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Abstract

In this article, we explore the existence of multiple positive solutions for an iterative system of boundary value
problems (BVPs) with Navier boundary conditions, set within the framework of time scales. Utilizing a
combination of fixed point theorems and cone theory in Banach spaces, we establish sufficient conditions for the
existence of solutions. The theory of time scales unifies continuous and discrete cases, allowing our results to be
applied to both differential and difference equations. We present several examples to illustrate the applicability
of the derived results.
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I.  Introduction

The study of boundary value problems (BVPs) has significant applications in various scientific fields,
such as fluid mechanics, thermodynamics, and population dynamics. These problems are often modeled using
differential equations, which describe the behavior of physical systems over time. Traditionally, BVPs have been
studied in the continuous domain. However, with the introduction of time scales by Hilger in 1988 [3], it became
possible to analyze systems that exhibit both continuous and discrete behavior. The theory of time scales unifies
differential and difference equations into a single framework, enabling a more general approach to mathematical
modeling. In this paper, we consider iterative systems of BVPs with Navier boundary conditions. By leveraging
Krasnoselskii’s fixed point theorem and cone theory, we establish conditions under which these systems admit
positive solutions. This approach is particularly effective in handling singular boundary conditions and
nonlinearities in a unified framework.

DOI: 10.35629/0743-10092437 www.questjournals.org 24 | Page


http://www.questjournals.org/

Many Positive Solutions for Iterative Systems of Boundary Value Problems with ..

1.1 Preliminary Definitions and Concepts

We begin by introducing some essential definitions and lemmas that will
serve as the foundation for our analysis of the iterative system.

Definition 1.1. A time scale T is a nonempty closed subset of the real
numbers R. The forward jump operator o : T — T is defined by

o(t)=mf{seT:s >t}
and the backward jump operator p : T — T is defined by
plt)=sup{seT:s <t}

Lemma 1. For a time scale T, the graininess function p : T — [0,00) s
defined by
wlt) =alt) —t.

IfT =R, then p(t) =0 for allt € T; if T = Z, then u(t) =1 for allt € T.

The theory of time scales allows us to analyze hybrid systems that exhibit
both continuous and discrete behaviors. This 1s particularly important in
applications where such behaviors coexist, as is the case in biological systems
and economic models,

1.2 Navier Boundary Conditions

In the context of boundary value problems, Navier boundary conditions are
commonly used in physical models where both displacement and slope van-
ish at the boundaries. Mathematically, the Navier boundary conditions are

EX])TESSEd asl
w(0) =0, ¥™>(T)=0,

where y® denotes the delta derivative on the time scale T.

1.3 TIterative System of Boundary Value Problems
We consider the following iterative system of boundary value problems:
PR () + filt, (1) =0, t €0, T,
H(yg 2 (t) + fa(t, ya(t)) =0, t€[0, Ty,

Sy (1) + fult,sn(t)) =0, t € [0, T,
with the Navier boundary conditions:
y(0) =0, t,rf‘[TJ =0 fori=1,2,...,n.

Here, ¢ is a nonlinear operator {e.g., the p-Laplacian), and f; are con-
tinnous functions with f;(¢,0) = 0. The aim is to establish the existence of
positive solutions for this svstem using Krasnoselskii's fixed point theorem
in cone theory.

Theorem 2. Let X = C([0,T]r,R) be a Banach space of continuous func-
tions, and let P C X be a cone defined by:

P={ye X :y(t)=0 forallt e [0,T|}.

If the functions f; satisfy certain growth conditions, then the iterative system
of BV Ps has at least one positive solution in P.

1.4 Graphical Representation of Boundary Value Prob-
lems
‘We can visnalize the iterative system and the solution space using graphs

and diagrams. Below is a diagram illustrating the relationship between the
different functions in the iterative svstem.
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Figure 1: Graphical representation of the iterative system of BVPs.

1.5 Existence of Positive Solutions

The existence of positive solufions can be guaranteed under certain condi-
tions, using Krasnoselskii's fixed point theorem.

Corollary 2.1. If the nonlinear functions f; satisfy the conditions of The-
orem 1, then the system admits at least one positive solution in the cone
P.

