of Theorem 3.1, we need a lemma. We recall the extended Weyl groupoid 

𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) constructed in [2] from a graph 𝐶∗-algebra and its diagonal subalgebra. As defined in [13], the 

normaliser of 𝒟(𝐸𝑡) is the set 

𝑁(𝒟(𝐸𝑡)): = {𝑛 ∈ 𝐶∗(𝐸𝑡): 𝑛𝑑𝑛∗, 𝑛∗𝑑𝑛 ∈ 𝒟(𝐸𝑡) for all 𝑑 ∈ 𝒟(𝐸𝑡)}. 

By [2, Lemma 4.1 ], (𝑠𝑡)𝜇(𝑠𝑡)𝜈
∗ ∈ 𝑁(𝒟(𝐸𝑡)) for all 𝜇, 𝜈 ∈ 𝐸𝑡

∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈). For 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), let 

dom (𝑛): = {𝑥 ∈ ∂𝐸𝑡: (ℎ𝑡)𝐸𝑡
(𝑥)(𝑛∗𝑛) > 0} and ran (𝑛): = {𝑥 ∈  ∂𝐸𝑡: (ℎ𝑡)𝐸𝑡

(𝑥)(𝑛𝑛∗) > 0}. It follows from [13, 

Proposition 4.7] that, for 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), there is a unique homeomorphism 𝛼𝑛: dom (𝑛) → ran (𝑛) such that 

(ℎ𝑡)𝐸𝑡
(𝑥)(𝑛∗𝑑𝑛) =  (ℎ𝑡)𝐸𝑡

(𝛼𝑛(𝑥))(𝑑)(ℎ𝑡)𝐸𝑡
(𝑥)(𝑛∗𝑛) for all 𝑑 ∈ 𝒟(𝐸𝑡). 

The extended Weyl groupoid 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) is the collection of equivalence classes for an equivalence relation on 

{(𝑛, 𝑥): 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)), 𝑥 ∈ dom (𝑛)} with the partiallydefined product 

[(𝑛1, 𝑥1)][(𝑛2, 𝑥2)]: = [(𝑛1𝑛2, 𝑥2)] if 𝛼𝑛2
(𝑥2) = 𝑥1 and the inverse operation [(𝑛, 𝑥)]−1: = [(𝑛∗, 𝛼𝑛(𝑥))] (see [2, 

Proposition 4.7]). By [2, Proposition 4.8], the map 𝜙𝐸𝑡
: (𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥) → [((𝑠𝑡)𝜇(𝑠𝑡)𝜈

∗ , 𝜈𝑥)] is a groupoid 

isomorphism between 𝒢𝐸𝑡
 and 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)). 

Lemma 3.2 [16]. Let 𝐸𝑡 be a directed graph, 𝑘: 𝐸t
1 → ℝ a function, and 𝜂 ∈ 𝒢𝐸𝑡

. 

(a) There exist 𝑛 ∈ 𝑁(𝒟(𝐸𝑡)) and 𝑥 ∈ dom (𝑛) such that 𝜙𝐸𝑡
(𝜂) = [(𝑛, 𝑥)] and 𝛾𝑡0

𝐸𝑡,𝑘
(𝑛) =  𝑒𝑖𝑐𝑘(𝜂)𝑡0𝑛 for all 𝑡0 ∈

ℝ. 
(b) Suppose 𝑟𝑡 ∈ ℝ and that there are 𝑛′ ∈ 𝑁(𝒟(𝐸𝑡)) and 𝑥′ ∈ dom (𝑛′) such that 𝜙𝐸𝑡

(𝜂) =  [(𝑛′, 𝑥′)] and 

𝛾𝑡0

𝐸𝑡,𝑘(𝑛′) = 𝑒𝑖𝑟𝑡𝑡0𝑛′ for all 𝑡0 ∈ ℝ. Then 𝑟𝑡 = 𝑐𝑘(𝜂). 

Proof. (𝑎): Choose 𝜇, 𝜈 ∈ 𝐸𝑡
∗ with 𝑟𝑡(𝜇) = 𝑟𝑡(𝜈) such that 𝜂 ∈ 𝑍(𝜇, 𝜈), and let 𝑛: = (𝑠𝑡)𝜇(𝑠𝑡)𝜈

∗  and 𝑥: = 𝑠𝑡(𝜂). 

Then 𝑥 ∈ dom (𝑛), 𝜙𝐸𝑡
(𝜂) = [(𝑛, 𝑥)], and 𝛾𝑡0

𝐸𝑡,𝑘
(𝑛) = 𝑒𝑖(𝑘(𝜇)−𝑘(𝜈))𝑡0𝑛 =  𝑒𝑖𝑐𝑘(𝜂)𝑡0𝑛 for all 𝑡0 ∈ ℝ. 

(b): Let 𝜋 denote the isomorphism from 𝐶∗(𝐸𝑡) to 𝐶∗(𝒢𝐸𝑡
) given in [2, Proposition 2.2]. As in [2], we think of 

𝐶∗(𝒢𝐸𝑡
) as a subset of 𝐶0(𝒢𝐸𝑡

) and define 𝑠𝑢𝑝𝑝  ′(𝑓𝑡): = {𝜁 ∈ 𝒢𝐸𝑡
: 𝑓𝑡(𝜁) ≠ 0} for 𝑓𝑡 ∈ 𝐶0(𝒢𝐸𝑡

). Since 

𝜋 (𝛾𝑡0

𝐸𝑡,𝑘
((𝑠𝑡)𝜇(𝑠𝑡)𝜈

∗ )) (𝜁) = 𝑒𝑖𝑐𝑘(𝜁)𝑡0𝜋((𝑠𝑡)𝜇(𝑠𝑡)𝜈
∗ )(𝜁) for 𝜇, 𝜈 ∈ 𝐸𝑡

∗, 𝑡 ∈ ℝ and 𝜁 ∈ supp′ (𝜋((𝑠𝑡)𝜇(𝑠𝑡)𝜈
∗ )), and 

span {(𝑠𝑡)𝜇(𝑠𝑡)𝜈
∗ : 𝜇, 𝜈 ∈ 𝐸𝑡

∗} is dense in 𝐶∗(𝐸𝑡), we have 𝜋 (𝛾𝑡0

𝐸𝑡,𝑘(𝑛′)) (𝜁) = 𝑒𝑖𝑐𝑘(𝜁)𝑡0𝜋(𝑛′)(𝜁) for 𝑡0 ∈ ℝ and 𝜁 ∈

supp′ (𝜋(𝑛′)). Since 𝛾𝑡0

𝐸𝑡,𝑘(𝑛′) = 𝑒𝑖𝑟𝑡𝑡0𝑛′ for all 𝑡0 ∈ ℝ, it follows that supp′ (𝜋(𝑛′)) ⊆ 𝑐𝑘
−1(𝑟𝑡). It follows that 

