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Abstract 

The Classical Segal-Bargmann theory studies Hilbert space unitary isomorphisms that describe the wave-

particle duality and the configuration space-phase space. S. Eaknipitsari and W. Lewkeeratiyutkul [20] 

generalized these concepts to Clifford algebra-valued functions. We establish the unitary isomorphisms among 

the space of Clifford algebra-valued square-integrable functions on ℝ𝑛 with respect to a Gaussian measure, the 

space of monogenic square-integrable functions on ℝ𝑛+1 with respect to another Gaussian measure and the 

space of Clifford algebra-valued linear functionals on symmetric tensor elements of ℝ𝑛. We follow [20] and 

show a survey of fixed validity.  
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I. Introduction 

For 𝑥𝑟  ∈  ℝ𝑛, let 𝜌(𝑥𝑟)  =  (2𝜋)−
𝑛

2  𝑒−|𝑥
𝑟|2/2. The Segal-Bargmann transform is a map 𝑈 ∶

 𝐿2(ℝ𝑛, 𝜌 𝑑𝑥𝑟)  →  ℋ𝐿2(ℂ𝑛 , 𝜇 𝑑(𝑥𝑟 + 2𝜖)) defined by 

𝑈(∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥
𝑟 + 2𝜖))  = ∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

𝜌(2𝜖)𝑓(𝑥𝑟)𝑑𝑥𝑟 

= (2𝜋)−
𝑛
2 ∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

𝑒−|𝜖|
2
𝑓𝑗(𝑥

𝑟)𝑑𝑥𝑟 . 

and ℋ𝐿2(ℂ𝑛 , 𝜇 𝑑(𝑥𝑟 + 2𝜖)) is the space of holomorphic square-integrable functions on ℂ𝑛 with respect to 

measure 𝜇(𝑥𝑟 + 2𝜖) 𝑑(𝑥𝑟 + 2𝜖) where 𝜇(𝑥𝑟 + 2𝜖)  =  𝜋−𝑛 𝑒−|𝑥
𝑟+2𝜖|2  and 𝑑(𝑥𝑟 + 2𝜖) is Lebesgue measure on 

ℂ𝑛 . Segal [17], [18] and Bargmann [1] independently proved that 𝑈 is a unitary isomorphism. See also [9], [10] 

for backgrounds and recent developments. The map 𝑈 is the heat operator 𝑒
∆

2 𝑓𝑗  =  𝜌 ∗  𝑓𝑗 , followed by the 

analytic continuation from ℝ𝑛 to ℂ𝑛, as in the following commutative diagram: 

ℋ𝐿2(ℂ𝑛 , 𝜇 𝑑(𝑥𝑟 + 2𝜖)) 

𝑈                     

𝑐                                       (1.1) 

𝐿2(ℝ𝑛, 𝜌 𝑑𝑥𝑟)    
                  𝑒

∆
2                   

→              𝒜̃(ℝ𝑛) 

and 𝒞 denotes the analytic continuation from ℝ𝑛 to ℂ𝑛 and e 𝒜̃(ℝ𝑛) is the image of 𝐿2(ℝ𝑛, 𝜌 𝑑𝑥𝑟) by the 

operator 𝑒
∆

2. 

http://www.questjournals.org/
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There is another space, namely the Fock space ℱ(ℂ𝑛) of symmetric tensors over ℂ𝑛 , that is isometrically 

isomorphic to ℋ𝐿2(ℂ𝑛, 𝜇 𝑑(𝑥𝑟 + 2𝜖)). See [11], [16] for original works. We follow recent developments in [7], 

[8]. Let 𝑋 be the complex dual space of ℂ𝑛 and denote by 𝑋⊙𝑘 the space of symmetric 𝑘-tensors over 𝑋. 

Consider the algebraic direct sum ∑  ∞
𝑘=0  𝑋

⊙𝑘 whose elements are of the form 𝛼𝑗  = ∑  ∞
𝑘=0  ∑  𝑗 𝛼𝑘

𝑗
, where 𝛼𝑘

𝑗
 ∈

 𝑋⊙𝑘 for each 𝑘 and 𝛼𝑘
𝑗
 =  0 for all but finitely many 𝑘. Let {𝑒1, . . . , 𝑒𝑛} be the standard basis for ℂ𝑛. Each 

element 𝛼𝑘
𝑗
 ∈  𝑋⊙𝑘 has a natural norm given by 

|𝛼𝑘
𝑗
|
2
 = ∑  

 

|𝛽|=𝑘

∑ 

𝑗

1

𝛽!
 |𝛼𝑘

𝑗
(𝑒𝛽)|

2
, 

where the sum is taken over multi-indices 𝛽 =  (𝛽1, . . . , 𝛽𝑛)  ∈  ℕ0
𝑛 . We use notation 𝑒𝛽  =  𝑒1

⊙𝛽1  ⊙. . .⊙

𝑒𝑛
⊙𝛽𝑛 , |𝛽|  =  𝛽1  + · · ·  + 𝛽𝑛 and 𝛽!  =  𝛽1! . . . 𝛽𝑛!. The algebraic direct sum ∑  ∞

𝑘=0  𝑋
⊙𝑘 is equipped with a 

norm given by 

‖𝛼𝑗‖  = (∑∑ 

𝑗

|𝛼𝑘
𝑗
|
2

∞

𝑘=0

)

1
2

. 

The Fock space ℱ(ℂ𝑛) is defined to be the Hilbert space completion of the algebraic direct sum with respect to 

this norm. Thus ℱ(ℂ𝑛) is the set of strong sums ∑  ∞
𝑘=0  ∑  𝑗 𝛼𝑘

𝑗
, where 𝛼𝑘

𝑗
 ∈  𝑋⊙𝑘 for each 𝑘, such that 

∑ ∑  𝑗 |𝛼𝑘
𝑗
|
2

∞
𝑘=0 <  ∞. 

We describe the unitary isomorphism from ℋ𝐿2(ℂ𝑛, 𝜇 𝑑(𝑥𝑟 + 2𝜖)) onto ℱ(ℂ𝑛). For 𝑓𝑗 be the  

sequence of holomorphic functions on ℂ𝑛 . There is a linear map 𝐷𝑘 (∑  𝑗 (𝑓𝑗)) ∶  (ℂ
𝑛)⊙𝑘  →  ℂ  such that for 

any 𝑢1
2, . . . , 𝑢𝑘

2  ∈  ℂ𝑛 , 

𝐷𝑘 (∑ 

𝑗

𝑓𝑗(𝑢1
2  ⊙ · · · ⊙ 𝑢𝑘

2))  = (𝜕𝑢12  . . . 𝜕𝑢𝑘
2)(∑ 

𝑗

𝑓𝑗(0)), 

with 𝐷0𝑓𝑗  =  𝑓𝑗(0). Here 𝜕𝑣2  is the directional derivative in the 𝑣2 direction. We identify 𝐷𝑘(∑  𝑗 𝑓𝑗) as an 

element of (𝑋)⊙𝑘. We write ∑  ∞
𝑘=0  ∑  𝑗 𝐷

𝑘𝑓𝑗 in ℱ(ℂ𝑛) as 

(1 −  𝐷)−1 (∑ 

𝑗

𝑓𝑗)  = ∑  

∞

𝑘=0

∑ 

𝑗

𝐷𝑘𝑓𝑗 . 

