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ABSTRACT: Using the flexibility of the finite element method to solve the solution problems on different 

shaped and natured elements, the local discontinuous Galerkin method can handle very complex boundary 

problems. Using the local discontinuous Galerkin method to perform a priori error estimation for the Steklov 

eigenvalue problem, we obtain a reasonable error estimation subspace, which can effectively solve the validity 

and reliability of the eigenfunction indicator subspace and the reliability of the eigenvalue error estimation 

indicator. We use precise numerical data obtained from MATLAB experiments as the basis for judging whether 

the conclusion is reasonable. Finally, combining theoretical analysis, we show that the method achieves optimal 

convergence order. 
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I. INTRODUCTION  
Steklov eigenvalue problems have a wide range of applications in physics and engineering. The 

dynamics of isotropic elastic media is combined with some general conclusions to solve the free motion of 

particles or the constrained motion of particles [1]. The problem of determining the lower bound of the lowest 

frequency vibration of a rigid metal pendulum composed of a pendulum suspended on a steel wire is studied by 

integral equation method and composition method [2]. The lateral motion of the elastic string with mass at one 

end and the model of the transmission line tilting towards the circuit are investigated [3]. An approximate finite 

element analysis of structural vibration modes of coplanar incompressible fluids and a finite element analysis of 

numerical solutions of spectral problems in fluid-solid interactions are analyzed [4]. Fast Fourier-Galerkin 

method was adopted to solve Steklov's eigenvalue problem [5]. A finite element method for an effective 4-order 

Steklov eigenvalue problem over a spherical region is obtained by dimensionality reduction [6]. The local 

discontinuity Galerkin method was used to perform hp analysis on the convection diffusion equation to obtain 

the conclusion that the diameter of the partition element is optimal and the polynomial degree is suboptimal [7]. 

The discontinuous Galerkin method is used to perform prior and posterior estimates of Steklov eigenvalue 

problems to obtain the optimal convergence order [8]. The non-self-adjoint Steklov eigenvalue problem in the 

inverse scattering of the posterior error estimation and adaptive algorithm is discussed for the first time [9]. The 

improved prior error estimation and posterior error estimation of the inverse scattering eigenvalue problem are 

proved, and the reliability and efficiency of the posterior error estimation of the eigenfunction can reach higher 

order terms are proved, and the reliability of the eigenvalue estimator is analyzed [10]. 

 

II. BASIC THEORY PREOARATION  

 Set be a bounded domain with Lipshitz boundary  . and let be the outward normal to , consider the 

Steklov eigenvalue problem: Find and a nontrivial function , such that 

                                                                   (2.1) 
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If , take the Green integral transformation of (2.1) to obtain the corresponding weak form, and define a 

continuous bilinear form , such that.  

 

where , under these assumptions, there exist two positive constants unrelated to two 

positive constants independent of and , such that the bilinear form satisfies 

                                          (2.2) 

The weak form of (2.1) is: Find , , such that the following equation is true, 

                                                (2.3) 

where . 

Let  be a shape-regular mesh of . The diameter of a face e ( an edge when d=2) is denoted by , the 

diameter of a cell  is denoted by , The set of faces of cells  where denotes the interior 

faces set and denotes the set of faces lying on the boundary .  

 indicates the highest degree of polynomial in unit , where , the hp finite element 

space is defined as 

 

when the element  is a triangle,  is the polynomial space  over  Introduce the space of 

piecewise  functions space of degree s: 

 

The auxiliary variable q = ∇𝑢 is introduced, then (2.1) can be rewritten as follows. 

                                                    (2.4) 

and represent the hp local discontinuous finite element space, then the hp-ldg format 

of the approximation problem of (2.5), find   for all , , 

such that 

                         (2.5) 

                        (2.6) 

where ,  is the unit normal vector of , and and are numerical fluxes, which are the 

approximations of the traces of  and  on ∂𝜅.  Define the mean and hop of  on : 
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Where  is a surface consisting of two neighboring faces of and common interior 

faces. and are smooth functions on and and are traces on the boundaries of , defines the mean 

and jump of and on ,   where  the is the outward normal vector 

from to , then we have 

 

the definition of numerical flux of and  are as follows:  

 

where the parameters and are chosen appropriately, and to define the parameters, a function of and are 

introduced into the relative local unit size and approximation degree in , where  such 

that where and are constants independent of the mesh size, the  

 

where  . 