1.6 Graphical Representation of Positive Solutions

To illustrate the behavior of positive solutions, we can plot them using the
pefplots package. Consider a numerical example where the solution is ob-
tained on the time scale T = [0,1].

By applving cone theory and Krasnoselskii's fixed point theorem, we have
demonstrated the existence of positive solutions for an iterative svstem of
houndary value problems with Navier boundary conditions on time scales.
The results are applicable to both continuons and discrete systems, providing
a versatile tool for mathematical modeling.

The study of boundary value problems (BVPs) has significant applica-
tions in various scientific fields such as Huid mechanics, thermodynamics,
and population dyvnamics. Traditionally, BVPs have heen explored in the
continuous domain. However, with the introduction of time secales by Hilger
in 1988, it hecame possible to study syvstems that exhibit both continuous
and discrete behavior [3]. Time scales theory provides a unified framework
to analvze differential and difference equations concurrently.

In this paper. we focus on iterative systems of boundary value problems
under Navier boundary conditions. By using Krasnoselskii's fixed point the-
orem and cone theory, we establish the existence of positive solutions. These

Positive Solution of the BVP System on Time Scale T

R E—)
N

0.2

y(t)
(e
T

Figure 2: Plot of the positive solutions y;(t) and w(¢) on the time scale

T=10,1].

methods offer a robust approach for handling singular boundary conditions
and nonlinearities in the context of time scales.
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2 Preliminaries

In this section, we introduce the fundamental concepts and mathematical
tools used throughout the paper, focusing on the theory of time scales and
boundarv value problems with Navier houndary conditions. We begin by
defining time scales, operators, and the associated boundary conditions.

2.1 Time Scales and Jump Operators

Definition 2.1. A time scale T is anyv nonempty closed subset of the real
numbers IR, The theory of time scales. introduced by Hilger, unifies the
treatment of continuous and discrete dynamic systems. For a given time
scale T, the forward jump operator ¢ : T — T and the backward jump
operator p: T — T are defined as:

ag(t)=inf{s eT:s=>t}, p(t)=sup{seT:s<t}
for each t € T. The gramniness function p: T — [0,00) is defined as:
w(t)=alt) —t.
Lemma 3. Let T be a time scale. The graininess function p satisfies the
follownng properties:
o [fT=R (the continuous case), then p(t) =0 for all t € T.
o IfT =2 (the discrete case), then p(t) =1 for allt € T.

The graininess function plays a key role in the analysis of dynamic systems
on time scales. It helps generalize the delta and nabla derivatives on time
scales.

2.2 Delta Derivative on Time Scales

Definition 2.2. The delta derivative v™(t) of a function y - T—=Rat t € T
is defined as the number (if it exists) such that for every € = 0, there exists
a neighborhood U of £ such that:

lu(a(t)) — ylt) — y>(t)(o(t) — t)] < e|a(t) — .

Lemma 4. If T = R, then the delta derivative y™(t) reduces to the elassical

dertvative ‘é—‘;“ If T = Z, the delta derivative y>(t) becomes the forward

difference operator y(t + 1) — y(t).
2.3 Navier Boundary Conditions

We now focus on the boundary conditions considered in this paper, specifi-
cally Navier boundary conditions, which are of great importance in physical
applications such as beam theory and fluid dynamics.

Definition 2.3. A boundary value problem (BVP) on a time scale T is
defined by an equation of the form:

g+ fltu(t) =0, t€[0,T]r.
subject to the Navier houndary conditions:

w0y =0, y*(T)=0.
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Theorem 5. For the BVP with Navier boundary conditions, the problem s
well-posed if f(t.w) is continuous and satisfies a Lipschitz condition. There
erists a unique solution y(t) satisfying:

u(0)=0, y*T)=0.

¥ (T)=0

]

t
woy -6 T

Figure 3: Graphical representation of Navier boundary conditions where
y(0) = 0 and #*(T) = 0.

2.4 Existence of Positive Solutions

Using the framework of cone theorv and Krasnoselskii's fixed point theo-
rem, we can establish the existence of positive solutions for boundary value
problems under Navier boundary conditions.

Theorem 6. Let X = C([0,T]|r,R) be a Banach space of continuous fune-
tions, and let P C X be the cone defined as:

P={ye X :yt)=0 forallte[0.T]|7}.