The map (1 − 𝐷)−1 is a unitary isomorphism from ℋ𝐿2(ℂ𝑛, 𝜇 𝑑(𝑥𝑟 + 2𝜖)) onto the Fock space ℱ(ℂ𝑛). This 

map is simply the Taylor series expansion that assigns to each holomorphic function its Taylor coefficients. 

Hence we will call it the Taylor map. 

It can be summarized that the three arrows in the following commutative diagram are unitary isomorphisms. 

These isomorphisms are used to describe the “wave-particle duality” in quantum field theory. 

𝐿2(ℝ𝑛, 𝜌 𝑑𝑥𝑟)
                        𝑈                          
→                  ℋ𝐿2(ℂ𝑛, 𝜇 𝑑(𝑥𝑟 + 2𝜖)) 

 

   (1 − 𝐷)−1                                   (1.2) 

ℱ(ℂ𝑛) 

 

There is another form of a Segal-Bargmann transform 𝑉 ∶  𝐿2(ℝ𝑛, 𝑑𝑥𝑟)  → ℋ𝐿2(ℂ𝑛, 𝜈 𝑑𝑥𝑟  𝑑(𝑥𝑟 + 𝜖)) defined 

by 

𝑉(∑ 

𝑗

∑ 

𝑟

 𝑓𝑗(𝑥
𝑟 + 2𝜖)  = ∫  ∑  

𝑗

∑ 

𝑟

 

ℝ𝑛
𝜌(2𝜖)𝑓(𝑥𝑟)𝑑𝑥𝑟  

   =  (2𝜋)−
𝑛
2 ∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

𝑒−
|2𝜖|2

2  𝑓𝑗(𝑥
𝑟)𝑑𝑥𝑟 , 

where 𝜈2(𝑥𝑟 + 𝜖)𝑑𝑥𝑟 𝑑(𝑥𝑟 + 𝜖)  =  𝜋−
𝑛

2  𝑒−|𝑥
𝑟+𝜖|2𝑑𝑥𝑟 𝑑(𝑥𝑟 + 𝜖). The map 𝑉 is a unitary isomorphism from 

𝐿2(ℝ𝑛 , 𝑑𝑥𝑟) onto ℋ𝐿2(ℂ𝑛 , 𝜈2 𝑑𝑥𝑟 𝑑(𝑥𝑟 + 𝜖)). The formula that defines 𝑉 is the same as that for 𝑈, but with 
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different domain and range. However, one does not have a Taylor map to the Fock space in the same way as the 

𝑈-version of a Segal-Bargmann transform. The main reason is that the monomials are orthogonal with respect to 

the measure 𝑑𝜇 and not to the measure 𝑑𝜈. The 𝑈-version and the 𝑉-version both have their advantages, but 

certainly the existence of this Taylor map onto the Fock space is a significant advantage of the 𝑈-version. 

The purpose is to generalize the triad (1.2) to the Clifford algebra-valued functions setting. Brackx, 

Delanghe, and Sommen [2] defined a (left) monogenic function 𝑓𝑗 ∶  ℝ
𝑛  →  ℂ𝑛 as an element in the kernel of a 

Dirac operator, i.e., 

0 =  𝐷 (∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥
𝑟))  = ∑ 

𝑛

𝑗=1

∑ 

𝑟

𝑒𝑗𝜕𝑒𝑗𝑓(𝑥
𝑟) 

where ℂ𝑛 is the complex Clifford algebra generated by the standard basis {𝑒1, . . . , 𝑒𝑛} of ℝ𝑛 . Denote by ℳ(ℝ𝑛) 

and ℳ(ℂ𝑛) the right ℂ𝑛-modules of monogenic functions on ℝ𝑛 and ℂ𝑛 , respectively. Kirwin, Mourão, Nunes, 

and Qian [13] used a notion of an (𝑛 + 1)-variable monogenic function, namely a function 𝑓𝑗 ∶  ℝ
𝑛+1  →  ℂ𝑛 

such that 

(𝜕𝑒0  +  𝐷)(∑  

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟))  =  0. 

They obtained a generalized Segal-Bargmann transform on special types of monogenic functions namely, slice 

monogenic and axial monogenic functions. Mourão, Nunes, and Qian [15] continued their work and generalized 

the Segal-Bargmann transform to Clifford algebra-valued functions analogous to 𝑉 as in the following theorem. 

Theorem 1.1 ([15]). The map 𝑉̃ ∶  𝐿2(ℝ𝑛, 𝑑𝑥𝑟) ⊗ ℂ𝑛  → ℳ𝐿
2(ℝ𝑛+1, 𝜈2 𝑑𝑥0

𝑟 𝑑𝑥𝑟) given by 

𝑉̃  (∑ 

𝑗

𝑓𝑗) (𝑥0
𝑟 , 𝑥𝑟)  =  (2𝜋)−𝑛∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

(∫  
 

ℝ𝑛
𝑒−
𝑝2

2  𝑒𝑖
(𝑝,−𝜖)𝑒−𝑖𝑥0

𝑟𝑝 𝑑𝑝) 𝑓𝑗(𝑥
𝑟 + 𝜖) 𝑑(𝑥𝑟 + 𝜖), 

is a unitary isomorphism. Here ℳ𝐿2(ℝ𝑛+1, 𝜈2 𝑑𝑥0
𝑟 𝑑𝑥𝑟) is the Hilbert space of monogenic functions on ℝ𝑛+1 

that are square-integrable with respect to measure 𝜈2 𝑑𝑥0
𝑟  𝑑𝑥𝑟 where 𝜈2(𝑥0

𝑟) =
1

√𝜋
 𝑒−(𝑥0

2)
𝑟

. Dang, Mourão, 

Nunes, and Qian [4] also obtained this result for spherical domains. Using the idea of Theorem 1.1 in [15], we 

can extend the unitary map 𝑈 in the classical setting as follows (see [20]).  

Theorem 1.2. The map 𝑈 given by 

𝑈(∑ 

𝑗

𝑓𝑗)(𝑥0
𝑟 , 𝑥𝑟)  =  (2𝜋)−𝑛∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

(∫  
 

ℝ𝑛
𝑒−
𝑝2

2  𝑒𝑖
(𝑝2,−𝜖)𝑒−𝑖𝑥0

𝑟𝑝2  𝑑𝑝2) 𝑓𝑗(𝑥
𝑟 + 𝜖) 𝑑(𝑥𝑟 + 𝜖), 

is a unitary isomorphism from 𝐿2(ℝ𝑛 , 𝜌 𝑑𝑥𝑟)  ⊗ ℂ𝑛 onto ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃), the Hilbert space of monogenic 

functions on ℝ𝑛+1 that are square-integrable with respect to the measure 

𝑑𝜇̃  =
1

𝜋
𝑛+1
2

𝑒−(𝑥0
2)
𝑟
−|𝑥𝑟|

2

𝑑𝑥0
𝑟 𝑑𝑥𝑟 . 

