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l. INTRODUCTION

Second-order elliptic eigenvalue problems have garnered significant interest within the scientific
community due to their numerous applications across diverse fields, including fluid mechanics, electromagnetism,
solid mechanics, and multiphysics field coupling problems. For example, the Raviart-Thomas discretization
scheme for second-order elliptic equations and its a priori error estimates are discussed in reference [1]. The
application of the Richardson extrapolation method to second-order elliptic eigenvalue problems is studied in
reference [2]. The local discontinuous Galerkin method is used to solve the Steklov eigenvalue problem in
reference [3].

Using the Raviart-Thomas mixed finite element method to solve general nonsymmetric second-order
elliptic eigenvalue problems has also attracted increasing research interest. For example, researchers have
discussed posterior error estimates, adaptive algorithms for second-order elliptic eigenvalue problems. As a result,
the Raviart-Thomas mixed finite element method has been used to solve various eigenvalue problems, including
the Laplace eigenvalue problem, the Stokes eigenvalue problem in fluid mechanics, the eigenvalue problem of
Maxwell's equations, and the bi-harmonic eigenvalue problem.

Adaptive finite element methods have been widely applied in various fields. For example, examine
superconvergence results based on eigenfunction approximations and analyze residual-type posterior error
estimation and adaptive algorithms for second-order elliptic eigenvalue problems in literature [4,5]. A discussion
of the adaptive discontinuous finite element method for the convection-diffusion eigenvalue problem in literature

[6].

In this paper, a residual type of a posteriori error estimator for the general second order elliptic eigenpair
approximation by the mixed finite element method is derived and analyzed, based on a type of superconvergence
result of the eigenfunction approximation. Meanwhile, the reliability and effectiveness of the method in
eigenfunction computation were verified. The experimental results show that the adaptive algorithm achieves the
optimal convergence rate, and the error curve indicates that, for the same degree of freedom, the approximate
solution obtained by the adaptive algorithm is more accurate than that of the uniform grid method.

1. NOTATIONS AND PRELIMINARIES
In this paper, the definitions of some of the symbols used are as follows. We define the Hilbert space

H(div, Q) = {a € (12(): dive € LZ(Q)},
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1
equipped with the norm ||6|aiv,0) = (lloll§ + lldivel|5)z
For s > 0, we denote as || - [|s o the norms of the Sobolev space L*(Q) and (LS(Q))Z. For scalar fields
and vector fields, we define H°(Q) = L*(Q) and (H° (Q))2 = (1? (Q))Z. The corresponding norms are given by
Iolia= [ WGP ax  wwe (@),
Q
2
Wil = [,@5 +v3) dx, v e (L2(@)"

In addition, for all vector functions s, the differential operators are defined as

0P, 0P, 0y, oY,
divg = — + —, tg = curlp = ——=— ——.
vy 3, + ax, roty = curly ax, 9%,
For all scalar functions v, the differential operators are defined as
Iy = ( av av )
curlv = 9%, ox)

Finally, the relation a < b indicates that a < Cb, with a positive constant C which is independent of
a, b and [1; Similarly, we define a = b to denote a > Cb, with C as above.

1. GENERAL SECOND-ORDER ELLIPTIC EIGENVALUE PROBLEM
Q c R? be a bounded domain with Lipshitz boundary 8. and let n be the outward normal to 9Q,
consider the Dirichlet boundary condition eigenvalue problem
{—div(Vu +b()u) + c(x)u = Au, in Q
u=0, on 01,
where b(x) and c(x) are bounded positive functions on .
Define the vector-valued function ¢ = Vu + b(x)u, then problem (3.1) can be equivalently written as

(3.1)

—divoe + cu = Au, inQ
{G—Vu—b-u=0, in Q (3.2)
u=0, on 01.

Next, define the spaces
V = H(div,Q),W = [%(Q),G = L[>(Q),H = (LZ(Q))Z,
then, the weak form for the problem (3.1) can be defined as follows: Find (4, 6,u) € C X V x W, with (o,u) #
(0,0), such that
{a(o,lll) —b(P,u)+d(P,u) =0, VeV (3.3)
b(o,v) +e(u,v) = Ar(u,v), VvveW, '

where the bilinear forms a(:,-), b(:,-), d(-,), e(:,-) and r(:,-) are defined by

a(o,P) = [,0-Ydx, b(P,v) = - [, divg -vdx, d(o,v)=— [,be-vdx,

e(wv) = [jcuvdx, r(wv)= [juvdx.
The bilinear forms a(:,-), e(:,-) and r(:,-) are symmetric, and the bilinear forms defined above have the following
characteristics:

la, W = Wl le@ww| >0, [rww)l>0,

la(o, )| s llollullwlly, 160, )| < IWilviviw,

ld(p, Wl s IWWllnllully,  le@ )] s llullwllvily, — Ir@v)l < llullwllvilw.
For the eigenvalue A, the Rayleigh quotient can be expressed as

a(o,0) +d(o,u) + e(u,u)
A= .
r(u,u)
From [7], the sequence of eigenvalues corresponding to the eigenvalue problem (3.3) is given by
0S/11 Sﬂ.z < "'Slk S"',limﬂ.k = O,

k—o0

(3.4)

and the associated eigenfunctions
(01, up), (65,u2), -, (04, Ug), -~
The global stability result for problem (3.3) can be obtained from [4] as follows.
Lemma 3.1. For all (¢, v) € V x W, the following inf-sup condition holds
a(o,¢) — b, uw) +d(,u) + b(o,v) + e(u,v)

sup 2 Wiy + vl
0%(0,u)EVXIW llolly + llullw

V. MIXED FINITE ELEMENT METHOD
In this section, we explore approximation methods for the eigenvalue problem (3.3) in mixed finite
element method. To define the discrete approximation solution, we first define a shape regular mesh for the
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domain  denoted by 7;, = {x}, where each element k has edge length h; and the diameter h,.. The mesh size is
defined as h = rrg%xh,c. This triangulation 7;, satisfies the following conditions:
KElR

(i) Any two triangles share at most one edge or one vertex;
(if) All triangles have a positive lower bound on their lowest interior angle;
(iii) There exists a constant y* such that for any element x € 7;,, the following holds

h, .
_<V IVK EL’{?;U

Pr
where p,. denotes the diameter of the largest inscribed circle of element k;
(iv) For any element k € Ty, let the area of element « be ||, we have

C3h? < C1h2 < k| < Ch2 < C4h%,
where C;(i = 1,2,3,4) are constants independent of the mesh size h, and h is a positive real number approaching
zero.