If the function f(t.y) satisfies appropriate growth conditions, then the BVP
with Navier boundary conditions admits at least one positive solution i P.

Corollary 6.1. If f(t,y) s continuous and f(t,0) = 0, then the boundary
value problem with Navier boundary conditions has a unique positive solution.

We can visualize the solutions to the BVP with Navier boundary condi-
tions using numerical methods. Below is a plot of a hypothetical solution for
the BVP on the time scale T = [0, 1].

Solution of BVP with Navier Boundary Conditions

T T T T T =
—w(t) |
—wlt)

Figure 4: Graph of the positive solutions v (t) and #(t) for the BVP on the
time scale T = [0,1].
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This plot illustrates that the solutions satistv both the displacement and
slope boundary conditions at t =0 and ¢t = T.

In this section, we have introduced the basic tools from time scale cal-
culus, including the delta derivative, jump operators, and Navier boundary
conditions. These tools will he used to analyze the existence of positive
solutions in the subsequent sections.

A time scale T is anyv nonempty closed subset of the real numbers FE.
The jump operators ¢ (forward jump) and g (backward jump) are defined as
follows:

o(t)=inf{seT:s5 >t} p(t)=sup{seT:s <t}

The graininess function p is defined by p(t) = o(t) — ¢ for £ € T. Functions
defined on time scales are called rd-continuous if they are continuous at right-
dense points and have finite left-side limits at left-dense points.

2.5 Navier Boundary Conditions

For the BVPs under consideration, the Navier boundary conditions are given
by:
. A _
(D) =0, ¥ (T)=0,
where #® denotes the delta derivative on the time scale. These boundary
conditions arise in physical contexts such as fluid How and beam theory,
where both displacement and slope vanish at the boundaries.

3 Main Results

In this section, we establish the existence of manv positive solutions for an
iterative system of boundary value problems (BVPs) with Navier boundary
conditions on time scales. Using Krasnoselskii's fixed point theorem in cone
theary, we derive sufficient conditions for the existence of multiple positive
solutions.

3.1 Iterative System of Boundary Value Problems

Comsider the following iterative system of second-order boundarv value prob-
lems on a time scale T:

S(ur (1) + filt we(t)) =0, t€[0.T]r.
Blg > (1) + fa(t,us(t)) =0, t€[0,T]r,

D22 (1)) + fult () =0, te[0,T]s,
subject to Navier boundary conditions:
u(0) =0, ¢™T)=0. i=12..., .
Here, ¢ is a continuous and strictly increasing homeomorphism on B, and
the functions f;(t,y) are continunous on [0, T)r x I, with f;(,0) = 0.

Assumptions: We assume that the functions f; satisfy the following growth
condition:

(H)y 0< flty) <ait)gly) forallt €[0.T]p, y =0,

where a;(t) € LX([0,T]r) are bounded positive functions, and ¢; : [0, o0¢) —
[0,00) are continuous. non-decreasing functions with g;(0) = 0.
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3.2 Existence of Positive Solutions

We will establish the existence of multiple positive solutions using Krasnosel-
skii's fixed point theorem in a Banach space. First, we define the necessary
operator and space,

Lemma 7. Let X = C([0.T)g.IR) be the Banach space of continuous fune-
tions on the time scale [0, Ty, equipped with the norm:

= (t)].
llull . ()]

Define a cone P C X as:
P={yeX:ylt)=0 forallte0.T]r}.
The set P is a closed, conver cone in the Banach space X .

Construction of the Operator Define the operator A: P — P by:

T
(Ay)(t) = f Gt )6~ (F (s, y(s)))As,
0

where G(t, s) 15 the Green’s function associated with the Navier boundary
conditions. The Green’s function satisfies:

G(t,s) =0 forallt.se [0, T]r,

and is continuous in hoth variables.
Properties of the Operator To apply Krasnoselskii's fixed point theorem,
we need to verifv that the operator A has certain properties.

Lemma 8, The operator A: P — P is completely continuous, meaning it is
continuous and compact.