The map 𝑈 can be factorized as in the following diagram: 

ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) 

𝑈                                                       

𝑒−𝑥0𝐷                                                             (1.3) 

𝐿2(ℝ𝑛 , 𝜌 𝑑𝑥𝑟) ⊗ ℂ𝑛
                𝑒

∆
2                    

→             𝒜̃(ℝ𝑛) ⊗ ℂ𝑛 

We replace the analytic continuation 𝒞 by the Cauchy-Kowalevski extension 𝑒−𝑥0
𝑟𝐷, which will be explained. 

Now we turn to the Clifford algebra-valued Fock space. For 𝑋 be the real dual space of ℝ𝑛 . [20] repeat 

the construction in the classical case for the Clifford algebra-valued symmetric tensor algebra, which will be 

identified with ℱ(𝑋)  ⊗ ℂ𝑛 and called the ℂ𝑛-valued covariant Fock space. An element in ℱ(𝑋) ⊗ ℂ𝑛 is a 

strong sum ∑  ∞
𝑘=0 ∑  𝑗 𝛼𝑘

𝑗
, where each 𝛼𝑘

𝑗
 ∈  𝑋⊙𝑘⊗ℂ𝑛 and such 

that 
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‖𝛼𝑗‖
2
=∑∑ 

𝑗

|𝛼𝑘
𝑗
|
2

∞

𝑘=0

<  ∞. 

For 𝑓𝑗 ∶  ℝ
𝑛+1  →  ℂ𝑛 be a monogenic function. Then there is a linear map 𝐷𝑘(∑  𝑗 𝑓𝑗) ∶  (ℝ

𝑛)⊙𝑘  →  ℂ𝑛 such 

that for any 𝑢1
2, . . . , 𝑢𝑘

2  ∈  ℝ𝑛 , 

𝐷𝑘 (∑ 

𝑗

𝑓𝑗(𝑢1
2  ⊙ · · · ⊙ 𝑢𝑘

2))  =  𝜕𝑢12 . . . 𝜕𝑢𝑘
2 (∑ 

𝑗

𝑓𝑗(0, 0)), 

with 𝐷0𝑓𝑗  =  𝑓𝑗(0, 0). It is natural to write ∑  ∞
𝑘=0  𝐷

𝑘(∑  𝑗 𝑓𝑗)  ∈  ℱ(𝑋) ⊗ ℂ𝑛 as 

(1 −  𝐷)−1 (∑ 

𝑗

𝑓𝑗)  = ∑  

∞

𝑘=0

∑ 

𝑗

𝐷𝑘𝑓𝑗 , 

where 

‖(1 −  𝐷)−1 (∑ 

𝑗

𝑓𝑗)‖

2

 = ∑  

∞

𝑘=0

∑ 

𝑗

|𝐷𝑘𝑓𝑗|
2
 <  ∞. 

We have the second main theorem (see [20]). 

Theorem 1.3. The map (1 − 𝐷)−1 is a unitary isomorphism from the space of square-integrable monogenic 

functions ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) onto the Clifford algebra-valued Fock space ℱ(𝑋) ⊗ ℂ𝑛 . 

Combining Theorems 1.2 and 1.3 together, we have the following unitary isomorphisms in the Clifford-algebra-

valued setting in this diagram: 

𝐿2(ℝ𝑛, 𝜌 𝑑𝑥𝑟) ⊗ ℂ𝑛
                       𝑈̃                          
→                 ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) 

 

(1 − 𝐷)−1 

ℱ(𝑋) ⊗ ℂ𝑛 

We recall necessary facts about Clifford algebra and Clifford analysis used. We discuss the Clifford algebra-

valued Segal-Bargmann Transform and the Clifford algebra-valued Fock space to prove Theorems 1.2. and 1.3. 

 

II. Preliminaries 

2.1. Real and Complex Clifford Algebras 

For 𝕂 =  ℝ or ℂ. Define the Clifford algebra 𝕂𝑛 as the 𝕂−algebra generated by 𝑛 elements 𝑒1, . . . , 𝑒𝑛, 

which can be identified with the canonical basis of 𝕂𝑛  ⊂  𝕂𝑛 and satisfy the relations 𝑒𝑖𝑒𝑗  +  𝑒𝑗𝑒𝑖  =  −2𝛿𝑖𝑗, 

see e.g.[2], [3], [14], [15]. If 𝕂 =  ℝ we call 𝕂𝑛 the real Clifford algebra and if 𝕂 =  ℂ we call 𝕂𝑛 the complex 

Clifford algebra. 

Note that {𝑒𝐴 | 𝐴 ⊂  {1, 2, . . . , 𝑛}  =  𝑁} is a basis for 𝕂𝑛 where 𝑒𝐴  = 𝑒𝑖1𝑒𝑖2  · · ·  𝑒𝑖𝑘  with 𝐴 =

 {𝑖1, 𝑖2, . . . , 𝑖𝑘}, 1 ≤  𝑖1  <  𝑖2  < · · · <  𝑖𝑘  ≤  𝑛, and 𝑒𝜙  =  1. 

Thus any 𝜆𝑗  ∈  𝕂𝑛  can be written as 

𝜆𝑗  = ∑∑ 

𝑗

𝜆𝐴
𝑗
 𝑒𝐴

𝐴⊂𝑁

, 

where 𝜆𝐴
𝑗
 ∈  𝕂. Define the so-called 𝑘-vector part of 𝜆𝑗 , for 𝑘 =  0, 1, . . . , 𝑛, 

by 

[𝜆𝑗]𝑘  = ∑ ∑ 

𝑗

𝜆𝐴
𝑗
 𝑒𝐴

|𝐴|=𝑘

. 

Now, we focus at ℂ𝑛 . One important operator of ℂ𝑛, the Hermitian conjugation, is defined by 

𝑒𝑖  =  −𝑒𝑖 , 𝑖 =  1, 2, . . . , 𝑛, 

(𝜆𝐴
𝑗
𝑒𝐴)  =  (𝜆

𝑗)𝐴
𝑐  𝑒𝐴, 𝜆𝐴

𝑗
 ∈  ℂ, 𝐴 ⊂  𝑁, 

(𝜆𝑗𝜇)  =  𝜇 𝜆𝑗, 𝜆𝑗 , 𝜇 ∈  ℂ𝑛 , 
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where (𝜆𝑗)𝐴
𝑐  denotes the complex conjugate of the complex number 𝜆𝐴

𝑗
. This contributes to a Hermitian inner 

product and its associated norm on ℂ𝑛 , respectively defined by 

(𝜆𝑗, 𝜇)  =  [𝜆𝑗𝜇]0   and     |𝜆𝑗|
2
 =  [𝜆𝑗𝜆𝑗]0  = ∑ 

𝐴

∑ 

𝑗

|𝜆𝐴
𝑗
|
2
. 