𝑟𝑡 = 𝑐𝑘(𝜂) because if 𝑟𝑡 ≠ 𝑐𝑘(𝜂) = 𝑘(𝜇) − 𝑘(𝜈), then we would have that {𝜂′ ∈

supp′ (𝜋((𝑠𝑡)𝜈(𝑠𝑡)𝜇
∗ 𝑛′)) : 𝑠𝑡(𝜂′) = 𝑟𝑡(𝜂′) = 𝑠𝑡(𝜂)} = {(𝑠𝑡(𝜂), 𝑚, 𝑠𝑡(𝜂))} for some 𝑚 ∈ ℤ ∖ {0}, from which, 

together with the definition of the equivalence class [(𝑛′, 𝑥′)]( see [2, Proposition 4.6]), it would follow that 

𝜙𝐸𝑡
(𝜂) = [((𝑠𝑡)𝜇(𝑠𝑡)𝜈

∗ , 𝑠𝑡(𝜂))] ≠ [(𝑛′, 𝑥′)]. 

Proof of Theorem 3.1. (1)  ⟹ (2) ∶ Suppose that Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 is an isomorphism such that 𝑐𝑙(Φ(𝜂)) = 𝑐𝑘(𝜂) 

for 𝜂 ∈ 𝒢𝐸𝑡
. It then follows from [2, Proposition 2.2] that there is a ∗-isomorphism Ψ: 𝐶∗(𝐸𝑡) → 𝐶∗(𝐹𝑡) satisfying 

Ψ(𝒟(𝐸𝑡)) = 𝒟(𝐹𝑡) and 𝛾𝑡0

𝐹𝑡,𝑙
∘ Ψ = Ψ ∘ 𝛾𝑡0

𝐸,𝑘
 for 𝑡0 ∈ ℝ. 

(2) ⟹ (1): Since Ψ(𝒟(𝐸𝑡)) = 𝒟(𝐹𝑡), it follows from [2, Proposition 4.11 ] that Ψ induces an isomorphism 

𝜓: 𝒮(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) → 𝒢(𝐶∗(𝐹𝑡),𝒟(𝐹𝑡)). Define Φ: = 𝜙𝐹𝑡
−1 ∘ 𝜓 ∘ 𝜙𝐸𝑡

. Then Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 is a groupoid isomorphism. It 

remains to check that Φ is cocyle-preserving. 

Fix 𝜂 ∈ 𝒢𝐸𝑡
. By Lemma 3.2(𝑎) there exists [(𝑛, 𝑥)] ∈ 𝒢(𝐶∗(𝐸𝑡),𝒟(𝐸𝑡)) such that 𝜙𝐸𝑡

(𝜂) =  [(𝑛, 𝑥)] and 𝛾𝑡0

𝐸𝑡,𝑘
(𝑛) =

𝑒𝑖𝑐𝑘(𝜂)𝑡0𝑛 for all 𝑡0 ∈ ℝ. We then have 𝜙𝐹𝑡
(Φ(𝜂)) = [(Ψ(𝑛), 𝜅(𝑥))] ∈  𝒢(𝐶∗(𝐹𝑡),𝒫(𝐹𝑡)), where 𝜅 is a 

homeomorphism from ∂𝐸𝑡 onto ∂𝐹𝑡 (see [2, Proposition 4.11]), and 𝛾𝑡0

𝐹𝑡,𝑙
(Ψ(𝑛)) = 𝑒𝑖𝑐𝑘(𝜂)𝑡0Ψ(𝑛) for all 𝑡0 ∈ ℝ, 

so 𝑐𝑘(𝜂) = 𝑐𝑙(Φ(𝜂)) by Lemma 3.2(𝑏). 
Next, we present and prove a "stabilised version" of Theorem 3.1. We denote by 𝒦 the compact operators on 

ℓ2(ℕ), and by 𝒞 the maximal abelian subalgebra of 𝒦 consisting of diagonal operators. 

As in [4], for a directed graph 𝐸𝑡 , we denote by 𝑆𝐸𝑡 the graph obtained by attaching a head 

. . . (𝑒𝑡)3,𝑣𝑡
(𝑒𝑡)2,𝑣𝑡

(𝑒𝑡)1,𝑣𝑡
 to every vertex 𝑣𝑡 ∈ 𝐸𝑡

0 (see [14, Definition 4.1]). For a function 𝑘: 𝐸t
1 → ℝ, we let 

𝑘‾: 𝑆𝐸t
1 → ℝ be the function given by 𝑘‾(𝑒𝑡) = 𝑘(𝑒𝑡) for 𝑒𝑡 ∈ 𝐸𝑡

1, and 𝑘‾((𝑒𝑡)𝑖,𝑣𝑡
) = 0 for 𝑣𝑡 ∈ 𝐸𝑡

0 and 𝑖 = 1,2, …. 

Theorem 3.3 (see [16]). Let 𝐸𝑡 and 𝐹𝑡 be directed ordered graphs and 𝑘: 𝐸t
1 → ℝ and 𝑙: 𝐹t

1 → ℝ functions. The 

following are equivalent. 

(A) There is an isomorphism Φ: 𝒢𝑆𝐸𝑡
→ 𝒢𝑆𝐹𝑡

 satisfying 𝑐𝑙(Φ(𝜂)) = 𝑐𝑘‾ (𝜂) for 𝜂 ∈ 𝒢𝑆𝐸𝑡
. 
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(B) There is a ∗-isomorphism Ψ: 𝐶∗(𝐸𝑡) ⊗ 𝒦 → 𝐶∗(𝐹𝑡) ⊗ 𝒦 satisfying Ψ(𝒟(𝐸𝑡) ⊗ 𝒞) =  𝒟(𝐹𝑡) ⊗ 𝒞 and 

(𝛾𝑡0

𝐹𝑡,𝑙
⊗ Id𝒦) ∘ Ψ = Ψ ∘ (𝛾𝑡0

𝐸𝑡,𝑘
⊗ Id𝒳) for 𝑡0 ∈ ℝ. 