Additionally, the boundary I}, = I,° U I;? is divided into two parts: I;Y represents the interior edges, and
I;2represents the edges on the boundary 9.

Associated with the partition 7;,, we define the finite-dimensional spaces V,, and W), of the lowest order
Raviart-Thomas mixed finite element spaces (see [4]), where B,, (k) denotes the spaces of a polynomial of degree
<monk.

Define
V, = {W € V: |, € Py(1)? @ (x1, %) Py(k), Vi € T3},
which clearly implies V,, € V.
Afterward, define
W, ={v e W:v|, € Py(k),Vk € T;,},
likewise, we have W), € W, and the connection divV, = W), is valid.

With the discrete spaces defined above, we are in position to introduce the discretization of problem (3.3):

Find (4, oy, uy) € C X V, X W, such that

{a(chv‘p) —b(P,up) +d(P,up) =0, VPEV, 4.1)
b(o,,v) + e(uy,v) = Apr(up, v), Vv € W, '
From (4.1), the following Rayleigh quotient expression for 4,, also holds
a(on, 6p) + d(oy, up) + e(up, up)
A = . (4.2)

r(uh: uh)
And from [7] the eigenvalue problem (4.1) has eigenvalues
0< Ap <App < SAqp < < Ayp
and the corresponding eigenfunctions
(0'1,h, ul,h)» (O'z,h, uz,h), y (Gk,hr uk,h)' y (O-N,h' uN,h)'
where N is the dimension of the mixed finite element space V,, X W},.
In this paper, we use P,: V = V, and Q,: W — W, to denote the Raviart-Thomas interpolation operators
which are defined by the following conditions:
(i) For each edge E; (i = 1,2,3) of any triangular element x € 7;,, the following condition holds
(6 —Pyo) -nids =0, (4.3)
Ey
where n; (i = 1,2,3) is the unit outward normal vector on the edge E;;
(ii) For each element x, the following condition applies

j(u —Qnpuw)dx =0; (4.4)
K
(iii) The interpolation operators satisfy the following relation

divPh = thiv. (45)

We also need to define the mixed finite element projection operator (I, 2,): VX W — V, x W, for
any (o,u) € VX W such that

{a(nho' —0o,Y) — bWy, Jpu —u) + d(Pp, Zru —u) =0, v, €V, (4.6)
b(Ilyo —o,v,) +e(Cpu—u,vy) =0, Vv, € W ’
For this type of projection, we have the following estimate (see [1,8]):
llo —Myolly < hllolly,  llu = Zhullo S Allull,. (4.7)
Next, define the linear bounded operators T and S, as well as their discrete versions T;, and S;,:

T:G > W CaG, Tg =u,

Th:G - W, CG, Thg = u,

S:G->VcCaq, Sg = o,

Sh:G -V, Cg, SwLg = op. (4.8)
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As a result, the operator form of the eigenvalue problems (3.3) and (4.1) can be equivalently converted as
ATu = u,S(Au) = o, (4.9)
).hThuh = uh,Sh(lhuh) = O-h. (410)
Thus, solving the eigenvalue problem (3.3) for the eigenpair (4, 0,u) is equivalent to solving the
eigenpair of the operator T for (171, u) and o= S(Au). Similarly, solving the eigenvalue problem (4.1) for the
eigenpair (4, 0, u,) is equivalent to solving for the eigenpair of the operator T, for (1;%,u,) and
6;,=Sp(Apup).
For the linear bounded operators T and S defined in (4.8), for any g € W, such that

{a(Sy, Y) —b(P,Tg) +d(Pp,Tg) =0, VP eV 411
b(Sg,v) +e(Tg,v) =r(g,v), YveWw, (4.11)
for this elliptic problem, the following regularity estimate holds [1]:

ITglli+x < llgllo, (4.12)

where u = w/w — €, w < 2w being the maximum interior angle of Q.
For the discrete version of the linear bounded operators T;, and S;, defined in (4.8), for any g € W, such

that
{a(shg: ¥) — b, Trg) +d(W, Trg) =0, VP EV, (4.13)
b(Spg,v) +e(Thg,v) =1(g,v), Vv € W, ’
From the definitions of the operators (4.11), (4.13), and (4.6), we get
T =T, (4.14)
From (4.9), (4.10) and the projection definition (4.6) , we obtain
ApZpTup = up, (4.15)
AZ,Tu = Zyu. (4.16)

Since both T and T;, are self-adjoint operators, the eigenvalue A in problem (3.3) is semi-simple, meaning
its geometric multiplicity equals its algebraic multiplicity, and the slope is 1. Let M(A1) be the generalized
eigenspace associated with the eigenvalue A1, and M, (1) be the direct sum of the generalized eigenspaces
associated with 4,, in (4.1), where A,, converges to A.

when h is small enough, the mixed discretised source problem is well-posed and has a unique solution.
According to theorem 4 in [1], we can obtain the following a priori estimates: For any f € L?((), the following
hold

ISf = Safllo S RPNTfllgsr, 1<B<k+1, (4.17)

ldiv(Sf = Spfllo S hPIITfllgezy 0<B<k+1, (4.18)
”Tf —T f” < h”Tfllz, k = 0:

MO ARPITS g, k=1land2<pB<k+1.

By combining the Brezzi-Babuska theorem and the regularity of boundary value problems, if f € M(4),
then Tf = A;1f , and we obtain the following estimate:

(4.19)

[S=Sluwll, s h?, 1<p<k+1, (4.20)
||div(s — sh)|M(,1)||0 ShP, 0<B<k+1, (4.21)
h, k=0,
T = Tluwll, = {hﬁ, k>land2<B<k+1. (4.22)
Therefore, from (4.17) and (4.19), we derive the following convergence results
IS—=Sull, =0, if h—o0. (4.24)

Equations (4.23) and (4.24) show the convergence of the eigenvalues and eigenfunctions. Consequently,
by using the proof method in reference [14], we may draw the following conclusions.
Lemma 4.1. For each approximate eigenpair (4;, o5, uy,), there exists an exact eigenpair (4, o, u) such that the
following a priori error estimates hold
A — Ayl S h?9, (4.25)
llo —onlly + llu —uullo S A%, (4.26)
where @ = min{1, u}, « = 1if Q is convex and a = u for a nonconvex £, due to regularity result (4.12).

V. APOSTERIORI ERROR ANALYSIS
The purpose of this part is to determine posterior error estimates for the second-order elliptic eigenvalue
issue and verify the reliability of the error indicators for eigenvalues and eigenfunctions in the mixed finite element
method, as well as the effectiveness of the eigenfunction estimator.

