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Abstract 
In the present manuscript, a new notion of weakly multiplicative contractive mapping is introduced and a fixed 

point theorem in multiplicative metric space is proved by using this new notion.  
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I. Introduction 
In 2008, Bashirov et al. [2] introduced a new notion called multiplicative metric space (MMS for short). The 

main idea was that the usual triangular inequality was replaced by a ‘multiplicative triangle inequality’ as 

follows: 

Definition 1.1. Let ℬ be a nonempty set. A mapping 𝑚∗ ∶  ℬ ×  ℬ →  ℜ+ satisfying the followings:  

(1) 𝑚∗(𝑐, 𝑑)  >  1, for all 𝑐, 𝑑 ∈  ℬ and 𝑚∗(𝑐, 𝑑) =  1  if and only if 𝑐 = 𝑑;  

(2) 𝑚∗(𝑐, 𝑑) =  𝑚∗(𝑑, 𝑐) for all 𝑐, 𝑑 ∈  ℬ;  

(3) 𝑚∗(𝑐, 𝑑)  ≤  𝑚∗(𝑐,   𝑒). 𝑚∗(𝑒, 𝑑) for all 𝑐, 𝑑, 𝑒 ∈  ℬ; (multiplicative triangle inequality) 

is called a multiplicative metric and the pair (ℬ, 𝑚∗) is called a multiplicative metric space (MMS in short). 

 

Example 1.2.[5] Let 𝑚∗ ∶  ℜ ×  ℜ →  [1, ∞) be defined as 𝑚∗(𝑐, 𝑑)  =  𝑎|𝑐−𝑑|  , where 𝑐, 𝑑 ∈  ℜ and 𝑎 >  1. 

Then 𝑚∗ is a multiplicative metric and (ℜ, 𝑚∗)  is a multiplicative metric space(usual).  

One can refer to ([1, 3, 4, 5]) for detailed multiplicative metric topology.  

 

Definition 1.3.[4] Let (ℬ, 𝑚∗)  be a multiplicative metric space. Then a sequence {𝑐𝑛} in ℬ is said to be  

(1) a multiplicative convergent to 𝑐 if  𝑚∗(𝑐𝑛, 𝑐) →  1 as 𝑛 →  ∞.  
(2) a multiplicative Cauchy sequence if 𝑚∗(𝑐𝑛 , 𝑐𝑝) →  1 as 𝑛, 𝑝 →  ∞.  

  

Remark: If every multiplicative Cauchy sequence in (ℬ, 𝑚∗)  is convergent to 𝑐 ∈  ℬ, then (ℬ, 𝑚∗) is called a 

complete multiplicative metric space. 

 

II. Main Result 
In this section, a new notion of weakly multiplicative contractive mapping is introduced and a fixed point 

theorem is proved for such kind of mappings. 

 

Definition 2.1. Let (ℬ, 𝑚∗) be a multiplicative metric space. A self map ℊ on ℬ is said to be weakly 

contractive, if there exists a function α ∶ (1, ∞) → [0, 1) with  

sup{α(c): 1 < 𝑎 ≤ 𝑐 ≤ 𝑏} <  1 

and such that 

    𝑚∗(ℊ𝑥, ℊ𝑦)  ≤  𝑚∗(𝑥, 𝑦)α[𝑚∗(𝑥,   𝑦)].                                      (2.1) 

 

Theorem 2.2. Let (ℬ, 𝑚∗) be a multiplicative metric space and let ℊ ∶  ℬ → ℬ be a mapping satisfying (2.1), 

then ℊ has a unique fixed point. 

Proof. Let 𝑥 ∈  ℬ be arbitrary. Consider the sequence {ℊ𝑛𝑥}.  

If 𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) = 1, for some 𝑛, then ℊℊ𝑛𝑥 =  ℊ𝑛𝑥, that is, ℊ𝑛𝑥 is a fixed point of ℊ and so conclusion of 

Theorem follows. 

Suppose now that 𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) > 1, for all 𝑛 ∈  ℕ.  
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Then as α(c) < 𝑐, for 𝑐 > 1, from (2.1), we have that ℊ is multiplicative contractive.  

So, we get 

𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) =  𝑚∗(ℊℊ𝑛−1𝑥, ℊℊ𝑛𝑥)  

       ≤  𝑚∗(ℊ𝑛−1𝑥, ℊ𝑛𝑥)α[𝑚∗(ℊ𝑛−1𝑥,ℊ𝑛𝑥)] 

                             <  𝑚∗(ℊ𝑛−1𝑥, ℊ𝑛𝑥). 