Proof. By [14, Theorem 4.2], there is an isomorphism 𝜌: 𝐶∗(𝐸𝑡) ⊗ 𝒦 → 𝐶∗(𝑆𝐸𝑡). Let {𝜃𝑖,𝑗}
𝑖,𝑗∈ℕ

 be the canonical 

generators of 𝒦. For 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝑖 ∈ ℕ denote by 𝜇𝑖,𝑣𝑡

 the path (𝑒𝑡)𝑖,𝑣𝑡
(𝑒𝑡)𝑖−1,𝑣𝑡

… (𝑒𝑡)1,𝑣𝑡
 in 𝑆𝐸𝑡 (if 𝑖 = 0, then 

we let 𝜇𝑖,𝑣𝑡
= 𝑣𝑡). One can check that the isomorphism 𝜌: 𝐶∗(𝐸𝑡) ⊗ 𝒦 → 𝐶∗(𝑆𝐸𝑡) can be chosen such that 

𝜌(𝑝𝑣𝑡
⊗ 𝜃𝑖,𝑗) = (𝑠𝑡)𝜇𝑖,𝑣𝑡

(𝑠𝑡)𝜇𝑗,𝑣𝑡

∗  for 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝜌((𝑠𝑡)𝑒𝑡

⊗ 𝜃𝑖,𝑗) = (𝑠𝑡)𝜇𝑖,𝑠𝑡(𝑐)
(𝑠𝑡)𝑒𝑡

(𝑠𝑡)𝜇𝑗,𝑟𝑡(𝑐)
∗  for 𝑒𝑡 ∈ 𝐸𝑡

1. 

Routine calculations then show that 𝜌(𝒟(𝐸𝑡) ⊗ 𝒞) = 𝒟(𝑆𝐸𝑡) and that 𝜌 ∘ (𝛾𝑡0

𝐸𝑡,𝑘
⊗ Id𝒦) = 𝛾𝑡0

𝑆𝐸𝑡,𝑘‾
∘ 𝜌 for 𝑡0 ∈

ℝ. The equivalence (A) ⟺ (B) now follows from the equivalence (1) ⟺ (2) of Theorem 3.1 applied to the 

ordered graphs 𝑆𝐸𝑡 and 𝑆𝐹𝑡 and the functions 𝑘‾  and 𝑙‾. 
 

IV. Eventual Conjugacy of Ordered Graphs 
Let 𝐸𝑡 and 𝐹𝑡 be directed ordered graphs. Following [9], we say that 𝐸𝑡 and 𝐹𝑡 are eventually conjugate if there 

exists a homeomorphism ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 and continuous maps 𝑘: ∂𝐸t
≥1 → ℕ and 𝑘′: ∂𝐹t

≥1 → ℕ such that 

𝜎𝐹𝑡

𝑘(𝑥)
(ℎ𝑡(𝜎𝐸𝑡

(𝑥))) = 𝜎𝐹𝑡

𝑘(𝑥)+1
(ℎ𝑡(𝑥)) for all 𝑥 ∈ ∂𝐸𝑡

≥1 and 𝜎𝐸𝑡

𝑘′(𝑦)
(ℎ𝑡

−1(𝜎𝐹𝑡
(𝑦))) = 𝜎𝐸𝑡

𝑘′(𝑦)+1(ℎt
−1(𝑦)) for all 𝑦 ∈

∂𝐹𝑡
≥1. We call such a homeomorphism ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 an eventual conjugacy. 

Notice that if ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 is a conjugacy in the sense that 𝜎𝐹𝑡
(ℎ𝑡(𝑥)) = ℎ𝑡(𝜎𝐸𝑡

(𝑥)) for all 𝑥 ∈ ∂𝐸𝑡
≥1, then ℎ𝑡 is 

an eventual conjugacy (in this case we can take 𝑘 and 𝑘′ to be constantly equal to 0 ). 
Theorem 4.1 (see [16]). Let 𝐸𝑡 and 𝐹𝑡 be directed ordered graphs. The following are equivalent. 

(i) 𝐸𝑡 and 𝐹𝑡 are eventually conjugate. 

(ii) There is an isomorphism Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 satisfying 𝑐𝐹𝑡
(Φ(𝜂)) = 𝑐𝐸𝑡

(𝜂) for 𝜂 ∈ 𝒢𝐸𝑡
. 

(iii) There is a ∗-isomorphism Ψ: 𝐶∗(𝐸𝑡) → 𝐶∗(𝐹𝑡) satisfying Ψ(𝒟(𝐸𝑡)) = 𝒟(𝐹𝑡) and 𝜆𝑧
𝐹𝑡 ∘ Ψ = Ψ ∘ 𝜆𝑧

𝐸𝑡  for 𝑧 ∈
𝕋. 
Proof. (𝑖𝑖)  ⟺  (𝑖𝑖𝑖): Let 𝑘: 𝐸t

1 → ℝ and 𝑙: 𝐹t
1 → ℝ both be constantly equal to 1. 

Then 𝑐𝑘 = 𝑐𝐸𝑡
, 𝑐𝑙 = 𝑐𝐹𝑡

, and 𝛾𝑡0

𝐸𝑡,𝑘
= 𝜆

𝑒𝑖𝑡0

𝐸𝑡  and 𝛾𝑡0

𝐹𝑡,𝑙
= 𝜆

𝑒𝑖𝑡0

𝐹𝑡  for all 𝑡0 ∈ ℝ. It therefore follows from Theorem 3.1 

that (𝑖𝑖) and (𝑖𝑖𝑖) are equivalent. 

(𝑖)  ⟹  (𝑖𝑖): Suppose ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 is an eventual conjugacy. Then the map (𝑥, 𝑛, 𝑦) ↦  (ℎ𝑡(𝑥), 𝑛, ℎ𝑡(𝑦)) is an 

isomorphism Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 satisfying 𝑐𝐹𝑡
(Φ(𝜂)) = 𝑐𝐸𝑡

(𝜂) for 𝜂 ∈ 𝒢𝐸𝑡
. 