2.2. Clifford Analysis 

Clifford analysis is a function theory in higher dimensions generalizing complex analysis, see e.g. [2]. 

We begin by considering the generalized Cauchy-Riemann operator 

𝜕𝑒0  +  𝐷, 

where 

𝐷  = ∑ 

𝑛

𝑗=1

𝑒𝑗𝜕𝑒𝑗  

and {𝑒0, 𝑒1, . . . , 𝑒𝑛} is the standard basis of ℝ𝑛+1. To make things easier, we also identify ℝ𝑛 with the subspace 

of ℝ𝑛 of 1-vectors 

{𝑥𝑟  = ∑  

𝑛

𝑗=1

∑ 

𝑟

𝑥𝑗
𝑟𝑒𝑗 ∶  𝑥

𝑟  =  (𝑥1
𝑟 , . . . , 𝑥𝑛

𝑟) ∈  ℝ𝑛}. 

We give a generalized concept of a holomorphic function. A continuously differentiable functions 𝑓𝑗 on an open 

domain 𝒪 ⊂  ℝ𝑛+1, taking values in ℂ𝑛 , is called (left) monogenic on 𝒪 if it satisfies the generalized Cauchy-

Riemann equation (see [20]): 

(𝜕𝑒0  +  𝐷)(∑  

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟))  =  0. 

Theorem 2.1 ([2]). Let 𝑓𝑗 be a ℂ𝑛-valued analytic functions on ℝ𝑛. Then there exists a unique ℂ𝑛-valued 

monogenic functions 𝐹𝑗 on ℝ𝑛+1 such that 𝐹𝑗(0, 𝑥
𝑟)  =  𝑓𝑗(𝑥

𝑟). 

This extension is called the Cauchy-Kowalevski extension, or simply the C-K extension, of 𝑓𝑗. In [19] 

and [5], the formula for the C-K extension is given as follows: 

Theorem 2.2. Let 𝑓𝑗 be a ℂ𝑛-valued analytic functions on ℝ𝑛 . Then the C-K extension of 𝑓𝑗 is given by the 

formula 

𝐹𝑗(𝑥0
𝑟 , 𝑥𝑟)  =  ∑  

𝑟

𝑒−𝑥0
𝑟𝐷 (∑ 

𝑗

𝑓𝑗(𝑥
𝑟)) ∶= (∑  

∞

𝑘=0

∑ 

𝑗

∑ 

𝑟

(−1)𝑘  
(𝑥𝑟)0

𝑘

𝑘!
𝐷𝑘  𝑓𝑗) (𝑥

𝑟) 

where the series converges uniformly on compact subsets. 

 

III. Clifford Algebra-Valued Segal-Bargmann Transform 

We introduce the Hilbert space of Clifford algebra-valued square-integrable functions with respect to 

measure 𝜌 on ℝ𝑛 

𝐿2(ℝ𝑛 , 𝑑𝜌 ;  ℂ𝑛)  =  {𝑓𝑗 ∶  ℝ
𝑛  →  ℂ𝑛 | ∫  

 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

|𝑓𝑗(𝑥
𝑟)|

2
 𝜌(𝑥𝑟)𝑑𝑥𝑟  <  ∞}, 

equipped with the inner product: 

〈𝑓𝑗 , 𝑔𝑗〉  = ∫  
 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

(𝑓𝑗(𝑥
𝑟), 𝑔𝑗(𝑥

𝑟)) 𝜌(𝑥𝑟)𝑑𝑥𝑟  = ∫  
 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

[𝑓𝑗(𝑥
𝑟)𝑔𝑗(𝑥

𝑟)]
0
 𝜌(𝑥𝑟)𝑑𝑥𝑟 

where 

𝜌(𝑥𝑟)  =  (2𝜋)−
𝑛
2  𝑒−

|𝑥𝑟|
2

2 . 

We identify 𝐿2(ℝ𝑛, 𝑑𝜌 ;  ℂ𝑛) with the tensor product 𝐿2(ℝ𝑛, 𝑑𝜌)  ⊗ ℂ𝑛 . Also, the Hilbert space of Clifford 

algebra-valued square-integrable functions with respect to measure 𝜇̃ on ℝ𝑛+1 is given by 

𝐿2(ℝ𝑛+1, 𝑑𝜇̃ ;  ℂ𝑛)  =  {𝐹𝑗 ∶  ℝ
𝑛+1  →  ℂ𝑛 | ∫  

 

ℝ𝑛+1
∑ 

𝑗

∑ 

𝑟

 |𝐹𝑗(𝑥
𝑟)|

2
 𝑑𝜇̃  <  ∞}, 
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equipped with the inner product: 

〈𝐹𝑗 , 𝐺𝑗〉  = ∫  
 

ℝ𝑛+1
∑ 

𝑗

∑ 

𝑟

(𝐹𝑗(𝑥
𝑟), 𝐺𝑗(𝑥

𝑟)) 𝑑𝜇̃  = ∫  
 

ℝ𝑛+1
∑ 

𝑗

∑ 

𝑟

[𝐹𝑗(𝑥
𝑟)̅̅ ̅̅ ̅̅ ̅̅ 𝐺𝑗(𝑥

𝑟)]
0
 𝑑𝜇̃ 

where 

𝑑𝜇̃  =  𝜋−
𝑛+1
2 𝑒−(𝑥

𝑟)0
2−|𝑥𝑟|

2

𝑑𝑥0
𝑟 𝑑𝑥𝑟 . 

The space 𝐿2(ℝ𝑛+1, 𝑑𝜇̃ ;  ℂ𝑛) can be identified with the tensor product 𝐿2(ℝ𝑛+1, 𝑑𝜇) ⊗ ℂ𝑛. Denote by 

ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) the Hilbert space of monogenic functions on ℝ𝑛+1 that are square-integrable with respect to 

measure 𝜇̃. 

Following the idea of the proof of Theorem 1.1 in [15], we will prove Theorem 1.2, namely, 𝑈 is a 

unitary isomorphism from 𝐿2(ℝ𝑛, 𝑑𝜌)  ⊗ ℂ𝑛 onto ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃). The map 𝑈 is the heat operator applied to 

an element in the domain and then followed by the C-K extension. In other words, 

𝑈(∑ 

𝑗

(𝑓𝑗))  = ∑ 

𝑗

∑ 

𝑟

(𝑒−𝑥0
𝑟𝐷  ◦  𝑒

△
2) (𝑓𝑗)  = ∑ 

𝑗

∑ 

𝑟

 𝑒−𝑥0
𝑟𝐷(𝜌 ∗  𝑓𝑗). 

Note that 𝜌 is analytic on ℝ𝑛, and so is 𝜌 ∗  𝑓𝑗. Then its C-K extension, 𝑈(∑  𝑗 𝑓𝑗), exists and is monogenic on 

ℝ𝑛+1. 