Thus {𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥)} is a monotone decreasing sequence of reals and so it converges. 

Let lim
𝑛 →∞

𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) = 𝑟.  

Now, we show that 𝑟 = 1.  

Suppose on the contrary that 𝑟 > 1 and set 

𝛼 = 𝑠𝑢𝑝 {𝛼(𝑐): 1 < 𝑟 ≤ 𝑐 ≤   𝑚∗(𝑥, 𝑔𝑥)}. 

Then 𝛼(𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥))  ≤  𝛼, for all 𝑛 ≥ 0, and so we have 

1 < 𝑟 <  𝑚∗(ℊ𝑛𝑥,   ℊ𝑛+1𝑥)  ≤  𝑚∗(ℊ𝑛−1𝑥,   ℊ𝑛𝑥)α  ≤ . . . ≤  𝑚∗(𝑥, 𝑔𝑥)𝛼𝑛
 → 1  as 𝑛 → ∞, a contradiction.  

Therefore 𝑟 =  1. 
Now, we show that {ℊ𝑛𝑥} is a multiplicative Cauchy sequence.  

Let 𝜀 > 1 and set 1 <  𝛼(𝜀) = sup {𝛼(𝑐): 
𝜀

2
≤ 𝑐 ≤  𝜀}. 

Since lim
𝑛 →∞

𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) = 1 and 𝛼(𝜀) −  1 > 0, there exists 𝑝 ∈  ℕ such that 

 𝑚∗(ℊ𝑛𝑥, ℊ𝑛+1𝑥) <  ℰ
𝛼(𝜀)− 1

2 ,                                                      (2.2) 

for all 𝑛 ≥ 𝑝.  
Let 𝑛 ≥ 𝑝 be any fixed positive integer.  

We shall show by induction that 

𝑚∗(ℊ𝑛𝑥,   ℊ𝑙𝑥) <  𝜀,                       (2.3) 

for all 𝑙 > 𝑛 > 𝑝. 
For 𝑙 = 𝑛 + 1, (2.3) follows from (2.2).  

Assume now that (2.3) holds for some 𝑙 ≥ 𝑛 + 1. 

If 𝑚∗(ℊ𝑛𝑥,   ℊ𝑙𝑥)  ≥  
𝜀

2
, then from (2.1), we have 

𝑚∗(ℊ(ℊ𝑛𝑥),   ℊ(ℊ𝑙𝑥))  ≤   𝑚∗(ℊ𝑛𝑥,   ℊ𝑙𝑥)𝛼(𝜀) <  𝜀𝛼(𝜀). 
Thus, by the multiplicative triangle inequality and (2.2), we get 

𝑚∗(ℊ𝑛𝑥,   ℊ𝑙+1𝑥)  ≤  𝑚∗(ℊ𝑛𝑥,   ℊ(ℊ𝑛𝑥)). 𝑚∗(ℊ(ℊ𝑛𝑥),   ℊ(ℊ𝑙𝑥))  

                               <  ℰ
𝛼(𝜀)− 1

2
  𝜀𝛼(𝜀) < ℰ. 

If 𝑚∗(ℊ𝑛𝑥,   ℊ𝑙𝑥) <  
𝜀

2
, then by the multiplicative triangle inequality and (2.2), we have 

𝑚∗(ℊ𝑛𝑥,   ℊ𝑙+1𝑥)  ≤  𝑚∗(ℊ𝑛𝑥,   ℊ𝑙𝑥). 𝑚∗(ℊ𝑙𝑥,   ℊ𝑙+1𝑥)  

                               <  
ℰ

2
. ℰ

𝛼(𝜀)− 1

2
   < ℰ. 

Therefore, 𝑚∗(ℊ𝑛𝑥,   ℊ𝑙+1𝑥)  <  ℰ, this completes the induction.  

From (2.3), we conclude that {ℊ𝑛𝑥 } is a multiplicative Cauchy sequence. The multiplicative completeness of  

ℊ guarantees the existence of some point 𝑢 ∈  ℬ such that      lim
𝑛 →∞

ℊ𝑛𝑥 = 𝑢. 

By continuity of ℊ, it follows that 

ℊ𝑢 =  ℊ lim
𝑛 →∞

ℊ𝑛𝑥 =  lim
𝑛 →∞

 ℊℊ𝑛𝑥 = 𝑢. 

Hence 𝑢 is a fixed point of ℊ. The uniqueness of fixed point follows from the multiplicative contractivity of ℊ. 
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