Define the lifting operator   , such that 

 

Since then 

 

                       (2.8) 

For the source problem, using Green's formula, (2.5) and the definition of numerical flux, , which yields 

         (2.9) 

By (2.7), (2.8), (2.9) and the definition of numerical flux, , there are 



Local discontinuous adaptive finite element method for Steklov eigenvalue problems 

DOI: 10.35629/0743-11015573                                  www.questjournals.org                                           58 | Page 

 

(2.10) 

therefore 

       

(2.11) 

The finite element approximation of (2.3) is given by: Find  and  , such that 

                                          (2.12) 

The source problem of is given by: Find , such that 

                                                  (2.13) 

 The local discontinuous finite element approximation of (2.12) is given by: Find , such that 

                                                (2.14) 

Define the linear bounded operator satisfying 

                          (2.15) 

Then the equivalent operator of (2.4) is the form 

                                                                 (2.16) 

From (2.13), the corresponding discrete solution operator  satisfies 

                            (2.17) 

The equivalent operator form of (2.12) as follow: 

                                                            (2.18) 

The dual problem of (2.4) is given by: Find  and  , such that  

                                             (2.19) 

The source problem of (2.18) is given by: Find , such that 

                                         (2.20) 

Define the linear bounded operator  such that 

                              (2.21) 

The finite element approximation of (2.18) is given by: Find  and , such that 
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Then the equivalent operator of (2.18) is    

                                                             (2.22) 

The finite element approximation of (2.18) is given by: 

                             (2.23) 

The local discontinuous finite element approximation of (2.19) is given by: Find  , such that 

                                        (2.24) 

The sum space is introduced which assigns a local discontinuous finite element norm, 

where the energy norm is:  

           (2.25) 

Galerkin orthogonality is: 

(2.26) 

(2.27) 

Continuity and coercivity of  as follow: 

                    (2.28) 

                                                  (2.29) 

Lemma 2.1. Let  be a solution of equation (2.13), , , the regularity estimate is 

as follows 

                                                              (2.30) 

where is the solution of , , , exists , we have 

                                                                               (2.31) 

where  is the interpolating function of on  

Lemma 2.2. Refer to Proposition 4.9[11], where  

 then there exists   satisfying 

                                            (2.32) 
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                                              (2.33) 

The global discontinuous interpolation operator is:  such that  for a 

vector-valued function  define  

Lemma 2.3.  Let and be the solutions of (2.13) and (2.14) respectively,  then there holds  

                                                     (2.34) 

                                           (2.35) 

Proof. We first prove (2.34), using (2.29), , which yields 

 

 

 

When , from lemma 3.2 [7], we can obtain 

 

                        (2.36) 

using the triangle inequality, we get 

 

the proof of (2.34) can be obtained by combining (2.36) and (2.37) when h is small enough.  

Next, we proof (2.35), from (2.25), let   we have  
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                                                                           (2.38) 

from (2.38), we have 

                             (2.39) 

Using error estimation and interpolation error estimation 

 

(2.35) can be proved by (2.34), (2.39) and (2.40). 

Theorem 2.1. If and are the solutions of (2.13) and (2.14) respectively and , then 

there holds 

                                                    (2.41) 

 

Proof. We first prove (2.41), consider the dual problem of the source problem of (2.1) , 

for , using the consistency, (2.27) and (2.32), we obtain 

<  >  

 

                                             (2.43) 

Using (2.35) and regularity, let   we have 

(2.44) 

From (2.43) and (2.35)  
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                                            (2.45) 

 therefore, (2.41) is proved. 

Next prove (2.42), from (2.53) and (2.41) 

 

the proof is completed. 

Theorem 2.2. Let and are the solutions of (2.13) and (2.14) respectively, , 

then there holds 

                                           (2.46) 

                                      (2.47) 

Proof. We first prove (2.46), considering the dual equation of (2.20), for any fixed  , using 

regularity and (2.28), we obtain  

 

 

 

 

 

                                                                                                           (2.48) 

where  
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When for , using (2.35), let , we get 

) 

Using inverse estimation, (2.39) and (2.41), there are 

 

 

                                              (2.50) 

Similarly 

 

                                               (2.51) 

Substituting (2.49), (2.50) and (2.51) into (2.48), the proof of (2.45) is completed. 