Proof of Isometry (see [20]). Note that the Schwartz space of ℂ𝑛-valued functions is identified with the tensor 

product 𝒮(ℝ𝑛)  ⊗ ℂ𝑛. Since 𝒮(ℝ𝑛) is dense in 𝐿2(ℝ𝑛, 𝑑𝜌), it follows that 𝒮(ℝ𝑛)  ⊗ ℂ𝑛 is dense in 

𝐿2(ℝ𝑛 , 𝑑𝜌)  ⊗ ℂ𝑛 . Any 𝑓𝑗  ∈  𝒮(ℝ
𝑛)  ⊗ ℂ𝑛 can be written as 𝑓𝑗  = ∑ ∑  𝑗 (𝑓𝑗)𝐴 𝑒𝐴𝐴⊂𝑁 , where (𝑓𝑗)𝐴  ∈  𝒮(ℝ

𝑛). 

Hence the Fourier transform of 𝑓𝑗 is given by 𝑓𝑗  = ∑ ∑  𝑗 (𝑓𝑗)𝐴  𝑒𝐴𝐴⊂𝑁 . By the density argument, it suffices to 

show that 𝑈̃ is an isometry on 𝒮(ℝ𝑛)  ⊗ ℂ𝑛 . 

The Fourier inversion formula of 𝑓𝑗  ∈  𝒮(ℝ
𝑛)  ⊗ ℂ𝑛 is 

𝑓𝑗(𝑥
𝑟)  =

1

(2𝜋)
𝑛
2

∫  
 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

𝑒𝑖
(𝑝,𝑥𝑟) 𝑓𝑗 (𝑝

2) 𝑑𝑝2.                                      (3.1) 

By applying the operator 𝑒−𝑥0
𝑟𝐷  ◦  𝑒

△

2  to 𝑓𝑗 in (3.1) and pass it inside the integral sign, we see that 

𝑈(∑  

𝑗

∑ 

𝑟

(𝑓𝑗)(𝑥0
𝑟 , 𝑥𝑟) =

1

(2𝜋)
𝑛
2

∫  
 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

𝑒−𝑖𝑥0
𝑟𝑝2𝑒−

|𝑝2|
2

2 𝑒𝑖
(𝑝2,𝑥𝑟) 𝑓𝑗 (𝑝

2) 𝑑𝑝2.                   (3.2) 

Note that since 𝑓𝑗 and 𝑓𝑗, as well as their derivatives, are rapidly decaying (i.e. they are functions in the Schwarz 

space), this allows passage of the operator inside the integral sign and the interchange of the order of integration. 

To show the isometry of 𝑈̃, let 𝑓𝑗, ℎ𝑗  ∈  𝒮(ℝ
𝑛)  ⊗ ℂ𝑛 . Then 

〈𝑓𝑗, ℎ𝑗〉  =
1

(2𝜋)
𝑛
2

∫  
 

ℝ𝑛
∑ 

𝑗

∑ 

𝑟

(𝑓𝑗(𝑥
𝑟), ℎ𝑗(𝑥

𝑟)) 𝑒−
|𝑥𝑟|

2

2 𝑑𝑥𝑟  

=
1

(2𝜋)
3𝑛
2

∫  
 

ℝ𝑛
∫  
 

ℝ2𝑛
∑ 

𝑗

∑ 

𝑟

(𝑒𝑖
(𝑝2,𝑥𝑟) 𝑓𝑗 (𝑝

2) , 𝑒𝑖
(𝑞2,𝑥𝑟) ℎ̂𝑗 (𝑞

2)) 𝑒−
|𝑥𝑟|

2

2 𝑑𝑝2 𝑑𝑞2 𝑑𝑥r 

=
1

(2𝜋)
3𝑛
2

∫  
 

ℝ2𝑛
∑ 

𝑗

(𝑓𝑗 (𝑝
2) , ℎ̂𝑗 (𝑞

2))∫  
 

ℝ𝑛
∑ 

𝑟

𝑒𝑖
(𝑞2−𝑝2,𝑥𝑟)𝑒−

|𝑥𝑟|
2

2 𝑑𝑥𝑟 𝑑𝑝2 𝑑𝑞2 

        =
1

(2𝜋)𝑛
∫ ∑ 

𝑗

 
 

ℝ2𝑛
𝑒−
|𝑞2−𝑝2|

2

2 (𝑓𝑗 (𝑝
2) , ℎ̂𝑗 (𝑞

2))  𝑑𝑝2 𝑑𝑞2. 

The last equality is obtained by the Fourier transform. On the other hand, 

〈𝑈̃(𝑓𝑗), 𝑈(ℎ𝑗)〉 =
1

𝜋
𝑛+1
2

∫  
 

ℝ𝑛+1
∑ 

𝑗

∑ 

𝑟

(𝑈(𝑓𝑗), 𝑈(ℎ𝑗)) 𝑒
−(𝑥𝑟)0

2
𝑒−|𝑥

𝑟|
2

𝑑𝑥0
𝑟 𝑑𝑥𝑟                          (3.3) 

Note that ∑  𝑗 ∑  𝑟 (𝑒
−𝑖𝑥0

𝑟𝑝2 𝑓𝑗 (𝑝
2) , 𝑒−𝑖𝑥0

𝑟𝑞2  ℎ̂𝑗 (𝑞
2)) = ∑  𝑗 ∑  𝑟 𝑒

−𝑖𝑥0
𝑟(𝑝2+𝑞2) (𝑓𝑗 (𝑝

2) , ℎ̂𝑗 (𝑞
2)) because 𝑝2 is a 

1-vector in ℝ𝑛, which implies 𝑖𝑝2  =  𝑖𝑝2. It follows from (3.2) that 
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(𝑈∑ 

𝑗

(𝑓𝑗), 𝑈∑ 

𝑗

(ℎ𝑗))

=
1

(2𝜋)𝑛
∫  
 

ℝ2𝑛
∑ 

𝑗

∑ 

𝑟

𝑒𝑖
(𝑞2−𝑝2,𝑥𝑟)𝑒−

|𝑝2|
2
+|𝑞2|

2

2 𝑒−𝑖𝑥0
𝑟(𝑝2+𝑞2) (𝑓𝑗 (𝑝

2) , ℎ̂𝑗 (𝑞
2))𝑑𝑝2 𝑑𝑞2. 