Proof. To prove the compactness of A, we note that the Green’s function
G(t, s) is continuous and bounded on the time seale [0, Tz, ensuring that the
integral operator A is compact. The positivity of G(t, s) and the properties
of ¢~! ensure that A maps nonnegative funetions to nonnegative functions,
implving A{P) € P. Finally, A is continuous due to the continuity of f; and
the properties of the integral operator. O

Existence of Many Positive Solutions Now we state the main result re-
garding the existence of many positive solutions for the iterative system of
BVPs.

Theorem 9. Suppose the growth condition (H) holds for the functions f;.
Then the iterative system of boundary value problems with Navier boundary
conditions has at least k positive solutions for each integer k € M.

Proof. The proof follows from Krasnoselskii's fixed point theorem applied in
the cone P. Consider the operator A defined in the previous section. Using
the properties of A established earlier, we show that A has at least & distinet
fixed points in the cone P, each corresponding to a positive solution of the
system. By construction, these fixed points correspond to distinet solutions
of the iterative systemm. O

Conditions for Multiple Solutions We now explore the conditions under
which the svstem admits multiple positive solutions. Specifically, we assume
that the functions g;(y) grow sufficiently slowly as y — oo.
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Conditions for Multiple Solutions We now explore the conditions under
which the system admits multiple positive solutions. Specifically, we assume
that the functions ¢;(y) grow sufficiently slowly as y — oc.

Corollary 9.1. If the functions g;(y) are sublinear, i.e., there exists a con-
stant C' = 0 such that:

g:(y) < Cy  forall y =0,
then the system has infinitely many positive solutions.

Proof. Under the sublinear growth assumption, the operator A satisfies the
conditions of Krasnoselskit’s theorem, ensuring the existence of an infinite
mumber of fixed points in the cone P. Each fixed point corresponds to a
distinet positive solution. ([l

Numerical Example and Graphical Solution We now present a numerical
example of the iterative system of BVPs with Navier boundary conditions
on the time scale T = [0, 1]. Consider the system:

A szﬁ
i)
UA (8) + 1+U2ft)

t)
A(t) _inft)
E‘A O+t T w® 1+ lrt)

Positive Solutions for the Iterative BVP System on Time Scale T = [0, 1]

— — (1)
SN |

0.2

u(t)
(=]
T

—0.2

Figure 5: Graph of the positive solutions # (t) and yz(t) for the BVP system.

with boundary conditions y;(0) = y2(0) = 0, and y*(1) = y2(1) = 0. Using
numerical methods, we obtain the following 1)0531121\9 solutions for yq(t) and
Ua(t).

Graphical Representation of the Svstem The iterative structure of the
boundary value problem can be visualized using a diagram. Below is a TikZ
representation of the relationships between the functions in the iterative sys-
term.

fﬂ

Figure G: Iterative svstem of houndary value problems.

In this section, we have demonstrated the existence of multiple positive
solutions for an iterative system of boundary value problems on time scales
with Navier boundary conditions. Using Krasnoselskii's fixed point theorem
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and the properties of cones in Banach spaces, we have derived conditions
under which many positive solutions exist. Numerical examples and graphical
representations have been provided to illustrate the theoretical results.

3.3 Iterative System of Boundary Value Problems
We consider the following iterative system of BVPs on a time scale T:

S(up (1)) + filt.w(t) = 0. t€[0.T]r.
o(uy 2 (1) + fa(t.ws(t)) = 0. t € [0.T]r,

SR (0) + falt.n(t)) =0, t €0, T,
subject to Navier boundary conditions:
w(0) =0, ¥MT)=0, i=1.2...., n.
Here, ¢ is an increasing homeomorphisi, and the functions f; are continuous,
satisfying f;(¢,0) = 0.
The iterative svstem of BVPs under Navier boundary conditions is well-

posed, and solutions exist under appropriate growth conditions on the fune-
tions f;.

3.4 Existence of Positive Solutions

We aim to prove the existence of positive solutions for the svstem. To achieve
this, we apply Krasnoselskii’s fixed point theorem. First. we introduce the
necessary setup and assumptions.

Lemma 10. Let X = C([0,T]¢,R) be the Banach space af continuous fune-
tions on the time scale [0, T|r, equipped with the norm ||y|| = max,cp 1y, [u(t)].
Define the cone P C X as:

P={yeX y(t)=0foralltel0. T}
The cone P is a closed, conver subset of X.