When  let  using (2.35) and the regularity  

(2.52) 

Using inverse estimates, (2.39), (2.41) and (2.35) 

 

(2.53) 
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Similarly 

 

(2.54) 

Combining the above three formula, we get 

                                                         (2.55) 

From  and the regularity, we have 

 

 

 

                                                                  (2.56)  

Theorem 2.3 Suppose that M(λ) ⊂ H^(1+r) (Ω) (s > 1/2), using the results from [9], the following 

inequality holds: 

                                                        (2.57) 

                                                    (2.58) 

Let   be a direct sum of the generalized eigenvector spaces in (2.12), then there exists a 

characteristic function u of (2.3) such that 

                                                       (2.59) 

                                              (2.60) 

                                (2.61) 

If we set , then 

                                          (2.62) 
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Diagram 1 

 

III. POSTERIORI ERROR ANAIYSIS                                                                                                        
3.1 ESTIMATORS OF EIGENFUNCTIONS AND THEIR RELIABILITY 

Let  be an eigenpair of (2.12). On each element  and each edge , the element residual and 

the face residual are defined as follows, respectively. 

, 

 
,   

Define the local error indicator on each element of  

    (3.1) 

The global error indicator is as follow: 

                                                                 (3.2) 

In the following, we prove the reliability of the error estimator.  

Theorem 3.1 Set  and  are the eigenpair of (2.3) and (2.12), respectively,  

(r>1/2), then for any v∈H_0^1 (Ω), the following equation holds 

       (3.3) 

Proof: Note that  on . Let  be derived from the ellipticity and 

continuity of bilinear form 

 
 

 

 

 
      (3.4) 

If we take , we get 

                       

                    (3.5) 

By the triangle inequality, we get 

 

                     (3.6) 
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By the arbitrariness of , the theorem holds. 

Lemma  3.1Error! Reference source not found.Error! Reference source not found.  For any , there is a fragment linear 

interpolation  satisfied 

                                        (3.7) 

                                       (3.8) 

where  is the union of all elements that share at least one node with , and  is the union of an edge that 

shares at least one node with edge . 

Theorem 3.2 Set  and  are the eigenvalue of (2.4) and (2.12) on, for any , was 

established 

                                               (3.9) 

Proof: From the interpolation property, we get , which can be obtained by using Green's formula 

 

 

 

 

 

 
 

 

 
                                                                                                    (3.10)                                                                                                                           

From the Cauchy-Swartz inequality, equation (3.7) and equation (3.8), there are 

 

 
                           (3.11) 

 

                                                                                             (3.12) 
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                      (3.13) 

Combining (3.11), (3.12), (3.13) we have 

                                                 (3.14) 

And have 

 

 

  (3.15) 

For any , there is a rich operator  makes [14, 15] 

                 (3.16) 

Using (3.3) on the right side of the second (2.27) and (4.15), and pay attention to the , there is 

 

 

                                                    (3.17) 

If (3.3), (3.14) is carried into (3.17), the proof is complete. 

By theorem 2.3, when the gradient , we know , and  are  high order 

small amount, so (3.9) tell us the error estimation indicates  is one of the upper bound of the local 

discontinuous finite element energy norm, so the error estimate is reliable. 

3.2   THE EFFECTIVENESS OF EIGENFUNCTION ESTIMATOR 

To ensure that our estimation method is valid for actual adaptive improvements, our next goal is to show that the 

local error estimation indicator  provides a local lower bound on the error on . By marking  as 

the standard unit bubble function,  as the bubble function on the surface, where U_e is the union of 

two units  and  sharing e, we introduce and introduce the following knowledge by using the bubble 

function technique developed by Error! Reference source not found.. 

Lemma 3.2 For all polynomial functions , 

                                                             (3.18) 

For all polynomial functions , We have 

                                                                       (3.19) 

For each , be extended  meet    
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                                                                          (3.20) 

                                                                     (3.21) 

 According to the above lemma, and using the standard parameters (see Lemma 3.13 in reference [18]), we can 

show that there are local lower bounds. 