(𝑖𝑖)  ⟹  (𝑖): Suppose Φ: 𝒢𝐸𝑡
→ 𝒢𝐹𝑡

 is an isomorphism such that 𝑐𝐹𝑡
(Φ(𝜂)) = 𝑐𝐸𝑡

(𝜂) for 𝜂 ∈ 𝒢𝐸𝑡
. Then the 

restriction of Φ to 𝒢𝐸𝑡
0  is a homeomorphism onto 𝒢𝐹𝑡

0 . Since the map 𝑥 ↦ (𝑥, 0, 𝑥) is a homeomorphism from ∂𝐸𝑡  

onto 𝒢𝐸𝑡
0 , and 𝑦 ↦ (𝑦, 0, 𝑦) is a homeomorphism from ∂𝐹𝑡 onto 𝒢𝐹𝑡

0 , it follows that there is a homeomorphism 

ℎ𝑡: ∂𝐸𝑡 → ∂𝐹𝑡 such that Φ((𝑥, 0, 𝑥)) = (ℎ𝑡(𝑥),0, ℎ𝑡(𝑥)) for all 𝑥 ∈ ∂𝐸𝑡 . Since 𝑐𝐹𝑡
(Φ(𝜂)) = 𝑐𝐸𝑡

(𝜂) for all 𝜂 ∈

𝒢𝐸𝑡
, it follows that Φ((𝑥, 𝑛, 𝑦)) = (ℎ𝑡(𝑥), 𝑛, ℎ𝑡(𝑦)) for all (𝑥, 𝑛, 𝑦) ∈ 𝒢𝐸𝑡

. Let 𝑒𝑡 ∈ 𝐸𝑡
1. 

Then Φ(𝑍(𝑒𝑡 , 𝑟𝑡(𝑒𝑡))) is an open and compact subset of 𝑐𝐹𝑡
−1(1). It follows that there exist an 𝑛, mutually disjoint 

open subsets 𝑈1, … , 𝑈𝑛 of ∂𝐹𝑡 , mutually disjoint open subsets 𝑉1, … , 𝑉𝑛 of ∂𝐹𝑡 , and 𝑘1, … , 𝑘𝑛 ∈ ℕ such that 

Φ (𝑍(𝑒𝑡 , 𝑟𝑡(𝑒𝑡))) = ⋃ 𝑖=1
𝑛

 𝑍(𝑈𝑖 , 𝑘𝑖 + 1, 𝑘𝑖 , 𝑉𝑖). 

Define 𝑘𝑒𝑡
: 𝑍(𝑒𝑡) → ℕ by 𝑘𝑒𝑡

(𝑥) = 𝑘𝑖 for 𝑥 ∈ ℎ𝑡
−1(𝑈𝑖). Then 𝑘𝑒𝑡

 is continuous and 𝜎𝐹𝑡

𝑘𝑐(𝑥)
(ℎ𝑡(𝜎𝐸𝑡

(𝑥))) =

𝜎𝐹𝑡

𝑘𝑐(𝑥)+1
(ℎ𝑡(𝑥)) for 𝑥 ∈ 𝑍(𝑒𝑡). By doing this for each 𝑒𝑡 ∈ 𝐸𝑡

1, we get a continuous map 𝑘: ∂𝐸t
≥1 → ℕ such that 

𝜎𝐹𝑡

𝑘(𝑥)
(ℎ𝑡(𝜎𝐸𝑡

(𝑥))) = 𝜎𝐹𝑡

𝑘(𝑥)+1
(ℎ𝑡(𝑥)) for all 𝑥 ∈ ∂𝐸𝑡

≥1. 

A continuous map 𝑘′: ∂𝐹t
≥1 → ℕ such that 𝜎𝐸𝑡

𝑘′(𝑦)
(ℎ𝑡

−1(𝜎𝐹𝑡
(𝑦))) = 𝜎𝐸𝑡

𝑘′(𝑦)+1(ℎt
−1(𝑦)) for all 𝑦 ∈ ∂𝐹𝑡

≥1 can be 

constructed in a similar way. Thus, ℎ𝑡 is an eventual conjugacy. 

Let 𝐴𝑡 be a finite square {0,1}-matrix, and assume that every row and every column of 𝐴𝑡 is nonzero. As in [6], 
we denote by 𝒪𝐴𝑡

 the Cuntz-Krieger algebra of 𝐴𝑡 with gauge action 𝜆𝐴𝑡  and canonical abelian subalgebra 𝒟𝐴𝑡
, 

and by (𝑋𝐴𝑡
, 𝜎𝐴𝑡

) the one-sided subshift of 𝐴𝑡 (if 𝐴𝑡 does not satisfy condition (𝐼), then we let 𝒪𝐴𝑡
 denote the 

universal Cuntz-Krieger algebra 𝒜𝒪𝐴𝑡
 introduced in [7]). As in [9], we say that (𝑋𝐴𝑡

, 𝜎𝐴𝑡
) and (𝑋𝐵𝑡

, 𝜎𝐵𝑡
) are 

eventually one-sided conjugate if there is a homeomorphism ℎ𝑡: 𝑋𝐴𝑡
→ 𝑋𝐵𝑡

 and continuous maps 𝑘: 𝑋𝐴𝑡
→ ℕ and 

𝑘′: 𝑋𝐵𝑡
→ ℕ such that 𝜎𝐵𝑡

𝑘(𝑥)
(ℎ𝑡(𝜎𝐴𝑡

(𝑥))) = 𝜎𝐵𝑡

𝑘(𝑥)+1
(ℎ𝑡(𝑥)) for all 𝑥 ∈ 𝑋𝐴𝑡

, and 𝜎𝐴𝑡

𝑘′(𝑦)
(ℎ𝑡

−1(𝜎𝐵𝑡
(𝑦))) =

𝜎𝐴𝑡

𝑘′(𝑦)+1(ℎt
−1(𝑦)) for all 𝑦 ∈ 𝑋𝐵𝑡

. 

We obtain from Theorem 4.1 the following corollary which was proved in the irreducible case by Kengo 

Matsumoto in [9, Theorem 1.2], and which can be seen as a kind of a converse to [6, Proposition 2.17]. 
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Corollary 4.2 (see [16]). Let 𝐴𝑡 and 𝐵𝑡  be finite square {0,1}-matrices, and assume that every row and every 

column of 𝐴𝑡 and 𝐵𝑡  is nonzero. There is 𝑎 ∗-isomorphism Ψ: 𝒪𝐴𝑡
→ 𝒪𝐵𝑡

 satisfying Ψ(𝒟𝐴𝑡
) = 𝒟𝐵𝑡

 and 𝜆𝑧
𝐵𝑡 ∘ Ψ =

Ψ ∘ 𝜆𝑧
𝐴𝑡  for all 𝑧 ∈ 𝕋 if and only if (𝑋𝐴𝑡

, 𝜎𝐴𝑡
) and (𝑋𝐵𝑡

, 𝜎𝐵𝑡
) are eventually one-sided conjugate. 