5.1 Properties of The Mesh
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Let us set some definitions before presenting posteriori error estimates. For k € T;,, let I' (i) be the set
of its edges, and let N (k) be the set of its vertexs . We define
L= UTwW=LYuR?, M, = U N®).
KETR KETR

For any edge E € I}, let V' (E) be the set of its vertices. Next, we define the sets listed below:

o = U K, wg= U K, w,= !
r@a)nr(x)=+o Eer(x") zeN (k")
@y = U K', @ = U K. (5.1)
NE)NN(k")#0 N(ENN (k")=£0

5.2 Superconvergence Analysis
In this section, to study the superconvergence of the eigenfunction interpolation Q,u and the
eigenfunction approximation u,, for the eigenvalue problem (3.1), we will focus on the superconvergence of the

eigenfunction projection X, u and the eigenfunction approximation U, , based on the method in reference [10]. In

this process, we will utilize the pertinent findings on the superconvergence of eigenfunction projection X, u and
eigenfunction interpolation Q,u from Brezzi's study [8].
Theorem 5.1. Let (4, 65, u;) be the discrete eigenpair approximate solution corresponding to the eigenvalue
problem (4.1), and (IT;, 0, X, 1) be the mixed finite element projection defined by (4.6). When the mesh size h is
sufficiently small, the following superconvergence result holds:
IZpu — upllo S A%< (5.2)
Proof. Define the function X, = 2,u —u, — (Zpu — uy, w)u, which X, consists of X,u —u, and (Zpu —
up, u)u. Based on the definition X}, the following error estimate can be given
IZru — upllo < [1Xello + Epu — up, wullo, (5.3)
therefore, to estimate the error of || 2, u — uy|l,, We can decompose it into separate error estimates for X, and the
term (Xpu — up, wWu.
(i) Estimate the error of ||(Z,u — up, w)u|ly. According to the following equation
IChu — up, wully s [(w, Zpu — up)|
=W Zpu — Wl + [(wu —up)l, (5.4)
we only need to estimate the errors of |(u, X,u — w)| and |(u, u — uy)|.
First, estimate |(u, Z,u — u)|. According to (3.3), we have
A, Zyu —u) = Ar(u, Zpu —uw)
=—a(o, ) + b(P,u) —d(P,w)
+b(o, 2y u—u)+e(w,Xyu—u), vV eV,
in the above equation, by taking ¢ = II,6 — o, we get
A, Zpu —u) = —a(o, 0 — o6) + b(Il,0 — o,u) — d(Il,6 — o, u)
+b(o, Zyu—uw) +e(u, Zpu —u). (5.5)
In (4.6), by taking ¢, = II;,6 and v;,, = X, u, we obtain
a(llyo — 0,M0) — b(Ily0, 2 u —u) + d(ly6, 2pu —u) =0,
{—b(l’lhc -0, 2u)—e(Cpu—u,Xu)=0
substituting this into (5.5) gives

Ay, Zpu —u)
=a(ly6 — 0,6 —06) — b(Il,6 — 0,2 ,u—u) —b(Il;,6 — 0, Xu —u)
—e(Qyu—u,Zyu—u)—d(lye —o,u) + d(Il,o, Xyu — u). (5.6)

The following expression is deformed:
—d(o —o,u) + d(Il0, 2 u — )
=—d(Ilyo —o,u) +d(Il,6 — 0 + 0, Zu —u)
= —d(llo —o,u) + d(Il,6 — 0,2,u) — d(Il0 — o,u) + d(o, Zu —u)
=d(o —o,2u—u) —d(Il,o,u) + d(o, 2,u),
Since || 0llp < llollo and ||1Z,ullg < |lull, are infinitesimals, substituting the above expressions into (5.6) and
combining with (4.7), we obtain

|(u, Zpu —u)| S h?%. (5.7)
Afterward, we estimate the error of |(u, u — u;,)|. Based on (4.17), we get
|G —up)l = [2u) = ) + 2w, )|

1 1 1 1

= |30 w) = 200 un) = 200, up) + 2, )|
1 1

= |§(u, U—up) — E(uh; u-— uh)|

= 2@ —upu— )|
< h?e, (5.8)
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Thus, substituting (5.7) and (5.8) into (5.4), we easily get

I(Ehu — up wully S h24. (5.9)
(ii) Estimation of the error in || X, ||o- Since (u,uw) = 1, we have (X, u) = 0, and thus
1%k llo S U = AT) Xl = 11T = AT)(Zpu — up) o (5.10)

From (4.15) and (4.16), we have
(I = AT)(Zru — up)
= —AT(Cpu —up) + (Zpu —uy)
= (A2 T — AT = 2,2, T)Cpu — up) + (Zhu —uy)
A2y T(pu —uy) + Cpu —up) + (A2, T — AT)(Zpu — uy)
— A ZnT(u —up) + Cru —up) — 42, TCpu — w) + (2R T — AT)(Zpu — up)
= A -)2Tu — 42, T(Zpu —w) + A2, T — AT)(Zhu — up). (5.11)
Using (5.10) and (5.11), we can obtain
1Xnllo = 1(ARZRT — AT) (Zru — up)dllo
A = Al - 1Z:Tullo + AnllZ.T Enu = Wllo, (5.12)
also, the first equation of (5.12) can be rewritten as
(AnZnT = AT) - (Zpu — up)
= (ApZpT — AZ,T + AZ,T — AT) - (Zpu — up)
=y —) I, TCu—up) + A2, — DT - (Zpu —uy)
S A = AL NIZRT Cru — updllo + A Ep — DT Epu — up)dllo-
Therefore, using (4.7), (4.12), and (4.25), we have
1 Xk 1lo = RN 2, T (Epu — upllo + ARYT (Zru — up)ll,
+R*NTulliy + AR NERT Ehu — Wl
S W24 Zpu — upllo + 20| Zpu — upll
+h2 |lull + A 12, T(Epu = Wllo
S R?|lullo + Ah¥|IZpu — upllo + A 12, T (Zpu — w)llo- (5.13)
In (5.13), we also need to estimate the third term || 2, T (Z,u — w) ||, of || X, lo- First, we define a function
gn € Wy, such that ||gnll, = 1, and it satisfies the condition
r(gthhT(Zhu - u)) = [[Z,T(Epu — wllo.
Next, we define an auxiliary equation: Find (m,, &) € V,, X W}, , such that
{a(‘ljh:nh) —b(Py, &p) +dMp,vp) =0, Vi, EVy (5.14)
b(Mp, vi) + eV, §p) = 1(gn, Vi), Vv, € Wy ’
Based on the Babuska—Brezzi condition of the mixed finite element space V;, X W, the following relation holds
Ml + 6l s sup  L¥m W)= bW Sh)