Lemma 3.3 Set and  were (2.4) and (2.12) for  a an eigenpair, and then we have the following 

partial lower bound: 

(ⅰ) For any , 

 

(ii)Set ,we have 

 

(iii) For each side , 

 

(iv) For each side , 

 

Proof： ( i ) Set and . Note that  in  ,and  on  , Using 

integration by parts, we have 

 

 

 

                                                      (3.22) 

Using formula (3.18) and Cauchy-Swartz inequality, the inverse estimation can be obtained 

 
Then the proof of (i) is completed. 

(ⅱ)For any , set , , and  is content to the extension of (3.20) and 

(3.21). Notice that , using Green's formula, there is 
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(3.23) 

As(3.19), (3.20), (3.21), and the conclusions of (ⅰ),we can obtain 

 

(3.24) 

Combining , the bounds and mesh shapes in (i) are obtained regularly 

 

The proof of (i) is completed. 

(ⅲ) Let  , ,   is an extension of  satisfying (3.20) and (3.21). Note that 

on  and  on  are obtained using integration by parts 

 
 

 

 

 

 

This can be obtained from lemma 3.2 

     

                   (3.25) 

Using the conclusion of (i), the proof of (ii) is obtained. 

For any , we have , yielding (ⅳ). 

Theorem 3.3   Under the condition that theorem 4.1 holds, the following equation holds 
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                                      (3.26) 

which is 

                                         (3.27)                    

Proof:  Through  and the definition of lemma 3.3 predominate, (3.26) is available, the reuse of energy norm 

, the definition of (3.27) can be obtained. 

Theorem 3.3 states that the error estimation indicator  is valid. 

3.3 THE RELIABILITY OF EIGENVALUE ERROR ESTIMATION INDICATOR 

Lemmon 3.4 (Lemmon 4.6 in [3])   Set  and  is then eigenpair of (2.4) and (2.12) respectively, 

Set  and  is then eigenpair of (2.19) and (2.23) respectively , , then 

                                                       (3.28) 

Proof:  It can be obtained from formula (2.32) and formula (2.33) 

                                                             (3.29) 

                                                           (3.30) 

It can be obtained from (2.3),(2.12),(3.27) and (3.30) 

                             (3.31) 

divide both sides of the above equation by  to get (3.30). 

Theorem 3.4 Under the condition of lemma 4.4, let the eigenfunction space 

 ,we have 

                                                         (3.32) 

Proof:  theorem 3.1 show  than , higher order  than   higher 

order. Thus, from (3.32), the estimator of  (3.9), and the estimator of , can be obtained 

 

From the above equation, theorem 3.4 is proved. 

We can know from theorem 3.2 and theorem 3.3, the characteristic function error  

estimates indicate  is a reliable and efficient, therefore, the adaptive algorithm based on the 

estimates indicator good gradient mesh can be generated. The approximate eigen function reaches the optimal 

convergence order  in . From (3.30) can have . So can think 

can be as the error estimates of lambda _h instructions, numerical experiments of section 4 

show that eta  as error estimation of  instructions is reliable and efficient. 

 

3.4 NUMERICAL EXPERIMENT 

In this section, a series of numerical experiments will be conducted to verify the effectiveness of the hp local 

discontinuous finite element method of Steklov eigenvalue problem by compiling the code under the IFEM 
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package, and the computed results will be sorted in descending order to obtain the data. In this experiment, the 

test domain are set to be the L-shape domain  and square  

respectively. 

IV. CONCLUSION                    

                                                         

4.1 THE RESULTS OF NUMERICAL EXPERIMENTS 

 

TABLE I. About the region   numerical solution results for the first fourth eigenvalues 
h P dof λ1 λ2 λ3 λ4 

1/4 1 24 0.241985120396731 1.557082494331800 1.567981965130290 2.766574268815750 

1/4 2 48 0.240079724549933 1.496947672301450 1.499428975046800 2.082787917163070 

1/4 3 80 0.240079112305256 1.492322541686640 1.492334691413000 2.082653128244820 

1/8 1 96 0.240603412309877 1.515427100614430 1.519205201504950 2.252320633910260 

1/8 2 192 0.240079142099497 1.492630666254280 1.492794826780140 2.082659643988760 

1/8 3 320 0.240079085865350 1.492303508371800 1.492303745768920 2.082647158468340 