Proof. Let (𝐸𝑡)𝐴𝑡
 be the graph of 𝐴𝑡 , i.e., (𝐸𝑡

0)𝐴𝑡
  is the index set of 𝐴𝑡 , (𝐸𝑡)𝐴𝑡

 = {(𝑖, 𝑗) ∈ (𝐸𝑡)𝐴𝑡
 × (𝐸𝑡)𝐴𝑡

 ∶

 𝐴𝑡(𝑖, 𝑗) = 1}, and 𝑟𝑡((𝑖, 𝑗)) = 𝑗 and 𝑠𝑡((𝑖, 𝑗)) = 𝑖 for (𝑖, 𝑗) ∈ (𝐸𝑡)𝐴𝑡
1 . Then ∂(𝐸𝑡)𝐴𝑡

= (𝐸𝑡)𝐴𝑡
∞ , and there is a 

homeomorphism from 𝑋𝐴𝑡
 to (𝐸𝑡)𝐴𝑡

∞  that intertwines 𝜎𝐴𝑡
 and 𝜎(𝐸𝑡)𝐴𝑡

. It follows that (𝑋𝐴𝑡
, 𝜎𝐴𝑡

) and (𝑋𝐵𝑡
, 𝜎𝐵𝑡

) are 

eventually one-sided conjugate if and only if (𝐸𝑡)𝐴𝑡
 and (𝐸𝑡)𝐵𝑡

 are eventually one-sided conjugate. 

It is well-known that there is a ∗-isomorphism Ψ: 𝒪𝐴𝑡
→ 𝐶∗((𝐸𝑡)𝐴𝑡

) satisfying Ψ(𝒟𝐴𝑡
) =  𝒟((𝐸𝑡)𝐴𝑡

) and 𝜆𝑧

(𝐸𝑡)𝐴𝑡 ∘

Ψ = Ψ ∘ 𝜆𝑧
𝐴𝑡  for all 𝑧 ∈ 𝕋. The corollary therefore follows from the equivalence of (𝑖) and (𝑖𝑖𝑖) in Theorem 4.1. 

Remark 4.3. Kengo Matsumoto has strengthened [9, Theorem 1.2 ] in [10] and shown that if the matrices 𝐴𝑡 and 

𝐵𝑡  in Corollary 4.2 are irreducible and not permutation matrices, then the two conditions in Corollary 4.2 are 

equivalent to several other interesting conditions, for example to the condition that there is a ∗-isomorphism 

Ψ: 𝒪𝐴𝑡
→ 𝒪𝐵𝑡

 satisfying Ψ(𝒟𝐴𝑡
) = 𝒟𝐵𝑡

 and Ψ(ℱ𝐴𝑡
) = ℱ𝐵𝑡

, where ℱ𝐴𝑡
 is the fixed point algebra of 𝜆𝐴𝑡  and ℱ𝐵𝑡

 is 

the fixed point algebra of 𝜆𝐵𝑡 . (see [16]). 

 

V. Conjugacy of Two-Sided Shifts of Finite Type 
For a finite directed graph 𝐸𝑡 with no sinks or sources, we define 𝑋‾𝐸𝑡

 to be the two-sided edge shift 

𝑋‾𝐸𝑡
: = {(𝑥𝑛)𝑛∈ℤ: 𝑥𝑛 ∈ 𝐸𝑡

1 and 𝑟𝑡(𝑥𝑛) = 𝑠𝑡(𝑥𝑛+1) for all 𝑛 ∈ ℤ} 

equipped with the induced topology of the product topology of (𝐸𝑡
1)𝑍 (where each copy of 𝐸𝑡

1 is given the discrete 

topology), and let 𝜎‾𝐸𝑡
: 𝑋‾𝐸𝑡

→ 𝑋‾𝐸𝑡
 be the homeomorphism given by (𝜎‾𝐸𝑡

(𝑥))
𝑚

= 𝑥𝑚+1 for 𝑥 = (𝑥𝑛)𝑛∈ℤ ∈ 𝑋‾𝐸𝑡
. 

If 𝐸𝑡 and 𝐹𝑡 are finite directed ordered graphs with no sinks or sources, then a conjugacy from 𝑋‾𝐸𝑡
 to 𝑋‾𝐹𝑡

 is a 

homeomorphism 𝜙: 𝑋‾𝐸𝑡
→ 𝑋‾𝐹𝑡

 such that 𝜎‾𝐹𝑡
∘ 𝜙 = 𝜙 ∘ 𝜎‾𝐸𝑡

. The shift spaces 𝑋‾𝐸𝑡
 and 𝑋‾𝐹𝑡

 are said to be conjugate 

if there is a conjugacy from 𝑋‾𝐸𝑡
 to 𝑋‾𝐹𝑡

. 

Recall that for a directed graph 𝐸𝑡 , we denote by 𝑆𝐸𝑡 the graph obtained by attaching a head 

… (𝑒𝑡)3,𝑣𝑡
(𝑒𝑡)2,𝑣𝑡

(𝑒𝑡)1,𝑣𝑡
 to every vertex 𝑣𝑡 ∈ 𝐸𝑡

0 (see [14, Definition 4.1]). Define a function 𝑘‾𝐸𝑡
: (𝑆𝐸𝑡)1 → ℝ by 

𝑘‾𝐸𝑡
(𝑒𝑡) = 1 for 𝑒𝑡 ∈ 𝐸𝑡

1 and 𝑘‾𝐸𝑡
((𝑒𝑡)𝑖,𝑣𝑡

) = 0 for 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝑖 = 1,2, …. 

Theorem 5.1 (see [16]). Let 𝐸𝑡 and 𝐹𝑡 be directed ordered graphs. The following two conditions are equivalent. 

(I) There is an isomorphism Φ: 𝒢𝑆𝐸𝑡
→ 𝒢𝑆𝐹𝑡

 satisfying 𝑐𝑘‾ 𝐹𝑡
(Φ(𝜂)) = 𝑐𝑘‾ 𝐸𝑡

(𝜂) for 𝜂 ∈  𝒢𝑆𝐸𝑡
. 

(II) There is a ∗-isomorphism Ψ: 𝐶∗(𝐸𝑡) ⊗ 𝒦 → 𝐶∗(𝐹𝑡) ⊗ 𝒦 satisfying Ψ(𝒟(𝐸𝑡) ⊗ 𝒞) =  𝒟(𝐹𝑡) ⊗ 𝒞 and 

(𝜆𝑧
𝐹𝑡 ⊗ Id𝒦) ∘ Ψ = Ψ ∘ (𝜆𝑧

𝐸𝑡 ⊗ Id𝒦) for 𝑧 ∈ 𝕋. 