ox@Wpoevxwy,  Wallv + lvnllo
dMp, v) + bMp, vr) + ey, §1)
+ sup
0% (Y, vp)EVRX W Iprlly + llvello
< 7(gn, Vn)
S sup _
0=(Pp,vp)EVEXW ”"Ijh”V + ”Vh”O
< llgnllo- (5.15)
Choosing (Y, vp,) = (M,S(Zpu — w), £,T(Z,u — w)) in (5.14) and from (4.6), (4.11), and (4.13), we have
_r(gh, IpT(Zhu — u))
= a(I,S(Zpu — w),Mn) = b(Mp, ZaT(Epu — w))
+d(Np, ZpT(Ehu — w)) — b, SCEru — w), &) — e(Z, T (Zpu — w), &)
= a(S(Znu —w,My) = b, T(Enu —w)) + d(Mn, T (Enu — u))
—b(S(Zpu —u), &) — e(T(Zpu —u), &)
= —r(Zyu —u,&). (5.16)
Furthermore, based on the results in reference [8], Brezzi analyzed the superconvergence property of the
characteristic function projection X, uand the characteristic function interpolation Q,u, i.e.
IZhu = Quully s h*“. (5.17)
From (5.15) and (5.17), we obtain the following estimate
r(Zpu —u,§p) = r(Zhu — Qpu, ) + 7(Qru — u, &)
S K2 N1&nllo + 1Qnu — ullo - gxllo
< 2%l gnllo- (5.18)
Combining (5.16), (5.18), and the definition of g, we obtain the estimate || 2, T(Z,u — u)||, S h?“.
Thus, we have

1Xnllo = R2Nlullo + AR 12w — upllo + Anh*
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< h2% 4 AR®|| Zpu — uyllo. (5.19)
Finally, combining (i) and (ii) leads to
IZhu = upllo S 2% + ARNZpu — upllo, (5.20)

It means when h is small enough, we have

0w — uplly S h2 (5.21)
The proof is complete.
Corollary 5.1. For the eigenfunction approximation wu, of the eigenvalue problem (3.3) and the interpolation Q,u
of the exact eigenfunction, when the mesh size h is small enough, the following superconvergence result holds

llun, — Quully S A*%. (5.22)
Proof. From (5.2) and (5.17), we have

llun — Quullo < llup — Znullo + 1125w — Quully S A%

Thus, the proof is complete.

5.3 Postprocessing Technique
Based on the superconvergence result (5.22), using a suitable post-processing operator to u;, can gets an
eigenfunction approximation with superconvergence properties. This postprocessing technique is highly effective
in numerical computations , as it can significantly improve the accuracy of the solution without increasing the
computational costs.
Lemma 5.2. (see Theorem 3.1 in [9]) There exists the following estimate for the eigenvalue approximation A,
1

|4 = 2n]2 S llo = oplly + llu — uyllo. (5.23)
Proof. To extend the eigenvalue error, we now introduce the Rayleigh quotient(see [10]). Assume (4, o, u) is the
true solution of the eigenvalue problem (3.3), ¢@ € Vand 0 # s € W satisfy
a(@, @) — b(@,s) +d(e,s) =0. (5.24)
Let us define the Rayleigh quotient for the eigenvalue 1 as
P a(@, @) +d(@,s) +e(s,s)

, (5.25)
r(s,s)
then, we rewrite a(q, @), d(@, s), and e(s, s) in the following forms
a(g,@)=a(p—0+0,¢—0+0)
= a(@ — 06,9 — o) + 2a(e,0) — a(o,0),
d(@,s)=d(@—-—0c+0o,s—u+u)
=d(@—o0,s—u)—d(o,u—s)+d(e,u),
e(s,s)=e(s—u+us—u+u)
=e(s—u,s —u)+ 2e(s,u) — e(u,u).
Inserting these expressions into (5.25), according to (3.4), we get
R a(e, @) +d(e,s) +e(s,s) —Ar(s,s)
I-a=
r(s,s)
_ a(p—oc,—0)+d(@—-—0o,s—u)+e(s—us—u)
B r(s,s)
2[a(@,0) + e(s,u)] +d(o,s) +d(@,u) Ar(u,u) + Ar(s,s)
+ - . (5.26)
r(s,s) r(s,s)

From (3.3) and (5.24), we obtain
2[a(@,0) + e(s,u)] + d(o,s) + d(@,u) — Ar(u,u) — Ar(s, s)
= 2[a(@,0) + e(s,u)] + d(o,s) + d(@,u) — Ar(s —u,s — u) — 2Ar(s,u)
= 2[a(@,0) + e(s,u)] + d(o,s) + d(e,u) — 2[b(0,s) + e(s,u)] — Ar(s —u,s — u)
= 2[a(@,0) — b(o,s)] + d(o,s) + d(@,u) — Ar(s —u,s — u)
= 2[a(@,0) — b(o,s) — a(@, @) + b(@,s) — d(@,s)] +d(o,s) + d(@,u) — Ar(s —u,s — u)
=2[a(@,0 — @) —b(oc —@,s)] +d(6 —@,s) —d(@,s —u) —Ar(s —u,s —u)
=2[a(gp,0 — @) — b(6 — @,s) — a(e,0) + b(o,u) — d(o,u) + a(o, @) — b(¢,u) + d(¢,u)]
+d(oc—¢@,s)—d(@,s—u)—Ar(s —u,s —u)
=2[a(@ —06,6 —@) —b(c—@,s—uw)]+d(loc—@,s—u)
—d(@,s—u)— d(c—@,u) —Ar(s —u,s —u)
Finally, we obtain
- 2b(@ —o,s —u) +e(s —u,s—u)
A—A=
r(s,s)
a(p—o,9—0)+d(@,s—u)+dlc—@,u)+Ar(s—u,s —u)
r(s,s) '
In conclusion, combining (5.27), (3.4), and (4.2), we can obtain the estimate for A — A, as shown in (5.23).

(5.27)
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A superconvergent approximation of the eigenfunction can be obtained by combining the
superconvergence result (5.22) with an appropriate interpolating postprocessing method. The post-processing
operator of this type will be introduced in detail next.

