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Abstract: 
The concept of shape and significance in data is fundamental to Topological Data Analysis (TDA). This method 

has increased process efficiency across multiple sectors, including computational biology and healthcare. 

Utilizing the Kaggle Pima Indian Diabetes Dataset, persistent homology and persistent landscape were used in 

the present study to predict diabetes, demonstrating the significance of TDA in the medical field. To guide the 

investigation, we determined the persistent homology of a point cloud represented by a Vietoris-Rips complex. 

Additionally, we used the persistent landscape to identify six important features in the dataset. Consequently, we 

found that our prediction accuracy for diabetes is 75%. 
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I. Introduction 
Topological Data Analysis (TDA) is a rapidly evolving field that leverages concepts from algebraic 

topology to study the shape of data. The core idea behind TDA is that data possesses an inherent form and 

structure, which can be systematically analyzed and interpreted. One of the key tools in TDA is persistent 

homology, which captures topological features of data across multiple scales. This technique has found 

applications in various domains, including computational biology, healthcare, and more. The theoretical 

underpinnings of TDA are well-documented in foundational texts such as Computational Topology[5]. This 

book provides a comprehensive introduction to the field, covering essential concepts such as simplicial 

complexes, homology, and persistent homology.  

One of the primary motivations for using TDA in healthcare is its ability to handle complex, high-

dimensional data. In the context of medical data analysis, persistent homology offers a unique way to identify 

and quantify features that traditional statistical methods might overlook.  

Recent advances in TDA have focused on making the techniques more accessible and practical for data 

scientists. Chazal and Michel (2021)[4] provide an accessible introduction to TDA, emphasizing both 

fundamental and practical aspects. Their work serves as a bridge between theoretical developments and practical 

applications, highlighting tools and methodologies that can be directly applied to real-world datasets. 

A notable advancement in TDA is the concept of persistence landscapes, which provide a robust 

summary of persistence diagrams. Bubenik (2015) [2] introduced persistence landscapes as a tool to convert 

persistence diagrams into a functional space, enabling the use of statistical methods directly on these summaries. 

In embedded systems with limited resources, persistence landscapes have shown to be especially helpful for 

implementing dataset verification techniques. By transforming topological features into a format suitable for 

standard data analysis techniques, persistence landscapes facilitate the integration of TDA in various 

computational environments, including those with limited resources. 

This paper aims to demonstrate the utility of TDA in the medical field, specifically in predicting diabetes using 

persistent homology and persistent landscape. By applying this technique to the Kaggle Pima Indian diabetes 

dataset, we aim to highlight the efficacy of persistent homology in identifying significant patterns and 

improving prediction accuracy. 

 

http://www.questjournals.org/
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II. Methodology 

1. Dataset and Feature Selection 

The Pima Indian Diabetes Dataset  https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/data 

[13] is a popular dataset used in the field of machine learning and data analysis, particularly for developing and 

testing algorithms for predicting diabetes. It is named after the Pima Indian population in the United States, 

which has a high prevalence of diabetes, making it an ideal candidate for studying this disease. The National 

Institute of Diabetes and Digestive and Kidney Diseases initially assembled the dataset, which the UCI Machine 

Learning Repository then made accessible to the general public. It was hosted on Kaggle, a well-known website 

for datasets and competitions in data science. 

The collection has 768 samples, each of which corresponds to a female patient with Pima Indian ancestry. There 

are eight feature variables and a single target variable in every sample. 

2. Persistent Homology Calculation 

To compute the persistent homology, we represented the dataset as a point cloud and constructed a Vietoris-Rips 

complex.  This complex captures the topological features of the data by connecting points that are within a 

certain distance of each other. Persistent homology tracks these features across different scales, providing a 

multi-scale view of the data's topological structure. 

 

Figure 1: Filtration with the sequence of simplicial complex 

The tracked features (birth, death) are recorded and visualize in many ways. The most ways are persistent 

diagrams and persistent barcodes.   

2.1. Filtration 

Let K ”be a finite simplicial complex and 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑟 = 𝐾 be a finite sequence of nested subcomplexes 

of K. K is called a filtered simplicial complex and the sequence {𝐾1, 𝐾2, … } is called a filtration of K” [1].  

Numerous filtered simplicial complexes exist, including the Cech, Alpha, and Delaunay types. The Vietoris-

Rips complex is our choice due of its computational efficiency. 

Let 𝑋 = {𝑥1, 𝑥2, … . 𝑥𝑛}  be a collection of points in 𝑅𝑑. Given distance >  0 , R( 𝑋 , 𝜖) denotes the simplicial 

complex on 𝑛 vertices 𝑥1, 𝑥2, … . 𝑥𝑛, where an edge between the vertices 𝑥𝑖 and 𝑥𝑗  with 𝑖 ≠  𝑗 is included if and 

only if 𝑑(𝑥𝑖 , 𝑥𝑗) ≤ 𝜖 . This type of simplicial complex is called a Vietoris-Rips complex [4].  

Using Vietoris_Rips complex, the topological features are tracked and recorded in the diagram. This diagram is 

called Persistent Diagram.  