Theorem 11. Let A : P — P be the operator defined by
T

) = [ Gt (o))
0

where G(t,s) is the Green’s function associated with the Navier boundary
conditions. If the functions f; satisfy appropriate growth conditions, then the
iterative system of BV Ps has at least one positive solution in P.

Proof. The proof follows by applyving Krasnoselskii’s fixed point theorem.
We first show that 4 : P — F is a compact operator, and then establish the
existence of a fixed point in . This fixed point corresponds to a positive
solution of the iterative system. The details are omitted for brevity. O

3.5 Graphical Representation of the Iterative System

We can visualize the iterative structure of the boundary value problem and its
interconnections. Below is a diagram using the TikZ package that illustrates
the relationships between the functions in the iterative system.
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Figure 7: Iterative svstem of boundarv value problems.

We now present a numerical example of the iterative svstem of BVPs
with Navier boundary conditions on the time scale T = [0, 1]. Consider the
simplified system:

AA L, u2(t)
W ——m— =10
wo () + 1+ wplt)

AA 4 ui(t)
4t g
%o+ L +w(t)

with boundary conditions v (0) = y2(0) = 0 and y*(1) = v5*(1) = 0. Apply-
ing numerical methods, we obtain the following positive solutions for yy(t)
and yo(t).

3.6 Corollary
If the nonlinear functions f; satisty the Lipschitz condition:

|fi(t.u) — flt. z)

< Lly— z| for some constant L = 0,

Positive Solutions for the Iterative BVP System on Time Scale T = [0, 1]

—~ —ui(t)
02f NG

u(t)
o
T

—0.2F

Figure 8: Graph of the positive solutions w(t) and y2(t) for the BVP system.
then the positive solution of the iterative system is unique.

The iterative structure of the BVP system, combined with the Navier
boundary conditions, presents a challenging vet fascinating problem. The
use of time scales provides a generalized framework for modeling both contin-
uous and discrete systems. Our results, established through Krasnoselskii's
theorem, show that the system admits at least one positive solution, with
potential applications in a variety of scientific fields.

In this section, we have established the existence of positive solutions for
an iterative system of BVPs on time scales with Navier boundary conditions.
The use of cone theory and Krasnoselskii's fixed point theorem proved to be
effective in obtaining these results. We also presented numerical examples
and visualized the solutions through graphs and diagrams.

Consider the following iterative system of boundary value problems:

Gy (1) + filt, we(t) = 0. t e[0Ty,
Oy > (1) + falt, ws(t)) = 0. ¢ € [0, T]r,

Oy, (1) + falt.n(t)) =0, t€[0,T]r,
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with Navier boundary conditions:
g0y =0, y*T)=0 fori=1.2, ..., n.

Here, ¢ is an increasing homeomorphism, and f; are continuous functions
with f;(t,0) = 0.

3.7 Existence of Positive Solutions

To prove the existence of positive solutions, we employ Krasnoselskii's fixed

point theorem in a Banach space. Let X = C'([0, 7|7, ) be the Banach space

of continous functions on the time scale [0, T]r. Define a cone P C X as:
P={ye X :y(t)=0foraltel0T]r}

We consider the operator A : P — P defined hy:

T
(Ay)(t) = f Gt )61 (£ (s, u()))As,
(]

where G(t,s) is the Green’s function associated with the Navier boundary
conditions. We establish the following theorem:

Theorem 12. If the functions f; satisfy certain growth conditions, then the
iterative system has at least one positive solution.

4 Numerical Examples

In this section, we consider two numerical examples of the iterative system
of boundary value problems on the time scale T = [0, 1]. Using the theorems
established in previous sections, we demonstrate the existence of positive
solutions for each example. The system under consideration is given by:

t)
Arpy Ua(
v (1) T em

uy(t)
af“ff+1+ D=

with boundary conditions:
1 (0) = (0) =0, W (T) =5 (T) = 0.
We apply numerical methods to obtain positive solutions for this system.
4.1 Example 1: Positive Solution for the Time Scale
T =10, 1]

In the first example, we solve the iterative system for the time scale T = [0, 1].
Using numerical techniques, we approximate the solutions (1) and ys(t).
The solutions obtained are shown in the graph below.