We define a piecewise linear finite element space U, as follows

U, = {v € H'(2):v|, € P,(x),Vk € Tp,}. (5.28)

For each vertex z in the mesh 7;,, we define the region w, associated with this vertex, which consists of
all elements adjacent to the vertex z. Next, we introduce a post-processing operator A,: W — Uy, which aims to
improve the solution accuracy by fitting a piecewise linear function at the vertices. The following is the precise
post-processing technique:

Jvdx

w
L ol

where A, v(z) represents the post-processed value at the vertex z € w,; fkv dx is the integral of function v over
element k; and |w,| is the area of the region w,which is the total area of all elements containing vertex z.
Note that A, v(z) is obtained by averaging the integrals of all elements sharing that vertex.
Let’s review some important properties of A, (see [11], Lemma 4.1).
Lemma 5.3. The operator A, defined above satisfies the following:
(i) For v € H**%(x) and k € T, we have [|4,v = vllo, S b *|vll25,;
(ii) Forany v € W, we have A, Qv = A,v;
(iii) For any v € W, we have ||4,v]lo < IVll,.
We may determine the superconvergence result of A, based on Lemma 5.3.
Lemma 5.4. (Superconvergence) When h small enough, there holds
A vy — vllp S h?%. (5.30)
Proof. Based on (5.22) and Lemma 5.3, we have
1Apvr = vllo S |Apvy — ApQrv + AQrv — Apv + Apv — vy
S | Apvy — 4,Qpvllo + 14,Qnv — Apvllo + |4y — vllo
S |lvp — Quvllo + lApv — vllo
S h?e,

A (z) = , (5.29)

5.4 Technical Tools
To perform the analysis, we recall two key properties that are needed. First, let us consider the operator
0y: H (Q) — M,, where
M; = {p € C(Q):pl, € P,(K),Vk € T},
is the Clément interpolant of degree k = 1 (see [12]).
We now establish the following lemma, which states the local approximation properties of 0,,.
Lemma 5.5. For all p € H1(Q), there holds
lp = Onpllox = hellpllie, Ve € Ty (5.31)
Ip = Onpllos S hy/*IIplls o, VE € Iy (5.32)
Secondly, the following Helmholtz decomposition holds.
Lemma 5.6. For each o € H(div; Q) there exist ¢ € H3(Q) and p € H*(Q) such that fﬂ pdx = 0, and they
satisfy the equation
6 =V¢ + curlp, inQ, (5.33)

1
and the following norm relation holds ||a||, = (||Vp|3 + ||curlp||3)z.

5.5 The Local And Global Error Indicators
Based on the previous superconvergence results and the related theory of post-processing operators, we
next derive the local error estimator and the global error estimator, and analyze their reliability and effectiveness
in eigenvalue and eigenfunction estimation.
Let (A, oy, up) be the eigenpair of (4.1). For each edge E € I;,, we define the surface residual as follows
_ {[(O'h —buy)-tl, E€I
Jr (o, —buy) - t, E € I‘ha,
where t denotes the tangential vector in the clockwise direction on edge E.
Let us present the indicator for the reduced discrete eigenvalue problem

nk = hillrot(e) — buh)”%,)c + | Apuy, — uh“%,x +llc = QhC“(z),)c + Z hg ”]F”(z),Ev (5.34)
E€er(x)
and the global estimator is defined by

DOI: 10.35629/0743-11010825 www.questjournals.org 15 | Page



A Posteriori Analysis Of The Mixed Finite Element Method For General Second-Order ..

2

n=| > ). (5.35)

KETh

5.6 Reliability Of Error Estimators For Eigenfunctions And Eigenvalue
The goal of this section is to derive an upper bound for (4.22). Let us begin with the following result.
Lemma 5.7. For the approximation of the eigenfunctions (o}, u;), we have the following estimate
llo — oplly + llu —uplly S llc — Qucllo + [ Apuy — upllo
+[Apup — ullo + |2 — 25| + [[curlply (5.36)
where ||Apuy, — ullg + |42 — 43| are the higher-order terms.
Proof. (i) First, we estimate the error for the scalar variable approximation wu,,
lu —upllo < llu — Apup + Apup — upllo
< [ Apup — upllo + llu — Apupllo
< 1Apwn = unllo + 1 Anu, — ullo + 12 = 241, (5.37)
the scalar function is estimated by (5.30) and (5.37).
(ii) Now, we consider the estimation of the error ||6 — o,||y. Since

1
llo — onlly = (ll6 — 6,ll§ + lldiv(e — o,)lI5)2,
the values for ||o — o}, |p and ||div(o — o},)]|, must be estimated independently.
First, we consider the estimation of ||div(e — o},)||,. Using the first equation in (3.2) and the second
equation in (4.1), we get
dive = cu — Au,
divey, = cuy, — Apuy, = Qpcuy, — A, Qnup,.
Thus,
div(o — o) = (cu — Qucuy) — Au + A, Quuy
= (cu — Qncu + Qpeu — Qpeuy) — Au + (AQpu — AQpu + A, Qpup — 44 Qru + 4,Qnu)
= (c — Qpo)u+ Qnpc(u —up) — AU — Qplu — (A — 4)Qpu — 1,Qp (U — up).
From part (i), we can infer the following inequality
lldiv(e — ap)llo
S lle = Qrello + llu —upllo + 14 = Al + Apllu — upllo
S lle = Qucllo + 1 Apun — upllo + lApun — ullo + 12 — 44l, (5.38)
The next step is to estimate the L2 norm of the vector variable ¢ — 6;,. Lemma 5.6 states that the error
can be decomposed as follows
6 — o, = V¢ + curlp. (5.39)
where ¢ € Hg () and p € H*(Q), with [ pdx = 0.
To conclude, we need to estimate ||V||,. Using (5.39) and Green's formula, we get

199153 = | 76 - Vg
Q
= f (6 —oy) - Vodx — f curlp - Vgdx
Q Q

=— J div(e — oy) - ¢pdx — j curlp - Vpdx
Q Q

< |ldiv(e — op)lloll@llo + llcurlpllolIVello (5.40)
Since ¢ € H}(2), the following inequality holds
IVl < lldiv(e — o4)llo + llcurlplfo. (5.41)

Consequently, combining (5.37) - (5.39) and (5.41), we obtain
llo —oullo < IVello + llcurlpll,
< |ldiv(o — op)llo + llcurlpllo
S lle = Qnello + 1Apun — unllo + l1Apun — ullo + |2 — 2| + |lcurlplf,.
Thus, we get the final result
llo —onlly S llc = Qucllo + l1Apun — unllo + 1 4pun — ullo + 14 — 44| + llcurlp|l,.
combining (i) and (ii), we obtain the result of (5.36).
Theorem 5.2. For h small enough, there holds
lo —onlly + llu —upllo s 7+ [Apun —ullo + 12— A4, (5.42)
and
1A= 2,12 S 0+ 1 Apup —ullo + 12— 2. (5.43)
where ||A,uy, — ullg + |42 — Ay is the higher order term.
Proof. To prove (5.42) and (5.43), it suffices to estimate ||curlp]||,. Since curlp = (6 — ;) — V¢, we have
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lcurlp||3 = J- curlp - curlpdx
Q