If 𝐸𝑡 and 𝐹𝑡 are finite ordered graphs with no sinks or sources, then (𝐼) and (𝐼𝐼) are equivalent to the following 

condition. 

(III) The two-sided edge shifts 𝑋‾𝐸𝑡
 and 𝑋‾𝐹𝑡

 are conjugate. 

Proof. An argument similar to the one used in the proof of Theorem 4.1 shows that the equivalence of (𝐼) and 

(𝐼𝐼) follows by applying Theorem 3.3 to the functions 𝑘: 𝐸t
1 → ℝ and 𝑙: 𝐹t

1 → ℝ that are constantly equal to 1. 
It remains to establish (𝐼)  ⟺  (𝐼𝐼𝐼). Suppose that 𝐸𝑡 and 𝐹𝑡 are finite ordered graphs with no sinks or sources. 

Then ∂𝐸𝑡 = 𝐸𝑡
∞ and ∂𝐹𝑡 = 𝐹𝑡

∞. As in the proof of Theorem 3.3, for 𝑣𝑡 ∈ 𝐸𝑡
0 and 𝑖 ∈ ℕ, we denote by 𝜇𝑖,𝑣𝑡

 the 

path (𝑒𝑡)𝑖,𝑣𝑡
(𝑒𝑡)𝑖−1,𝑣𝑡

… (𝑒𝑡)1,𝑣𝑡
 in 𝑆𝐸𝑡 (if 𝑖 = 0, then we let 𝜇𝑖,𝑣𝑡

= 𝑣𝑡  ). In the proof of [4, Lemma 4.1], it was 

shown that there is a homeomorphism (𝑆𝐸𝑡)∞ → 𝐸t
∞ × ℕ satisfying 𝜇𝑖,𝑠𝑡(𝑥)𝑥 → (𝑥, 𝑖) for 𝑥 ∈ 𝐸𝑡

∞ and 𝑖 ∈ ℕ. We 

identify (𝑆𝐸𝑡)∞ with 𝐸t
∞ × ℕ. 

( 𝐼𝐼𝐼 ) ⟹ ( 𝐼 ): Suppose 𝑋‾𝐸𝑡
 and 𝑋‾𝐹𝑡

 are conjugate. Then there is a conjugacy 𝜙: 𝑋‾𝐸𝑡
→ 𝑋‾𝐹𝑡

 and an 𝑙 ∈ ℕ such that 

if 𝑥, 𝑥′ ∈ 𝑋‾𝐸𝑡
 with 𝑥𝑛 = 𝑥𝑛

′  for all 𝑛 ≥ 0, then (𝜙(𝑥))𝑛 = (𝜙(𝑥′))
𝑛

 for all 𝑛 ≥ 0, and if 𝑦, 𝑦′ ∈ 𝑋‾𝐹𝑡
 with 𝑦𝑛 = 𝑦𝑛

′  

for all 𝑛 ≥ 0, then (𝜙−1(𝑦))𝑛 = (𝜙−1(𝑦′))
𝑛

 for all 𝑛 ≥ 𝑙. It follows that there is a continuous map 𝜋: 𝐸t
∞ →  𝐹𝑡

∞ 

such that (𝜋((𝑥𝑘)𝑘∈ℕ))
𝑛

= (𝜙(𝑥))𝑛 for 𝑥 = (𝑥𝑘)𝑘∈ℤ ∈ 𝑋‾𝐸𝑡
 and 𝑛 ∈ ℕ. Then 𝜋 is surjective, 𝜋 ∘ 𝜎𝐸𝑡

= 𝜎𝐹𝑡
∘ 𝜋, 

and if 𝜋(𝑥) = 𝜋(𝑥′) for 𝑥, 𝑥′ ∈ 𝐸𝑡
∞, then 𝜎𝐸𝑡

𝑙 (𝑥) = 𝜎𝐸𝑡
𝑙 (𝑥′). 

For an infinite path 𝑥 = (𝑥𝑛)𝑛∈ℕ and 𝑘 ∈ ℕ, we write 𝑥[0,𝑘) for the finite path 𝑥0𝑥1 … 𝑥𝑘−1 of length 𝑘. It follows 

from the continuity of 𝜋 and the compactness of 𝐸𝑡
∞ that we can choose 𝐿 ≥ 𝑙 such that 𝑥[0,𝐿) = 𝑥[0,𝐿)

′ ⟹

𝜋(𝑥)[0,𝑙) = 𝜋(𝑥′)[0,𝑙). Define an equivalence relation ∼ on 𝐸𝑡
𝐿 by 𝜇 ∼ 𝜈 if there are 𝑥 ∈ 𝑍(𝜇) and 𝑥′ ∈ 𝑍(𝜈) such 

that 𝜋(𝑥) = 𝜋(𝑥′) (that ∼ is transitive follows from the fact that if 𝜇, 𝜈, 𝜂 ∈ 𝐸𝑡
𝐿 , 𝑥, 𝑥′ ∈ 𝐸𝑡

∞, and 𝜋(𝜇𝑥) = 𝜋(𝜈𝑥) 

and 𝜋(𝜈𝑥′) = 𝜋(𝜂𝑥′), then 𝜋(𝜇𝑥′) = 𝜋(𝜂𝑥′). Then 𝜋(𝑥) = 𝜋(𝑥′) if and only if 𝑥[0,𝐿) ∼ 𝑥[0,𝐿)
′  and 𝜎𝐸𝑡

𝑙 (𝑥) =

𝜎𝐸𝑡
𝑙 (𝑥′). 
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For each equivalence class 𝐵𝑡 ∈ 𝐸t
𝐿/∼ choose a partition {(𝐴𝑡)𝜇: 𝜇 ∈ 𝐵𝑡} of ℕ and bijections (𝑓𝑡)𝜇: (𝐴𝑡)𝜇 → ℕ. 