Substitute this into (3.3) and interchange the order of integration by Fubini’s theorem. We calculate the integral 

with respect to 𝑑𝑥𝑟 and 𝑑𝑥0
𝑟 first. The Fourier transform yields the following integrals 

∫  
 

ℝ𝑛
∑ 

𝑟

𝑒𝑖
(𝑞2−𝑝2,𝑥𝑟)𝑒−|𝑥

𝑟|
2

𝑑𝑥𝑟 = 𝜋
𝑛
2𝑒−

|𝑞2−𝑝2|
2

4 .                                       (3.4) 

∫  
 

ℝ 
∑ 

𝑟

𝑒−𝑖𝑥0
𝑟(𝑝2+𝑞2)𝑒−(𝑥

𝑟)0
2
 𝑑𝑥0

𝑟  =  √𝜋𝑒
|𝑝2+𝑞2|

2

4                                         (3.5) 

Putting (3.4) and (3.5) in (3.3) and applying the Parallelogram Law, we have 

〈𝑈(𝑓𝑗), 𝑈(ℎ𝑗)〉 =
1

(2𝜋)𝑛
∫  
 

ℝ2𝑛
∑ 

𝑗

𝑒
|𝑝2+𝑞2|

2
−|𝑞2−𝑝2|

2

4 𝑒−
|𝑝2|

2
+|𝑞2|

2

2 (𝑓𝑗 (𝑝
2) , ℎ̂𝑗 (𝑞

2))𝑑𝑝2 𝑑𝑞2 

=
1

(2𝜋)𝑛
∫  
 

ℝ2𝑛
∑ 

𝑗

𝑒−
|𝑞2−𝑝2|

2

2 (𝑓𝑗 (𝑝
2) , ℎ̂𝑗 (𝑞

2))𝑑𝑝2 𝑑𝑞2. 

This establishes the isometry part of 𝑈. 

Proof of Surjectivity (see [20]). Let {𝐻𝛽2 ∶  𝛽
2  ∈  ℕ0

𝑛} denote the orthogonal basis of 𝐿2(ℝ𝑛, 𝑑𝜌) consisting of 

𝑛-dimensional Hermite polynomials, each of which is a product of 1-dimensional Hermite polynomials, i.e. for 

𝐻𝛽2(𝑥
𝑟)  =  𝐻𝛽12(𝑥1

𝑟) . . . 𝐻𝛽𝑛2(𝑥𝑛
𝑟) 

for 𝛽2  =  (𝛽1
2, . . . , 𝛽𝑛

2)  ∈  ℕ0
𝑛. Morever, ‖𝐻𝛽2‖

2
 =  𝛽2!  =  𝛽1

2! . . . 𝛽𝑛
2!. Details about Hermite polynomials can 

be found in standard literatures, e.g. [6]. It can be directly computed that 

𝑒
△
2  𝐻𝛽2  = (𝑥

𝑟)𝛽
2
 =  (𝑥𝑟)1

𝛽1
2

 . . . (𝑥𝑟)𝑛
𝛽𝑛
2

.                                            (3.6) 

Let 𝐺𝑗  ∈  ℳ𝐿
2(ℝ𝑛+1, 𝑑𝜇̃). Then 𝑔𝑗(𝑥

𝑟)  =  𝐺𝑗(0, 𝑥
𝑟) is an analytic functions and hence it has a Taylor 

expansion with infinite radius of convergence 

𝑔𝑗(𝑥
𝑟)  = ∑ 

𝐴

∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

∑ 

𝑟

𝛼
𝛽2,𝐴

𝑗
 (𝑥𝑟)𝛽

2
 𝑒𝐴. 

Take 

𝑓𝑗  = ∑  

𝐴

∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

𝛼
𝛽2,𝐴

𝑗
 𝐻𝛽2  𝑒𝐴. 

where the series is taken in the 𝐿2-norm sense. Then 𝑓𝑗  ∈  𝐿
2(ℝ𝑛, 𝑑𝜌)  ⊗ ℂ𝑛. Since 𝑈 is bounded, we can pass 

it inside the summations: 

𝑈(∑ 

𝑗

(𝑓𝑗))  = ∑ 

𝐴

∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

𝛼
𝛽2,𝐴

𝑗
 𝑈(𝐻𝛽2) 𝑒𝐴. 

Since 𝑈 (∑  𝑗 (𝑓𝑗)) is monogenic, we can evaluate its value at 𝑥0
𝑟  =  0. 

𝑈(∑ 

𝑗

∑ 

𝑟

(𝑓𝑗)(0, 𝑥
𝑟)) =∑ 

𝐴

∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

𝛼
𝛽2,𝐴

𝑗
 𝑒
△
2 (𝐻𝛽2) 𝑒𝐴 =∑ 

𝐴

∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

∑ 

𝑟

𝛼
𝛽2,𝐴

𝑗
 (𝑥𝑟)

𝛽2

 𝑒𝐴. 

Hence 𝑈 (∑  𝑗 ∑  𝑟 (𝑓𝑗)(0, 𝑥
𝑟)) =  𝑔𝑗(𝑥

𝑟), which implies 𝑈 (∑  𝑗 (𝑓𝑗))  =  𝐺𝑗 . We have established that 𝑈 is a 

unitary map from 𝐿2(ℝ𝑛 , 𝑑𝜌)  ⊗ ℂ𝑛 onto ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃). 

Since 𝑈 is a unitary map, it follows that {𝑈(𝐻𝛽2) ∶  𝛽
2  ∈  ℕ0

𝑛} is an orthogonal basis for 

ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃). Define 
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𝑃𝛽2(𝑥0
𝑟 , 𝑥𝑟)  =  𝑈(𝐻𝛽2)(𝑥0

𝑟 , 𝑥𝑟)  =  𝑒−𝑥0
𝑟𝐷 (𝑥𝑟)

𝛽2

.                                          (3.7) 

Moreover, ‖𝑃𝛽2‖
2
 =  ‖𝑈(𝐻𝛽2)‖

2
 =  ‖𝐻𝛽2‖

2
 =  𝛽2!. We put it into the following Corollary. 

Corollary 3.1. {𝑃𝛽2 ∶  𝛽
2  ∈  ℕ0

𝑛} is an orthogonal basis for ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) and ‖𝑃𝛽2‖
2
=  𝛽2! for each 𝛽2  ∈

 ℕ0
𝑛 . 

 

IV. Clifford Algebra-Valued Fock Space 

For 𝑋 =  (ℝ𝑛)∗, the real dual space of ℝ𝑛. Denote by 𝑋⊙𝑘 the algebraic symmetric 𝑘-tensor product 

of 𝑋. We will write Sym(𝑋) for the algebraic symmetric tensor algebra over 𝑋, i.e. Sym(𝑋) is the weak direct 

sum ∑  ∞
𝑘=0 𝑋

⊙𝑘 consisting of elements of the form ∑  ∞
𝑘=0 ∑  𝑗 𝛼𝑘

𝑗
, where each 𝛼𝑘

𝑗
 ∈  𝑋⊙𝑘 and (𝛼𝑗)𝑘  =  0 for all 

but finitely many 𝑘. Each 𝛼𝑘
𝑗
 ∈  𝑋⊙𝑘 has a natural norm given by 

|(𝛼𝑗)𝑘|
2
= ∑  

0≤𝛽1
2,...,𝛽𝑛

2≤𝑘

𝛽1
2+···+𝛽𝑛

2=𝑘

∑ 

𝑗

 
1

𝛽1
2! . . . 𝛽𝑛

2!
|𝛼𝑘
𝑗
(𝑒1
⊙𝛽1

2

⊙. . .⊙ 𝑒𝑛
⊙𝛽𝑛

2

)|
2

 = ∑  

|𝛽2|=𝑘

𝛽2∈ℕ0
𝑛

∑ 

𝑗

1

𝛽2!
|𝛼𝑘
𝑗
(𝑒𝛽

2
)|
2
, 

where {𝑒1, . . . , 𝑒𝑛} is the standard basis for ℝ𝑛. We define ℱ(𝑋) to be the Hilbert space completion of Sym(𝑋) 

with respect to the norm 

‖𝛼𝑗‖  = (∑  

∞

𝑘=0

∑ 

𝑗

|𝛼𝑘
𝑗
|
2
)

1
2

 

and call it the covariant Fock space. 