= f (o — oy) - curlpdx — f V¢ - curlpdx,
Q Q
by using Green's theorem to handle — [, V¢ - curlpdx, we get

- J- V¢ - curlpdx = fcp -diveurlpdx — | ¢ - curlp - nds.
Q Q a0
Therefore, we obtain

[curlpl|3 = f(a —o,) - curlpdx. (5.44)
n
Since o = u + b(x)u, applying Green's theorem to fﬂ o - curlpdx, we get
f o - curlpdx = J-bu - curlpdx. (5.45)
Q Q

By Lemma 5.5, O,,pis the continuous piecewise linear approximation of p, so curlO,p € V,, and
divcurlO,p = 0. From the first equation of (4.1), we get

fah -curlO,p dx = fbuh -curlO,p dx . (5.46)
Q Q

Substituting (5.45) and (5.46) into (5.44), we obtain
l|curlp||3

= —fch - curlpdx +fbu - curlpdx
Q QO

= - f o, - curlpdx + f bu - curlpdx + f o, - curlO,pdx — jb (up + u —u) - curlo,pdx
Q Q Q Q

= - f o, - curl(p — Opp)dx + f o, - curl(p — Opp)dx + f (bu — buy,) - curlO,pdx
Q 9] Q

=— f o, - curl(p — O,p)dx + f bu,, - curl(p — O,p)dx — f by, - curl(p — 0,p)dx
Q Q Q

+ f bu - curl(p — O,p)dx + f (bu — buy,) - curlO,pdx

Q Q

= — j (o, — buy) - curl(p — O,p)dx + J (bu — buy,) - curl(p — Oyp)dx + J (bu — buy) - curlO,pdx
Q QO Q

= — J (o, —buy) - curl(p — O,p)dx + J (bu — buy,) - curl(p — 0,p)dx
Q Q

+ f (bu — buy,) - curl(0,p —p + p)dx
Q

= —f (o, — buy) - curl(p — O,p)dx + f b(u — uy) - curlpdx.
Q Q
Moreover, we have
—j (o, —buy) - curl(p — O,p)dx
Q

== > [ rot @, ~bu) - Oupddx + " | (o~ bus) - t(p - Oypdes

KETh KETh
== [rot @ -bud@ - owdax+ Y D [0 -0umas
KeT, K k€T E€T (k)  F
and
fb (u—wup) -curlp dx = Z fb(u —uy) - curlp dx,
Q K

KETR
expanding further and integrating the earlier findings, we obtain

leurtpl3 s ) llrot(o = bun)lox - [P = Onplo

KETh
+ 3 ¥ Wellog-llp = Onpllog + X llu—upllox - llcurlpllo.
KETREET (k) KETy

applying the Schwarz inequality, (5.31), (5.32), and (5.37), we obtain
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leurlplly 5 " {hEllrot (o, = bun)lc + 14, — unll3

KETR

N[~

+ M = ull + 1A= A2+ ) hinjpnaE] .
Eer(k)
The proof is complete

5.7 Effectiveness Of The Characteristic Function Estimator

The next objective is to prove that the local error estimator indicator n,. gives a local lower bound for the
error on element x , in order to confirm the effectiveness of our estimation approach in practical adaptive
refinement. Let b, € H () denote the standard element bubble function, and by € H} (Uz) denote the bubble
function on the face. Here, Uy is the union of two elements x* and k™ sharing the edge E. We sort the vertices
of k* and x~such that the vertices of the edge E are listed first. Define by as follows

b = {4/1K+/1K—, onktork~,
E~o, on Q/U;.

Lemma 5.8. (Properties of Bubble Functions) Let k € 7;, and E € [}, then the functions b, and bg have the
following properties:

suppb, c k,0< b, <1 maxb () =1,
suppbg C k,0 < by < 1 mabe(x) =1,
x|
hZ s fb dx = — s hZ,
6
f bde— S h2,Vk' cUg
IVhllo. S Rl ||0,;<
IVbello,er S hgtlibilloyr, VK" < Ug, (5.47)

where the mesh's shape regularity determines the hidden constants.
Lemma 5.9. (Inverse Inequality) Let [, m € N U {0} with [ < m. Then, for every k € 7;,, we have
IPlmx S B Pl VD € Pr(1),

where the hidden constant depends on k, m, [, and the shape regularity of the mesh.

Based on the above lemma, and combining Verfiirth’s bubble function technique developed with the
standard parametrization method, we can prove the following local lower bounds.
Lemma 5.10. For any element x € T;,, the following local lower bounds hold
(i)For any element x € T;,, we have

helirot(en, — bup)ll§ . S llo = o4ll5« + llu — unll§c + hioscy ()2, (5.48)
where
oscy (k) = ||rot(e), — buy) — Q(rot (e, — buh))”O‘K; (5.49)
(ii) For any element k € 7;,, we have
I Anun = unlld,e S llu —upll§ g, + N1Apu — ullf (5.50)
(iii) Let E € I}, be the internal edge shared by elements k* and k™, then we get
hellJell3e = lo = 0ulu, + 1w = unlu, + Y. hoscy ()2, (5.51)
KEUE

Proof. (i) First, consider the following inequality
h2lrot (e, — bup)li3 .« < hZ|[rot(ay, —buy) — Qu(rot(ey — buy)||7
+h2]|Qn(rot (o, — bup)|I} (5.52)
Thus, the proof only requires estimating hZ||Q, (rot (o), — buh))||;x

Let zI™ be the midpoint of the edge E of element k € T3, and let b, be a piecewise cubic basis function
on k, such that b,(z™) = 1, and vanishes on dx. Define p, = Q,(rot(e, — bu,))b,, and use standard
interpolation estimates to obtain

lleurlp,lloye S hie[|Qn (rot (e = bu)|, .- (5.53)
Next, From rot(o — bu) = rot(Vu) = 0, the following estimate holds

|@n(rot(e), — buh))”:K < th (rot(e), — buy)) - Qu(rot(e, — buy))b.dx
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= th (rot(ah — buh)) - prdx

1 2
<C frot(ch —buy) - pdx + 3 ||Qh(7"0t(0h - buh))”O’K
K
+C||rot(e, — buy) — Qp(rot(e, — buh))”;’c
1
<C frot(ah = bu, — 6 +bu) - pedx + 2| (rot (o, — b))l .
) )

2
+C||rot(6,1 —buy) — Qh(rot(oh - buh))”O'K, (5.54)
the integral term fK rot(e, — bu, — o + bu) - p,dx can be solved using Green's formula, we get