 

2.2. Persistent Diagrams 

The sets of topological pairings (birth, death) that emerge from filtering a simplicial complex are known as 

persistent diagrams. In this case, the pairings (𝑏𝑖 , 𝑑𝑗) denote the birth and the death, respectively. This collection 

is multi set, a set the elements can appear multiple times. Both the birth and death times of loops are shared by 

each pair, which is shown by their multiplicity. Stability is by far PDs' most important feature. The associated 

PD changes little in response to small modifications to the simplicial complex. In terms of applications, this 

feature is essential.  

 

It guarantees repeatability and resistance against noise. Multi sets cannot be directly processed by a machine 

learning algorithm because they lack the key mathematical and statistical features needed in a machine learning 

setting. Therefore, in order to portray the persistent diagram as a vector and represent the diagram, a 

transformation is required. We refer to these changes as vectorization.  

 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/data
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2.3. Vectorization methods 

 

Persistent Landscape 

The Persistent Landscape is one of the vectorization methods of representation of persistent diagram that gives 

the statistical properties in [2]. Formally, persistent Landscapes are piecewise constant functions 𝜆: ℕ × ℝ → ℝ̅. 

To define 𝜆, we tent each persistent point 𝑞 = (
𝑏+𝑑

2
,

𝑑−𝑏

2
) ∈ 𝐷 to the baseline 𝑥 = 0 with the following function   

  Λ𝑞(𝑡) = {

𝑡 − 𝑏     if 𝑡 ∈ [𝑏,
𝑏+𝑑

2
] ,

𝑑 − 𝑡      if 𝑡 ∈ [ 
𝑏+𝑑

2
, 𝑑] ,

0         otherwise.

 

 

The persistent Landscape of D is the collection of such functions 𝜆𝐷(𝑘, 𝑡) =
𝑘𝑚𝑎𝑥𝑞𝜖𝐷Λ𝑞(𝑡),       𝑘 𝜖ℕ, 𝑡𝜖[0, 𝑇],…………………………….     (1) 

 where kmax is the kth largest element in the set and T is the real number such that 𝑑 ≤ 𝑇 for any death time d of 

a topological feature [2].  

 

2.4. Machine learning Classifier 

We are able to show the vectorization of Persistent Diagrams in machine learning classifiers at last. 

Machine learning classifiers are algorithms that use input feature-based classification to group data into prede-

termined classes or labels. Many applications, including sentiment analysis, picture recognition, spam detection, 

and medical diagnosis, depend on these classifiers. The Random Forest Classifier was employed in this study.  

A strong and adaptable algorithm, Random Forest can handle a broad variety of data types and applications. It's 

a well-liked option in the machine learning field since it combines the advantages of several decision trees to 

produce reliable and accurate predictions. 

III. Data Classification 

3.1. TDA method 

 The Persistent homology is used  for data projections into a Persistent diagram. It is built using R 

Studio. It utilizes the programming language R, free Integrated Development Environment (IDE) [6]. 

3.2. Data preprocessing  

The Diabetes data collection contains no missing values. In the outcome Column “1” indicates the presence of 

Diabetes and “0” indicates no Diabetes. For each dataset, we calculated the Euclidean distance matrix, which 

represents the pairwise distances between data points. Using [6], the function (calculate_homology) computes 

the Vietoris-Rips complexes for each dataset. It represented by the distance matrix, helping to identify topologi-

cal features like connected components and loops. These features are represented in the  persistent diagram.  

 

 

Persistent Diagram Persistent landscape (dim 1, dim 0) 
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 Also the function (landscape) [6] , the landscape function corresponding to a given persistence diagram is used . 

Persistent Diagram, Persistence landscapes for dimension 0 (connected components) and dimension 1 (loops) 

for each dataset over a specified range of threshold values are given in the Table 1. 

From (1), maximum Persistent landscape values are computed for each feature. Out of nine features   six 

features are selected for the machine learning evaluation.  

By the experiment the Blood Pressure, Insulin, Skin thickness, Age, Glucose, BMI are the key features for the 

diabetes  
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Data Evaluation 

When we choose the nine features for the Random Forest Classifier, we can see that our suggested model per-

forms noticeably better. During the assessment, the highest accuracy rate for Pima Indian diabetes dataset was 

75% [3].  

Analysis and Prediction 

The primary objective was to leverage the topological features derived from persistent homology to predict 

diabetes. We used various machine learning models, concentrating on the accuracy of the predictions. The 

persistent homology features were used as inputs to these models, which were then trained and validated using 

the dataset. 

IV. Results 

Our analysis yielded a remarkable prediction accuracy of 75%. This high accuracy demonstrates the potential of 

persistent homology in extracting meaningful topological signatures from medical data, leading to highly 

accurate predictions. 

V. Discussion 

The results of this study underscore the effectiveness of Topological Data Analysis, and specifically persistent 

homology, in the medical field. By transforming the dataset into a topological space, we could uncover patterns 

that traditional methods might miss. The high prediction accuracy indicates that persistent homology can serve 

as a valuable tool in medical diagnostics and prognosis, particularly in the context of diabetes. Both results also 

take into account the algorithm that has the second-highest accuracy rate out of all the ones that were run. 

VI. Conclusion 

This research highlights the significance of   Topological Data Analysis and persistent homology in enhancing 

the prediction of medical outcomes. The application of these techniques to the Pima Indian diabetes dataset 

resulted in a highly accurate predictive model. Future research could explore the integration of persistent 

homology with other advanced machine learning techniques to further improve prediction accuracy and 

applicability to other medical conditions. 
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