The map 𝜓: (𝑥, 𝑛) ↦ (𝜋(𝑥), (𝑓𝑡)𝑥[0,𝐿
−1 (𝑛)) is then a homeomorphism from (𝑆𝐸𝑡)∞ → (𝑆𝐹𝑡)∞. It is routine to check 

that 

Φ: ((𝑥, 𝑛), 𝑘, (𝑥′, 𝑛′)) ↦ (𝜓(𝑥, 𝑛), 𝑘 + 𝑛′ + (𝑓𝑡)𝑥[0,𝐿)
−1 (𝑛) − 𝑛 − (𝑓𝑡)

𝑥[0,𝐿)
′

−1 (𝑛′), 𝜓(𝑥′, 𝑛′)) 

is a groupoid isomorphism from 𝒢𝑆𝐸𝑡
 to 𝒢𝑆𝐹𝑡

 satisfying 𝑐𝑘‾ 𝐹𝑡
(Φ(𝜂)) = 𝑐𝑘‾ 𝐸𝑡

(𝜂) for 𝜂 ∈ 𝒢𝑆𝐸𝑡
. 

(I) ⟹ (III): Suppose Φ: 𝒢𝑆𝐸𝑡
→ 𝒢𝑆𝐹𝑡

 is an isomorphism satisfying 𝑐𝑘‾ 𝐹𝑡
(Φ(𝜂)) =  𝑐𝑘‾ 𝐸𝑡

(𝜂) for 𝜂 ∈ 𝒢𝑆𝐸𝑡
. For 𝑥 ∈

𝐸𝑡
∞, we have (𝑥, 0) ∈ (𝑆𝐸𝑡)∞ and ((𝑥, 0),0, (𝑥, 0)) ∈ 𝒢𝑆𝐸𝑡

. 

Since Φ is an isomorphism, we have Φ((𝑥, 0),0, (𝑥, 0)) = ((𝑦, 𝑚),0, (𝑦, 𝑚)) for some uniquely determined 𝑦 ∈
𝐹𝑡

∞ and 𝑚 ∈ ℕ. Define 𝜓: 𝐸t
∞ → 𝐹𝑡

∞ by 𝜓(𝑥): = 𝑦. Since Φ is continuous, the map (𝑥, 0) ↦ (𝑦, 𝑚) is continuous, 

so 𝜓 is also continuous. 

We have ((𝑥, 0),1, (𝜎𝐸𝑡
(𝑥),0)) ∈ 𝒮𝑆𝐸𝑡

 for 𝑥 ∈ 𝐸𝑡
∞. By the cocyle condition there exist 𝑚, 𝑚′ ∈ ℕ such that 

Φ ((𝑥, 0),1, (𝜎𝐸𝑡
(𝑥),0)) = ((𝜓(𝑥), 𝑚),1 + 𝑚 − 𝑚′, (𝜓(𝜎𝐸𝑡

(𝑥)), 𝑚′)) ∈  𝒢𝑆𝐸𝑡
. Hence there exists 𝑙 ∈ ℕ such 

that 𝜎𝐹𝑡
𝑙+1(𝜓(𝑥)) = 𝜎𝐹𝑡

𝑙 (𝜓(𝜎𝐸𝑡
(𝑥))) ; let 𝑙(𝑥) denote the smallest such number. We check that 𝑙: 𝐸t

∞ → ℕ is 

continuous. Suppose (𝑥𝑛)𝑛∈ℕ in 𝐸𝑡
∞ converges to 𝑥. Then Φ ((𝑥𝑛, 0), 1, (𝜎𝐸𝑡

(𝑥𝑛), 0)) → Φ ((𝑥, 0),1, (𝜎𝐸𝑡
(𝑥),0)) 

since Φ is continuous and 𝜓(𝑥𝑛) → 𝜓(𝑥) and 𝜓 (𝜎𝐸𝑡
(𝑥𝑛)) → 𝜓(𝜎𝐸𝑡

(𝑥)) since 𝜓 is continuous. It follows that 

there is an 𝑁 ∈ ℕ such that for 𝑛 ≥ 𝑁, we have that 𝜎𝐹𝑡

𝑙(𝑥)+1
(𝜓(𝑥𝑛)) = 𝜎𝐹𝑡

𝑙(𝑥)
(𝜓 (𝜎𝐸𝑡

(𝑥𝑛))) and either 𝑙(𝑥) = 0 

or 𝜎𝐹𝑡

𝑙(𝑥)
(𝜓(𝑥𝑛)) ≠ 𝜎𝐹𝑡

𝑙(𝑥)−1
(𝜓 (𝜎𝐸𝑡

(𝑥𝑛))). Hence 𝑙(𝑥𝑛) = 𝑙(𝑥) for 𝑛 ≥ 𝑁. 

Since 𝐸𝑡
∞ is compact, it follows that there is an 𝐿 ∈ ℕ such that 𝜎𝐸𝑡

𝐿+1(𝜓(𝑥)) = 𝜎𝐹𝑡
𝐿 (𝜓(𝜎𝐸𝑡

(𝑥))) for all 𝑥 ∈ 𝐸𝑡
∞. 

Define 𝜑: = 𝜎𝐹𝑡
𝐿 ∘ 𝜓: 𝐸t

∞ → 𝐹𝑡
∞. Then 𝜑 is continuous and satisfies 𝜑 ∘ 𝜎𝐸𝑡

= 𝜎𝐹𝑡
∘ 𝜑. 

For 𝑥 = (𝑥𝑛)𝑛∈ℤ in 𝑋‾𝐸𝑡
 or 𝑋‾𝐹𝑡

 and 𝑘 ∈ ℤ, let 𝑥[𝑘,∞) denote the infinite path 𝑥𝑘𝑥𝑘+1 … Define 𝜑‾ : 𝑋‾𝐸𝑡
→ 𝑋‾𝐹𝑡

 by 

(𝜑‾(𝑥))[𝑘,∞) = 𝜑(𝑥[𝑘,∞)) for 𝑥 ∈ 𝑋‾𝐸𝑡
 and 𝑘 ∈ ℤ. 

Since 𝜑 ∘ 𝜎𝐸𝑡
= 𝜎𝐹𝑡

∘ 𝜑, it follows that 𝜑‾  is well-defined. It is routine to check that 𝜑‾  is continuous and that 𝜑‾ ∘

𝜎‾𝐸𝑡
= 𝜎‾𝐹𝑡

∘ 𝜑‾ . We will next show that 𝜑‾  is also bijective. It will then follow that 𝜑‾  is a conjugacy and thus that 

𝑋‾𝐸𝑡
 and 𝑋‾𝐹𝑡

 are conjugate. 