J-rot(o'h —bu, — o+ bu) - p.dx

K

=—f(oh—buh—6+bu)-curlpde+f t- (o, —bu, — o +bu) - pdx
K a

= J-(ah — bu, — 6 + bu) - curlp,dx,
K
substitute the above into (5.54) and combine with (5.53), yielding:
2
|@n(rot(e), — buh))”w{

1
<cC fk(oh —bu, — o+ bu) - curlp, dx + 3 ”Qh(TOt(O'h - buh))”;K

+C||rot (e, — buy) — Q,(rot(oy, — buh))”ik
< Clicurlpllo,e - (Ilo = opllo. + Ibllo .l — unllo.)
1 2 2
+3 [@n(rot (e, = bup)|l;  + Cllrot(ey —buy) — Qr(rot(e, —bun))l|; .
< Ch;anh(rot(oh - buh))”ak : (”U - o'h”o,zc + lu - Uh”o,;c)

1
+3 |@n(rot(e), — buh))”ik + C||rot (e, — buy) — Q,(rot(oy, — buh))||(2)JK,
S0 it is possible to get
10 (rot(ay, — bun)|; . < hi2(lo = ol + Il — uyli3 )
+||rot(0h —bu,) — Qh(rot(ch - buh))“i’x. (5.55)
Finally, we obtain a proof of (i) by substituting (5.55) into (5.52).
(ii) By property (iii) of Lemma 5.3, we have
lApup — upllo = l1Apun — Apu + Apu + v — u — upllo
< Ap(up = Wllox + 1Apu — ullox + llu — unllox
S llu —uplloa, + 1Anu — ullg .
Hence, we get
I Anun = unllf,e S llu —wpll§ , + N1Apu — ullf ..
(iii)Let E € I}, be an interior edge shared by the boundaries k* and k™, and let py satisfy supp pg ©
Us. We define bg as a piecewise quadratic basis function on Uz which is equal to one at the midpoint of Ug and
vanishes on dUg.
Define p; = §Jrbg, where the constant § is defined as

6= f]}ghEds/ffngEdS,
E E

f]FPE ds = hgllJz I§ &- (5.56)

Thus, estimating hg||/z115z is equivalent toE estimating fE]FPE ds. According to standard theory, § < hg .
Furthermore, by inverse estimates, we obtain the following inequalities (see [13])

IPellsue S iy *Wello (5.57)

IPellovs = B3 *Wello,s- (5.58)

this gives the following relationship

Furthermore, since

frot(oh —buy,) - pgdx = frot(ch — o + bu — buy,) - pgdx,
K K
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we apply Green's formula to the latter expression, getting

rot(c, — 6 + bu — buy) - pgdx

K

= J-(ch — o0+ bu —buy) - curlpgdx — | (6, —o+bu—Dbuy,) - t-pgds
K Jx

=f(ch—6+bu—buh)-curlpde—f (ah—buh)-t-p5d5+f (o —bu) -t pgds
K K a

K

= J-(ch — o0+ bu —buy) - curlpgdx — | (o, —buy) - t-pgds.
K

Jx
Thus, we get
J-]F pgds = | (o, — o) curlpgdx + J-(bu — buy,) - curlpgdx
E Ug K
— Z frot(bu — buy,) - pgdx. (5.59)
KEUE K

The combination of (5.56)-(5.59) gives
hellelie = [ Jr peds
E

S llo = Oullog - leurtpllo, + e = willos, - lleurlpg o, + Y lIrot(y = bullos - Ipellox
KEUE

S llo = aullous - b *Wellos + e = wnllowg - b *Wrllos + ) Irot(on = bundllo - b Wello,
KEUE
thus, we obtain
h;‘/zlljF”O,E S |lo — oplloy, + llu — uplloyy + hellrot(en, —buy)lloy,,
squaring both sides gives
hellJellGe < llo — 6h“%,uE + llu— uh”%,UE + h¥|lrot(a), — buh)“(z),UE: (5.60)

substituting (5.48) into (5.60) leads (5.51).

The following result is obtained using Lemma 5.11 and the specification of the local error estimator 7,.
Theorem 5.3. Let (4, o, u) be the solution of (3.3), and (1, o, up,) be the solution of (4.1). Then, there exists
hg, such that for all h < hy, the following inequality holds:

TS 0= ulli, + It = wnliy o, + 14 = ully + e = Quellg + ) hiosen(?,
KEW

where ||A,u — ull3 . are the higher-order terms.
Proof. Substituting the conditions (i)-(iii) into (5.34), the conclusion follows immediately.

VI. NUMERICAL EXPERIMENTS

In this section, the effectiveness of our method is validated through a series of numerical experiments
by compiling the code under the iFEM package. Here we give the numerical results of the adaptive mixed finite
element algorithm for the first eigenpair approximation with the parameter 6 = 0.4. We consider problem (3.1),
where we take b = (0,0)7, (3,0)7, (1 + 2i,1 + 2i)7, and c = 0, 0, i. Additionally, we consider a more general
eigenvalue problem, where b = (1 + (x — 1/2)?, (x — 1/2)(y — 1/2))"and ¢ = e@~1/20-1/2)

In this experiment, we primarily compute for two test domains: the L-shaped domain Q, =
(—1,1)2\([0,1) x (—1,0]), and the crack structure domain Qg = (—1,1)?\{0 < x < 1,y = 0}. Since the exact
eigenvalues are unknown, we select eight sufficiently accurate approximate values as the reference for the
numerical test. These reference eigenvalues are obtained as accurately as possible through adaptive computations.
The specific results are as follows:

Table 1 When b = (0,0)"and ¢ = 0, the numerical solution for the eigenvalues for regions Q, , Qg .
Domain ref ' h A dof Error rate
15 1/4 9.590522 4178 0.049202 1.576941
15 1/8 9.623232 14574 0.016492 1.708429
Q 9.6397238440219 15 1/16 9.634677 54482 0.005046  1.673099
15 1/32 9.638141 217294 0.001582 1.488397
15  1/64 9.639160 863271 0.000564  1.990692
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15 1/128  9.639582 3448507  0.000142
Domain ref '3 h A dof Error rate
15 1/4 8.260351 5065 0.110979 1.706567
15 1/8 8.337327 20464 0.034003 1.120043
15 1/16 8.355686 73936 0.015644 1.522870
15 1/32 8.365886 289187 0.005444 1.734294
15  1/64 8.369693 1148872  0.001636 1.663791
15 1/128  8.370813 4578960  0.000516