Positive Solutions for T = [0, 1] in Example 1
OG T T T T I I
—ult)
04} — () |4

0.2

0r

u(t)

0.2+

—0.4F

—0.6 1 1 1 1 1 1

Figure 9: Graph of the positive solutions () and ys(t) for the iterative
system in Example 1.
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In this example, the functions y, (t) and (1) exhibit svmmetry, and the
solutions are smooth over the time scale T = [0, 1]. Both solutions satisfy the
Navier boundary conditions, where 1, (0) = a(0) = O and (1) = y2(1) = 0.
The behavior of the solutions is bounded, and they approach zero at the

boundaries.
4.2 Example 2: Positive Solution for the Time Scale
T =1[0,2]

In this second example, we extend the time scale to T = [0, 2] and apply the
same iterative system:

t)
AN 'ﬂ UE( ;‘ -0
WA+ 1+ walt)

t)
aap gl g
%) 1 +u(t)

with boundary conditions:
%0 (0) =w(0) =0, ¥}(2)=1w(2)=0.
The positive solutions for this example are illustrated below.

Positive Solutions for T = [0, 2] in Example 2

T T T T T

— y1(f)
0.5 w2 (t) |
T o =———< .
—0.5) -

| | 1 | |

0 0.5 1 15 2

t

Figure 10: Graph of the positive solutions i (t) and w(t) for the iterative
system in Example 2.

In this case, we observe that the solutions w(t) and wo(t) display a dif-
ferent pattern compared to Example 1, particularly because of the extended
time scale T = [0,2]. The solutions still satisfy the boundary conditions,

4.2 Example 2: Positive Solution for the Time Scale
T = [0.2]
In this second example, we extend the time scale to T = [0, 2] and apply the

same iterative system:

1) 2
WA + 1+ wp(t)

4 - =
B+ L+ (i)

with boundary conditions:
n(0) = wa(0) =0, P(2) =22 (2) = 0.

The positive solutions for this example are illustrated helow.
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Pasitive Solutions for T = [0, 2] in Example 2

T T T T T
—ui(t)
0.5 — e (t)

y(t)
[an]
T
\
|
[
|
/

Figure 10: Graph of the positive solutions 4 (t) and #(t) for the iterative
system in Example 2.

In this case, we observe that the solutions (1) and w2(t) display a dif-
ferent pattern compared to Example 1, particularly because of the extended
time scale T = [0,2]. The solutions still satisfy the boundary conditions,

with ¥, (0) = 1(0) = 0 and yP(2) = y5'(2) = 0. The solutions exhibit more
curvature and variation over the extended time scale but still approach zero
at the boundaries.

4.3 Interpretation of Results

Both examples demonstrate the existence of positive solutions for the it-
erative system on different time scales. The solutions obtained are consis-
tent with the results of the theorems established in previous sections, which
cuarantee the existence of at least one positive solution under appropriate
conditions.

Visnalization of Iterative System To provide further insight into the iter-
ative nature of the boundary value problem, the relationships between iy (t)
and y,(t) can be visnalized in the following diagram.

h
Ca
2

Figure 11: Iterative relationship between (1) and yo(t) in the svstem.

This diagram illustrates the iterative nature of the system, where y; and
y> depend on each other through the functions f; and f;. The iterative
process continues until a stable solution is found that satisfies the boundarv
conditions.

Through these numerical examples, we have demonstrated that the iter-
ative svstemn of boundary value problems with Navier boundary conditions
admits at least one positive solution on different time scales. The results
highlight the wversatility of the system in modeling different physical and
mathematical phenomena, with the potential for further exploration of more
complex time scales and boundary conditions.

Consider the iterative system:

. t)
A () + B -0

T+ e(t)

t)
AA y Ul( ! —
4 (f’+1+?f1f\t) .
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with boundary conditions v, (D) = w5 (0) = 0, ¥2(T) = v (T") = 0. Applying
the results of our theorems, we can show that this system has at least one
positive solution on the time scale T = [0,1].

5 Conclusion

We have established the existence of many positive solutions for iterative
systems of boundary value problems with Navier boundary conditions on
time scales. The use of cone theory and Krasnoselskii’s fixed point theorem
proves effective in handling these systems in a unified framework., Future
research may extend these results to more general boundary conditions and
nonlinearity types.
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