We first show that 𝜑‾  is injective. Suppose 𝑥 = (𝑥𝑛)𝑛∈ℕ, 𝑥′ = (𝑥𝑛
′ )𝑛∈ℕ ∈ 𝐸𝑡

∞ and 𝜑(𝑥) = 𝜑(𝑥′). Choose 𝑚, 𝑚′ ∈

ℕ such that Φ((𝑥, 0),0, (𝑥, 0)) = ((𝜓(𝑥), 𝑚),0, (𝜓(𝑥), 𝑚)) and Φ((𝑥′, 0), 0, (𝑥′, 0)) =

((𝜓(𝑥′), 𝑚′), 0, (𝜓(𝑥′), 𝑚′)). Since 𝜎𝐹𝑡
𝐿 (𝜓(𝑥)) = 𝜎𝐹𝑡

𝐿 (𝜓(𝑥′)), it follows that ((𝜓(𝑥), 𝑚), 𝑚 −

𝑚′, (𝜓(𝑥′), 𝑚′)) ∈ 𝒢𝑆𝐹𝑡
 and thus that 

((𝑥, 0),0, (𝑥′, 0)) = Φ−1 (((𝜓(𝑥), 𝑚), 𝑚 − 𝑚′, (𝜓(𝑥′), 𝑚′))) ∈ 𝒢𝑆𝐸𝑡
. 

It follows that there is a 𝑘 ∈ ℕ such that 𝜎𝐸𝑡
𝑘 (𝑥) = 𝜎𝐸𝑡

𝑘 (𝑥′). Let 𝑘((𝑥, 𝑥′)) be the smallest such 𝑘. An argument 

similar to the one used to prove that 𝑙: 𝐸t
∞ → ℕ is continuous, shows that 𝑘: {(𝑥, 𝑥′) ∈ 𝐸t

∞ × 𝐸t
∞: 𝜑(𝑥) =

𝜑(𝑥′)} → ℕ is continuous. Since {(𝑥, 𝑥′) ∈ 𝐸t
∞ × 𝐸t

∞: 𝜑(𝑥) = 𝜑(𝑥′)} is closed in 𝐸t
∞ × 𝐸𝑡

∞ and thus compact, it 

follows that there exists 𝐾 ∈ ℕ such that 𝜎𝐸𝑡
𝐾 (𝑥) = 𝜎𝐸𝑡

𝐾 (𝑥′) for all 𝑥, 𝑥′ ∈ 𝐸∞ satisfying 𝜑(𝑥) = 𝜑(𝑥′). The 

injectivity of 𝜑‾  easily follows. 

Next, we show that 𝜑‾  is surjective. Suppose 𝑦 ∈ 𝐹𝑡
∞. Then 

Φ−1((𝑦, 0),0, (𝑦, 0)) = ((𝑥, 𝑛),0, (𝑥, 𝑛)) 

for some 𝑥 ∈ 𝐸𝑡
∞ and some 𝑛 ∈ ℕ. Choose 𝑚 ∈ ℕ such that 

Φ((𝑥, 0), 0, (𝑥, 0)) = ((𝜓(𝑥), 𝑚), 0, (𝜓(𝑥), 𝑚)). 

Since ((𝑥, 0), −𝑛, (𝑥, 𝑛)) ∈ 𝒢𝑆𝐸𝑡
 and Φ((𝑥, 0), −𝑛, (𝑥, 𝑛)) = ((𝜓(𝑥), 𝑚), 𝑚, (𝑦, 0)), it follows that there is an 

ℎ𝑡 ∈ ℕ such that 𝜎𝐹𝑡

ℎ𝑡(𝜓(𝑥)) = 𝜎𝐹𝑡

ℎ𝑡(𝑦). An argument similar to the one used in the previous paragraph, then shows 

that there is an 𝐻 ∈ ℕ such that for each 𝑦 ∈ 𝐹𝑡
∞ there is an 𝑥 ∈ 𝐸𝑡

∞ such that 𝜎𝐹𝑡
𝐻(𝜓(𝑥)) = 𝜎𝐹𝑡

𝐻(𝑦). The surjectivity 

of 𝜑‾  easily follows. 

Let 𝐴𝑡 be a finite square {0,1}-matrix, and assume that every row and every column of 𝐴𝑡 is nonzero. As in [6], 

we denote by (𝑋‾𝐴𝑡
, 𝜎‾𝐴𝑡

) the two-sided subshift of 𝐴𝑡 . It follows from [5, Theorem 2.3] that if 𝐴𝑡 and 𝐵𝑡  are finite 

square {0,1}-matrices such that 𝐴𝑡 and 𝐵𝑡  and their transpose satisfy condition (𝐼), and 𝑋‾𝐴𝑡
 and 𝑋‾𝐵𝑡

 are conjugate, 

then there exists a ∗-isomorphism Ψ: 𝒪𝐴𝑡
⊗ 𝒦 → 𝒪𝐵𝑡

⊗ 𝒦 such that Ψ(𝒟𝐴𝑡
⊗ 𝒞) = 𝒟𝐵𝑡

⊗ 𝒞 and (𝜆𝑧
𝐵𝑡 ⊗

Id𝒳) ∘ Ψ = Ψ ∘ (𝜆𝑧
𝐴𝑡 ⊗ Id𝒳) for all 𝑧 ∈ 𝕋. As a corollary to Theorem 5.1, we now prove the converse. 
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Corollary 5.2 (see [16]). Let 𝐴𝑡 and 𝐵𝑡  be finite square {0,1}-matrices, and assume that every row and every 

column of 𝐴𝑡 and 𝐵𝑡  is nonzero. There is a ∗-isomorphism Ψ: 𝒪𝐴𝑡
⊗ 𝒦 →  𝒪𝐵𝑡

⊗ 𝒦 such that Ψ(𝒟𝐴𝑡
⊗ 𝒞) =

𝒟𝐵𝑡
⊗ 𝒞 and (𝜆𝑧

𝐵𝑡 ⊗ Id𝒦) ∘ Ψ = Ψ ∘ (𝜆𝑧
𝐴𝑡 ⊗ Id𝒦) for all 𝑧 ∈ 𝕋 if and only if (𝑋‾𝐴𝑡

, 𝜎‾𝐴𝑡
) and (𝑋‾𝐵𝑡

, 𝜎‾𝐵𝑡
) are 

conjugate. 

Proof. As in the proof of Corollary 4.2, let (𝐸𝑡)𝐴𝑡
 be the graph of 𝐴𝑡 , and (𝐸𝑡)𝐵𝑡

 the graph of 𝐵𝑡 . The result then 

follows from the equivalence of (𝐼𝐼)  ⟺  (𝑉𝐼) of Theorem 5.1 applied to the ordered graphs (𝐸𝑡)𝐴𝑡
 and (𝐸𝑡)𝐵𝑡

. 
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