Qq, 8.3713297112

Table 2 When b = (3,0)T and ¢ = 0, the numerical solution for the eigenvalues for regionsQ; , Qs;.
Domain ref ¢ h M dof Error rate
16 1/4 11.833583 4546 0.056141 0.626876
16 1/8 11.853368 15212 0.036355 1.645681
16  1/16 11.878105 57354 0.011619 1.876514
16  1/32 11.886560 218654 0.003164 1.790759
16  1/64 11.888809 859561 0.000915 1.803418
16 1/128 11.889462 3411582 0.000262
Domain ref ? h M dof Error rate
18 1/4 10.470400 6445 0.150930 1.394947
18 1/8 10.563937 24801 0.057392 1.293193
18  1/16 10.597911 96820 0.023419 1.566618
18  1/32 10.613424 377098 0.007906 1.560939
18  1/64 10.618650 1486399 0.002680 1.488930
18  1/128 10.620375 5869239 0.000955

Q 11.88972384472

Qg 10.6213297112

Table 3 Whenb = (1 +2i,1 + 2i)" and ¢ = i, the numerical solution for the eigenvalues for regionsQ; , Qg;.

Domain ref '3 h A dof Error rate
1w S5 1840 0084971 1835314
1 ug S 7660 0023822  1.719882
SRS L e S o e
11 132 oo 1seess 0001357 2830166

11 164 oeod0l 741736 1911166E-04
Domain ref ? h A dof Error rate
10 va e 1836 0246175  1.793939
o s 0 gy 7O o0 s
: 10 116 ool 34623 0032359 2252026

10 w3 ++62'%%%18‘;%i 161270 0.006793
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Table4 Whenb = (14 (x —1/2),(x —1/2)(y — 1/2))T and ¢ = e@~1/20=1/2) the numerical
solution for the eigenvalues for regions Q,, Qg; .
Domain ref '3 h M dof Error rate

9 1/4 11.250697 1219 0.181821  1.558814
9 1/8 11.370803 4502 0.061716  1.494713
Q 11.4325182548738 9 1/16 11.410618 16963 0.021900  2.085843
9 1/32 11.427360 67521 0.005159  2.381284
9 164 11.431528 279292 0.000990
Domain ref '3 h M dof Error rate
8 1/4 9.573823 914 0.429868  1.209399
8 1/8 9.817795 3952 0.185896  1.927018
8 1/16 9.954806 15465 0.048885  1.723604
Qg 10.0036912872557
8 1/32 9.988889 64277 0.014802  2.142861
8 1/64 10.000340 269944 0.003352  1.492321
8 1/128 10.004883 1162925  0.001191

Error of the first eigenvalue

—O— the first eigenvalue error
—S7— the a posteriori estimator
R i The line with slope -1

10° 1c‘>4 1(35
(a) Number of degrees of freedom (b)

Figure 1: When b = (0,0)” and ¢ = 0, the adaptive mesh and error curve plot on the initial grid 1/8 for the test
domain Q. (a) Mesh after 25 iterations; (b) The error curve plot.

108

—O— the first eigenvalue error
—— the a posteriori estimator
----- The line with slope -1

Error of the first eigenvalue

S
L

S
E)

(a) Number o}odegrees of freedom * (b)
Figure 2: When b = (0,0)T and ¢ = 0, the adaptive mesh and error curve plot on the initial grid 1/8 for the test
domain Qg;. (a) Mesh after 25 iterations; (b) The error curve plot.
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-

Error of the first eigenvalue

10° 10* 1(;5
(a) Number of degrees of freedom (b)

Figure 3: When b = (3,0)7 and ¢ = 0, the adaptive mesh and error curve plot on the initial grid 1,/8 for the test
domain ;. (a) Mesh after 28 iterations; (b) The error curve plot.

Y

—O— the first eigenvalue error

Error of the first eigenvalue

. o —S— the a posteriori estimator
10° el mmm-- The line with slope -1

o
(a) Number of degrees of freedom (b)

Figure 4: When b = (3,0)7 and ¢ = 0, the adaptive mesh and error curve plot on the initial grid 1/8 for the test
domain €, . (a) Mesh after 28 iterations; (b) The error curve plot.

V¥

100,

Error of the first eigenvalue

102
103
—O— the first eigenvalue error [
o - —7— the a posteriori estimator
10 R The line with slope -1
10°
10° 10* 10°
(a) Number of degrees of freedom (b)

Figure 5: When b = (1 + 2i,1 + 2i)" and ¢ = i, the adaptive mesh and error curve plot on the initial grid 1/8
for the test domain Q;. (a) Mesh after 25 iterations; (b) The error curve plot.

—O— the first eigenvalue error
—7— the a posteriori estimator
B The line with slope -1

Error of the first eigenvalue

; 4 ‘5
(a) Numb:e?' of degrees of freedom " (b)

Figure 6: When b = (1 + 2i,1 + 2i)™ and ¢ = i, the adaptive mesh and error curve plot on the initial grid 1/8
for the test domain Qg;. (a)Mesh after 25 iterations; (b) The error curve plot.
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—O— the first eigenvalue error
—7— the a posteriori estimator

Error of the first eigenvalue

104 E \“‘\\\‘ ----- The line with slope -1
10-5 L S
10° 10* 10°
Number of degrees of freedom (b)

Figure 7: When b = (1 + (x — 1/2)?,(x — 1/2)(y — 1/2))Tand c = e¥"1/20-1/2) the adaptive mesh and
error curve plot on the initial grid 1/8 for the test domain ;. (a)Mesh after 25 iterations; (b) The error
curve plot.

—O— the first eigenvalue error
—%7— the a posteriori estimator
R The line with slope -1

Error of the first eigenvalue

(a) Number of d1eogrees of freedom (b)
Figure 8: When b = (1 + (x — 1/2)2,(x — 1/2)(y — 1/2))Tand c = eW"1/20-1/2) the adaptive mesh and
error curve plot on the initial grid 1/8 for the test domain Qg;. (a) Mesh after 25 iterations; (b) The
error curve plot.

VII. CONCLUSION
In Tables 1 to 4, we present the numerical solutions of the eigenvalues obtained through adaptive
computations and show the adaptive mesh and error curves in the figures. From Figures 1 to 8, it can be seen that
when

b= (0,0)7,(3,0)7,(1 +2i,1+2)7, (1+ (x—1/2)2 (x—1/2)(y—1/2))"
and
c=0,0i e®1/20-1/2)

the error curves of the lowest-order Raviart-Thomas mixed finite element are approximately parallel to a straight
line with a slope of -1. The results indicate that the adaptive algorithm achieves optimal convergence order.
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