1/16 1 384 0.240215724296756 1.498834475702410 1.500067866013550 2.125958682038990 

1/16 2 768 0.240079089485034 1.492324336253270 1.492334931269400 2.082647939864130 

1/16 3 1280 0.240079085433790 1.492303140728370 1.492303144658960 2.082647055702750 

1/32 1 1536 0.240113813327580 1.494002217106130 1.494356189460460 2.093634847726540 

1/32 2 3072 0.240079085696021 1.492304473625110 1.492305148150550 2.082647112024300 

1/32 3 5120 0.240079085425170 

+ 0.00000000000000i 

1.492303134470372  

+ 0.00000000000000i 

1.492303134692798  

+ 0.000000000000000i 

2.082647053903782  

+ 

0.000000000000000i 

1/64 1 6144 0.240087824313781 1.492733483605300 1.492827836095860 2.085414539962150 

1/64 2 12288 0.240079085442566 1.492303218530770 1.492303261109540 2.082647057751940 

1/64 3 20480 0.240079085419030 

+ 0.000000000000000i 

0.768274571229386  

- 0.842808219666222i 

0.768274571229386  

+ 0.842808219666222i 

-1.157380518255964 

 

+0.000000000000000i 

 

TABLE II. About the region   numerical solution results for the first fourth eigenvalues 
h P dof λ1 λ2 λ3 λ4 

1/2 1 18 0.184370548231648 0.980232299404417 1.82906530795754 4.13808322383428 

1/2 2 36 0.182980279501687 0.918525278982131 1.699156800429130 3.275523798631990 

1/2 3 60 0.182966075088768 0.900855678534774 1.689327741901200 3.220087676768690 

1/4 1 72 0.183358727346188 0.931174919280224 1.73919672226841 3.56578249426117 

1/4 1 144 0.182966480133728 0.900805354854160 1.689905958347010 3.223623216518960 

1/4 2 240 0.182964513803436 0.896396671029967 1.688714315870450 3.217910283979370 

1/8 1 288 0.183069281417831 0.908401968715363 1.70330292648774 3.32131530982049 

1/8 1 576 0.182964567302139 0.896233781046824 1.688763930472870 3.218267571713410 

1/8 2 960 0.182964279921273 0.894722861609305 1.688617360337970 3.217860903736770 

1/16 1 1152 0.182991309607356 0.899267392795164 1.692530493140910 3.245737724595320 

1/16 2 2304 0.182964287235214 0.894643891263804 1.688622521043840 3.217886398047420 

1/16 3 3840 0.182964243597903 0.894070589896526 1.688603059166600 3.217859838784520 

1/32 1 4608 0.182971105542950 0.895785659995388 1.689615048411320 3.225034155288780 

1/32 2 9216 0.182964244673090 0.894037759700364 1.688603653469660 3.217861497450140 
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Figure. 1:The error curves of the 

approximation for the first fourth eigenvalues 

on  with P = 2. 

 

Figure 2: The error curves of the 

approximation for the first fourth 

eigenvalues on  with P= 2. 

 

1/32 3 15360  0.182964237949173 

+0.00000000000000i 

0.893813548474596 

+0.000000000000000i 

1.688600895976938 

+0.000000000000000i 

-2.349206210258648 

-1.759265727335553i 

 

 

 

 

 

4.2 THE RESULTS OF NUMERICALEXPERIMENTS 

Steklov eigenvalue problem is widely used in physics. In this paper, a local discontinuity Galerkin method based 

on h is used to obtain the optimal order of convergence, and the optimal order error is estimated in the L-shaped 

and square regions respectively under the iFEM package. The convergence of the Dirichlet operator is superior 

on the continuous Ω field, which shows that the numerical experiment is effective and feasible, so it has good 

application value. We list the eigenvalue numerical solution results obtained by adaptive calculation in Table 1 

and Table 2, and describe the adaptive grid and error curve in the figure. In FIG. 1 and FIG. 2, we can see that 

the error curve results of quadratic discontinuity elements show that the adaptive algorithm can achieve the 

optimal order of convergence, and from the error curve, it can also be seen that under the same degree of 

freedom (dof), the approximation obtained by the adaptive algorithm is more accurate than that calculated by the 

uniform grid. 
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