We can repeat the construction above for the Clifford algebra-valued symmetric tensor algebra, which 

will be identified with ℱ(𝑋) ⊗ ℂ𝑛 and called the ℂ𝑛-valued covariant Fock space. An element in ℱ(𝑋)⊗ ℂ𝑛 is 

a strong sum ∑  ∞
𝑘=0 ∑  𝑗 𝛼𝑘

𝑗
, where each 𝛼𝑘

𝑗
 ∈  𝑋⊙𝑘  ⊗  ℂ𝑛 and such that 

‖𝛼𝑗‖
2
=∑  

∞

𝑘=0

∑ 

𝑗

|𝛼𝑘
𝑗
|
2
<  ∞. 

Definition 4.1. Let 𝑓𝑗 ∶  ℝ
𝑛+1  →  ℂ𝑛 be a monogenic function. Let {𝑒1, . . . , 𝑒𝑛} be the standard basis of ℝ𝑛. For 

each (𝑥0
𝑟 , 𝑥𝑟)  ∈  ℝ𝑛+1, define the directional derivative operator 𝐷 (∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0

𝑟 , 𝑥𝑟)) to be a linear map on 

ℝ𝑛 such that 𝐷 (∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)(𝑒𝑖))  =  𝜕𝑒𝑖 (∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0

𝑟 , 𝑥𝑟)) for each 𝑖. More generally, for each 𝑘 ∈

 ℕ, define a 𝑘-linear map 𝐷𝑘(∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟) on (ℝ𝑛)𝑘 by 

𝐷𝑘 (∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)(𝑒𝑖1  , . . . , 𝑒𝑖𝑘)) = (𝜕𝑒𝑖1

. . . 𝜕𝑒𝑖𝑘
)(∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)). 

Since 𝑓𝑗 is smooth, 𝐷𝑘(∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟) is a symmetric 𝑘-linear map on (ℝ𝑛)𝑘 . 

This induces a ℂ𝑛-valued linear map on (ℝ𝑛)⊙𝑘 which is also denoted by 𝐷𝑘(∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟). Thus for any 

𝑢1
2, . . . , 𝑢𝑙

2  ∈  ℝ𝑛, 

𝐷𝑘(∑  

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)(𝑢1

2  ⊙ · · · ⊙ 𝑢𝑙
2)  =

{
 
 

 
 
(𝜕𝑢12 . . . 𝜕𝑢𝑘

2)(∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟))   if 𝑙 =  𝑘;

0                                                               otherwise.

 

Note that, for each 𝑘 ∈  ℕ0, the norm of 𝐷𝑘 (∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)) is 

|𝐷𝑘 (∑ 

𝑗

∑ 

𝑟

𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟))|

2

 = ∑  

|𝛽2|=𝑘

𝛽2∈ℕ0
𝑛

∑ 

𝑗

∑ 

𝑟

1

𝛽2!
|𝜕𝛽

2
𝑓𝑗(𝑥0

𝑟 , 𝑥𝑟)|
2
, 
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where 𝜕𝛽
2
 =  𝜕1

𝛽1
2

 . . . 𝜕𝑛
𝛽𝑛
2

 for 𝛽2  =  (𝛽1
2, . . . , 𝛽𝑛

2). Next, we identify 𝐷𝑘 (∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)) as an element of 

(𝑋)⊙𝑘  ⊗ ℂ𝑛. With 𝐷0(∑  𝑗 ∑  𝑟 𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟) defined as 𝑓𝑗(𝑥0

𝑟 , 𝑥𝑟), it is natural 

to write 

(1 −  𝐷)(𝑥0𝑟,𝑥𝑟)
−1 (∑ 

𝑗

𝑓𝑗)  = ∑  

∞

𝑘=0

∑ 

𝑗

∑ 

𝑟

𝐷𝑘𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟). 

Then (1 −  𝐷)(𝑥0𝑟,𝑥𝑟)
−1 (∑  𝑗 𝑓𝑗)  ∈  ℱ(𝑋)  ⊗ ℂ𝑛 if 

‖(1 −  𝐷)(𝑥0𝑟,𝑥𝑟)
−1 (∑ 

𝑗

𝑓𝑗)‖

2

∶= ∑  

∞

𝑘=0

∑ 

𝑗

∑ 

𝑟

|𝐷𝑘𝑓𝑗(𝑥0
𝑟 , 𝑥𝑟)|

2
 <  ∞. 

For simplicity, we write (1 − 𝐷)−1 instead of (1 − 𝐷)(0,0)
−1 . We will prove Theorem 1.3, which states that the 

map (1 − 𝐷)−1 is a unitary isomorphism from ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃) onto ℱ(𝑋)  ⊗ ℂ𝑛 . 

Proof of Theorem 1.3 (see [20]). First, we show that (1 −  𝐷)−1 is an isometry. Let 𝐹 ∈ ℳ𝐿2(ℝ𝑛+1, 𝑑𝜇̃). By 

Corollary 3.1, the orthogonality of {𝑃𝛽2} implies 

𝐹𝑗  = ∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

𝜔
𝛽2
𝑗
𝑃𝛽2     and       ‖𝐹𝑗‖

2
 = ∑  

𝛽∈ℕ0
𝑛

∑ 

𝑗

𝛽2! |𝜔
𝛽2
𝑗
|
2

 

where 𝜔
𝛽2
𝑗
 ∈  ℂ𝑛 for each 𝛽 and the first sum converges in 𝐿2(ℝ𝑛+1, 𝑑𝜇̃) ⊗ ℂ𝑛 sense and also converges 

uniformly on compact sets by monogenicity of 𝐹𝑗. Since 𝑃𝛽2(𝑥0
𝑟 , 𝑥𝑟)  =  𝑒−𝑥0

𝑟𝐷 (𝑥𝑟)
𝛽2

 and any partial 

differential operator commutes with 𝐷 and hence with 𝑒−𝑥0
𝑟𝐷 , it follows that 𝜕𝛼𝑗𝑃𝛽2(0, 0)  =  𝛽

2! 𝛿𝛼𝑗𝛽2 . Thus 

|𝐷𝑘 (∑ 

𝑗

𝐹𝑗(0, 0))|

2

 = ∑  

|𝛽2|=𝑘

∑ 

𝑗

1

𝛽2!
|𝜕𝛽

2
𝐹𝑗(0, 0)|

2
 = ∑  

|𝛽2|=𝑘

∑ 

𝑗

𝛽2! |𝜔
𝛽2
𝑗
|
2

 

Hence 

‖(1 −  𝐷)−1 (∑ 

𝑗

𝐹𝑗)‖

2

 = ∑  

∞

𝑘=0

∑ 

𝑗

|𝐷𝑘𝐹𝑗(0, 0)|
2
= ∑  

𝛽2∈ℕ0
𝑛

∑ 

𝑗

𝛽2! |𝜔
𝛽2
𝑗
|
2

= ‖𝐹𝑗‖
2
. 

This establishes the isometry of (1 − 𝐷)−1. Next, we show that (1 − 𝐷)−1 is  surjective. Let 𝛼𝑗  ∈ ℱ(𝑋) ⊗

 ℂ𝑛 . Then 𝛼𝑗  = ∑  ∞
𝑘=0 ∑  𝑗  𝛼𝑘

𝑗
 where 𝛼𝑘

𝑗
 ∈  𝑋⊙𝑘  ⊗ ℂ𝑛 and ‖𝛼𝑗‖

2
= ∑  ∑  𝑗

∞
𝑘=0 |𝛼𝑘

𝑗
|
2
<  ∞. For each 𝑥𝑟  ∈  ℝ𝑛 , 

define exp𝑘  (𝑥
𝑟)  ∈  (ℝ𝑛)⊙𝑘 by 

exp𝑘  (𝑥
𝑟)  = ∑ ∑ 

𝑟

 

|𝛽2|=𝑘

1

𝛽2!
(𝑥1
𝑟𝑒1)

⊙𝛽1
2
⊙. . .⊙ (𝑥𝑛

𝑟𝑒𝑛)
⊙𝛽𝑛

2
 = ∑  

|𝛽2|=𝑘

∑ 

𝑟

(𝑥𝑟)
𝛽2

𝛽2!
𝑒𝛽

2
. 

where 𝑒𝛽
2
 =  𝑒1

⊙𝛽1
2

 ⊙. . .⊙ 𝑒𝑛
⊙𝛽𝑛

2

. For each 𝑘 ∈  ℕ0, let (𝑓𝑗)𝑘(𝑥
𝑟)  =  𝛼𝑘

𝑗
(exp𝑘  (𝑥

𝑟)) and 𝑓𝑗(𝑥
𝑟)  =

∑  ∞
𝑘=0 ∑  𝑗  ∑  𝑟 (𝑓𝑗)𝑘(𝑥

𝑟). Then each (𝑓𝑗)𝑘 is analytic, which implies 𝑓𝑗(𝑥
𝑟) is analytic. 

Define 𝐹𝑗(𝑥0
𝑟 , 𝑥𝑟)  =  𝑒−𝑥0

𝑟𝐷𝑓𝑗(𝑥
𝑟) to be the 𝐶 − 𝐾 extension of 𝑓𝑗 . By (3.7), we have 

𝐹𝑗(𝑥0
𝑟 , 𝑥𝑟)  = ∑  

∞

𝑘=0

∑  

|𝛽2|=𝑘

∑ 

𝑗

1

𝛽2!
𝛼𝑘
𝑗
(𝑒𝛽

2
)𝑃𝛽2 . 

It follows from Corollary 3.1 that 

‖𝐹𝑗‖
2
 = ∑  

∞

𝑘=0

∑  

|𝛽2|=𝑘

∑ 

𝑗

1

𝛽2!
|𝛼𝑘
𝑗
(𝑒𝛽

2
)|
2
 = ∑  

∞

𝑘=0

∑ 

𝑗

|𝛼𝑘
𝑗
|
2
= ‖𝛼𝑗‖

2
 <  ∞. 

To show that (1 −  𝐷)−1(∑  𝑗 𝐹𝑗)  =  𝛼𝑗 , let 𝑚 ∈  ℕ0. For 𝑒𝛾
2
 =  𝑒1

⊙𝛾1
2

 ⊙ 𝑒2
⊙𝛾2

2

 ⊙. . .⊙ 𝑒𝑛
⊙𝛾𝑛

2

 with |𝛾2|  =  𝑚, 

we have 
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[𝐷𝑚 (∑ 

𝑗

𝐹𝑗(0, 0))](𝑒
𝛾2)  =  𝜕𝑒1

𝛾1
2

 . . . 𝜕𝑒𝑛
𝛾𝑛
2

[∑  

𝑟

𝑒−𝑥0
𝑟𝐷 (∑  

∞

𝑘=0

∑ 

𝑗

𝛼𝑘
𝑗
(exp𝑘  (𝑥

𝑟)))] (0, 0) 

     =  𝜕𝑒1
𝛾1
2

 . . . 𝜕𝑒𝑛
𝛾𝑛
2

[(∑  

∞

𝑘=0

∑ 

𝑗

∑ 

𝑟

𝛼𝑘
𝑗
(exp𝑘  (𝑥

𝑟)))] (0) 

=∑  

∞

𝑘=0

∑ 

𝑗

∑ 

𝑟

[(𝜕𝑒1
𝛾1
2

 . . . 𝜕𝑒𝑛
𝛾𝑛
2

) 𝛼𝑘
𝑗
(exp𝑘  (𝑥

𝑟))] (0). 

We can differentiate term-by-term inside the power series because 𝐹𝑗(0, 𝑥
𝑟) is analytic. Since 

(𝜕𝑒1
𝛾1
2

 . . . 𝜕𝑒𝑛
𝛾𝑛
2

) ((𝑥𝑟)
𝛽2

)  =  𝛽2! 𝛿𝛽2𝛾2 , evaluating at 𝑥𝑟  =  0 gives 

(𝜕𝑒1
𝛾1
2

 . . . 𝜕𝑒𝑛
𝛾𝑛
2

) (exp𝑘  (𝑥
𝑟)) = {𝑒1

⊙𝛾1
2

 ⊙ 𝑒2
⊙𝛾2

2

 ⊙. . .⊙ 𝑒𝑛
⊙𝛾𝑛

2

, for 𝑘 =  𝑚;

0,                                                          for 𝑘 ≠  𝑚.
 

It follows that 𝐷𝑚 (∑  𝑗 𝐹𝑗(0, 0)(𝑒
𝛾2))  =  ∑  𝑗 𝛼𝑚

𝑗
(𝑒𝛾

2
) for any 𝛾2  ∈  ℕ0

𝑛 with |𝛾2|  =  𝑚. Since {𝑒𝛾
2
∶  𝛾2  ∈

 ℕ0
𝑛 , |𝛾2|  =  𝑚} forms an orthogonal basis for (ℝ𝑛)⊙𝑚, we conclude that 𝐷𝑚 (∑  𝑗 𝐹𝑗(0, 0))  = ∑  𝑗  𝛼𝑚

𝑗
 and 

that 

(1 −  𝐷)−1 (∑ 

𝑗

𝐹𝑗)  = ∑  

∞

𝑚=0

∑ 

𝑗

𝐷𝑚𝐹𝑗(0, 0)  = ∑  

∞

𝑚=0

∑ 

𝑗

𝛼𝑚
𝑗
 =  𝛼𝑗 . 
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